
EE 290-005 Integrated Perception, Learning, and Control Spring 2021

Lecture 9: Safety and Performance Guarantee
Scribes: Kshitij Kulkarni, Yibin Li, Harry Zhang, Jason Zhou

Presented by Michael Lim, Yiling You, Yaodong Yu

9.1 Neural Bridge Sampling for Evaluating Safety-Critical
Autonomous Systems

9.1.1 Motivation: Operating Safety-Critical Control Systems

In generic closed-loop settings, it is difficult to certify or make guarantees regarding the performance and
quality of control systems; for data-driven and learning-based control approaches, this evaluation becomes
even more challenging. This barrier greatly limits the ability for these methods to be deployed in safety-
critical settings such as transportation and robot-assisted surgery, despite the development of autonomous
agents that may outperform proficient humans at those same tasks. Due to the necessity of such safety
guarantees, the set of available tools are restricted to those limited in depth and expressivity, such as simple
verifiable protocols, PID control, or convex optimization - non-ideal solutions for unstructured, real-world
tasks, but solutions that nevertheless can provide provable properties regarding stability, consensus, recursive
feasibility, and such.

Thus, to move beyond the barriers that come with these stylized methods, better evaluation systems are re-
quired; specifically, more efficient evaluation schemes are desired as current methods are often prohibitively
expensive (with regards to the required number of queries to the system simulator in the process of evalua-
tion) [5].

9.1.2 Governing Goal: Estimation of Adverse Event Probability

The task of evaluating safety-critical systems can be encapsulated as estimating the probability of a catas-
trophic event occurring, given that a particular agent is operating in the environment. Thus, the given
parameters of the estimation problem are as follows:

• Simulator of the particular environment/system is assumed to be available.

• Distribution X ∼ P0: simulation parameters that describe the typical state of the environment; note
that P0 is assumed to be known through standard system-identification and generative modeling tech-
niques outlined in relevant literature

• f : X → R: safety score function of a realization x of the particular agent and environment, where by
convention higher outputs denote safer characteristics

• γ ∈ R: safety score threshold defining an adverse event (occurring at safety scores below γ)

The goal can now be denoted succinctly as estimating the following quantity:

pγ := P0(f(X) < γ) (9.1)

9.1

9.2 Lecture 9: Safety and Performance Guarantee

Point of Discussion: What if some of the above availability assumptions do not hold?

9.1.3 Related Works

9.1.3.1 Naive Monte Carlo Approaches

Note that if an agent is highly proficient at its task (i.e. pγ is a very small quantity), then intuitively, we are
less confident in our estimate of pγ by nature of observing these adverse events (i.e. f(X) < γ) much less
frequently. Concretely, we can examine these effects through naive Monte Carlo estimation (p̂γ) by querying
the safety function f and the simulator; we are in essence exploring the search space through direct random
samples from P0 to produce p̂γ :

p̂γ =
1

N

N∑
i=1

1{f(xi) < γ} (9.2)

While this method is unbiased, and straightforward to implement and parallelize, it exhibits poor sample
complexity. The error for the Monte Carlo estimation is:

E[(
p̂γ
pγ
− 1)2] =

1− pγ
Npγ

(9.3)

Observe that the error is inversely proportional to pγ ; the reduction of this error (to a logarithmic relationship
with regards to true pγ) is another area upon which the paper will improve current evaluation methods.

By adding an adaptive exploitative component to the above naive scheme (which is purely exploratory as it
stands), the resulting approximations can be improved. This is achieved by examining the most informative
random samples from a sequence of such distributions Pk that approximate P0. However, no first-order
information about the safety function f itself is leveraged in these standard adaptive Monte Carlo methods.

Additionally, the proposed method avoids the computation of the Hessian O2f(x), which is generally ex-
orbitantly expensive to calculate and commonly employed in naive first-order optimization methods for
estimation, by relying only on using the gradient Of(x).

9.1.3.2 Safety Evaluation: Verification & Falsification

The verification community has developed many tools in similar attempts to evaluate closed-loop systems,
their performance, and safety. In general, verification methods certify whether or not failure is possible by
investigating dangerous executions of the system. However, these tools require both that the model is written
in a formal language, and that whitebox access to this formal model is available.

In falsification, attempts are made at finding any failure modes of the system; in essence then, the goal in
falsification is to minimize f(x) itself. This is in contrast to estimating pγ , the probability of catastrophic
events occurring. Falsification is closely related to adversarial machine learning, although in adversarial
machine learning the domain from which the adversarial examples come from are restricted (generally to a
p−norm ball around a point of the dataset), while falsification enforces no such constraints on the domain.

Note that in real-world settings it is generally trivial to demonstrate failure cases (e.g. performed by verifi-
cation and falsification), and it may be significantly more beneficial to consider the probability and overall
frequency of failures as well as the relative frequency amongst different failure modes instead. After all,
verification and falsification methods provide only a coarse binary label on whether or not the system is safe
or unsafe.

Lecture 9: Safety and Performance Guarantee 9.3

9.1.3.3 Sampling Techniques and Density Estimation

For sampling rare (potentially adverse) events, we can review two dominant branches of work:

1. Parametric Adaptive Importance Sampling (AIS). For example, the cross-entropy method falls under
this category. These methods postulate a family of distributions for the optimal importance-sampling
distribution, and then iteratively update the sampling distribution through heuristic optimization
procedures.

2. Nonparametric Sequential Monte Carlo (SMC). For example, particle filters, smoothing filters, etc.
fall under this category. These techniques sample from a sequence of probability distributions defined
directly by the samples (i.e. nonparametrically).

The proposed neural bridge method employs bridge sampling, which uses elements of both AIS and SMC;
namely, parametric warping distributions are used within the SMC setting. Other closely related methods
include umbrella sampling (which is more brittle than the bridge sampling distribution), multilevel splitting
(which uses hard barriers/indicator functions, while neural bridge uses smooth exponential barriers), and
path sampling.

9.1.4 Markov Chain Monte Carlo Methods

We now build towards the proposed approach, beginning with the naive Monte Carlo sampling formulation.
As mentioned above, Monte Carlo sampling is commonly employed to estimate the expected value of a func-
tion with a sum by generating samples from a given distribution. Namely, we can approximate

∫
f(x)p(x)dx

for which x(i) ∼ p(x), in the following manner empirically:∫
f(x)p(x)dx ≈ 1

N

N∑
n=1

f(x(i)) (9.4)

The limitations of naive Monte Carlo sampling were covered previously. Additionally, in situations where
independent samples from the distribution upon which we are performing inference cannot be drawn or
drawn easily, Monte Carlo sampling may not be used. In this case, we turn to Markov Chain Monte Carlo
(MCMC), which are a broad class of methods that, at a high level, employ Markov Chains to adaptively
explore near the target distribution in order to converge onto the equilibrium (or posterior) distribution
using simulated samples. One such standard MCMC method is Metropolis Hastings.

9.1.5 Metropolis Hastings

The Metropolis Hastings algorithm attempts to solve the sampling problem by generating a Markov Chain
through rejection. The algorithm proceeds as follows, where we want to sample from a probability distribu-
tion P (x); we generate a Markov chain whose stationary distribution π(x) = P (x).

1. Generate a random state x′ from a proposed distribution g(x′|xt)

2. Accept the sample with probability:

A(x′, x) = min

(
1,
P (x′)g(x|x′)
P (x)g(x′|x)

)
(9.5)

3. Choose a random number uniformly from [0, 1], and accept if u ≤ A(x′, x) and reject otherwise.

A note about Metropolis Hastings: the algorithm is a subclass of Markov Chain Monte Carlo methods.

9.4 Lecture 9: Safety and Performance Guarantee

9.1.6 Metropolis-adjusted Langevin Algorithm

We first introduce Langevin dynamics, both the first order and second order versions, which are idealized
versions of molecular dynamics via stochastic differential equations. First, we propose the first-order version:

Ẋ = −∇U(X) +KẆ (9.6)

where W is a Brownian motion. There is also a (second-order) damped version that was introduced in the
lecture, but we note that standard MALA algorithms do not make use of this Langevin diffusion:

Ẍ = −∇U(X)− γMẊ +
√

2MγkBTR(t) (9.7)

where once again, R(t) is a Brownian motion.

Now, we can propose the MALA algorithm, which uses a discretized version of the first order Langevin
diffusion to propose a state::

X̃k+1 = Xk + τ∇ log π(Xk) +
√

2τξk (9.8)

such that ξk an i.i.d. draw from a multivariate Gaussian with zero mean and covariance Id×d and π(·) is the
distribution we are interested in drawing from.

We then accept or reject this state according to the Metropolis-Hastings algorithm:

α = min{1, π(X̃k+1q(Xk|X̃k+1

π(Xk)q(X̃k+1|Xk)
} (9.9)

where q(x′|x) is distribution proportional to an exponential distribution in x′ − x. The core idea here is
the stationary distribution exists through the detailed balance condition, and that compared to standard
Metropolis-Hastings, the algorithm reaches regions of high π probability faster.

9.1.7 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo is used to compute integrals with respect to a target distribution P (x). These
integrals take the following form:

∫
f(x)P (x)dx (9.10)

which are approximated as: ∫
f(x)P (x, v)dxdv (9.11)

≈ 1

N

N∑
n=1

f(xi), x, v ∼ P (x, v) (9.12)

Further, we see that we can write the Hamiltonian of a system with states (p, q) as:

H(p, q) = K(p) + U(q) (9.13)

Lecture 9: Safety and Performance Guarantee 9.5

where K(p) = pTM−1p
2 is a kinetic energy term, U(q) is a potential term, and the dynamics are:

q̇ = M−1p (9.14)

ṗ = −∂U
∂q

(9.15)

The idea in HMC is to simulate a forward trajectory of the Hamiltonian dynamics in (p, q)-space, and use
this as a proposal for the forward trajectory. The following is the forward simulation of the dynamics:

Figure 9.1: Forward simulation of the dynamics

For an example implementation of HMC, see: https://github.com/chi-feng/mcmc-demo

Further, here is an example of the comparison of HMC and MALA:

Figure 9.2: Comparisons of HMC and MALA

9.1.8 Overview of MCMC Methods

Till now, we have surveyed the following (gradient-based) Markov Chain Monte Carlo Methods:

9.6 Lecture 9: Safety and Performance Guarantee

1. Metropolis Adjusted Langevin Algorithm (MALA)

2. Hamiltonian Monte Carlo

There are also so-called temperature-based MCMC methods, such as:

1. Parallel Tempering

2. Wang-Landau

However, we do not go deep into these here.

MCMC methods also have relations to reinforcement learning and control. For example, there are state-space
methods in papers such as:

1. “Neural bridge sampling”, Sinha et. al.

2. “A Markov chain Monte Carlo algorithm for Bayesian policy search”, Aghaei et. al.

3. “Trans-dimensional MCMC for Bayesian Policy Learning”, Hoffman et. al.

Finally, there may be a link to energy-space MCMC through so-called deep energy models.

9.1.9 Autoencoding

An auto encoder is a generative model that feeds the input data into an encoder network, encoding the data
into a latent space and then feeds the encoded latent representation of the data into the decoder in order to
reconstruct the data.

In comparison, a variation also auto encoder has the smart idea of reconstructing the input data, but instead
of trying to directly learn the data distribution, a VAE approximates the distribution with a more tractable
one and samples from that distribution using the reparameterization trick to reconstruct the input data.

Figure 9.3: Structure of Autoencoder

In the autoencoder formulation, we have x ∈ Rn and an encoder e(x) : Rn → Rn → Rm where m < n, as
well as a decoder d : Rm → Rn such that d(e(x)) = x. In the case when d(e(x)) = x for all x, we have
lossless encoding and when d(e(x)) 6= x we have lossy encoding. That is, information is loss when reducing
the dimension and thus the data x cannot be recovered.

Lecture 9: Safety and Performance Guarantee 9.7

9.1.10 Variational Autoencoders

Variational autoencoders use the encoding decoding process combined with a sampler to add randomization
to the autoencoding process. That is, we have x→ e(x) + ε→ d(e(x) + ε) where ε is a sampled vector from
the latent space. We further minimize the decoding error to recompute x.

Figure 9.4: Structure of Varaitional autoencoders

Figure 9.5: Visual Depiction of the Autoencoding Process

The core idea is that the training data can be embedded and then points can be sampled from the latent
space and decoded. The full autoencoding process as compared to simple autoencoders can be found below.

9.1.11 Normalizing Flows

Normalizing flows are a class of algorithms that learn transforms that normalize. The idea is to learn an
embedding into a Gaussian-like space and use an invertible smooth mapping (a bijection) such that:

p(y) = q(z)

∣∣∣∣det∂f∂z
∣∣∣∣−1 (9.16)

We have an example here of a normalizing flow: In the context of MCMC, we know that HMC is inefficient.

9.8 Lecture 9: Safety and Performance Guarantee

Figure 9.6: The variational autoencoding process compared to simple autoencoders

Figure 9.7: Example of a normalizing flows

Specifically, HMC mixes (or reaches a stationary point) poorly in spaces with ill-conditioned geometries.
The idea is to transform a space into something close to an isotropic Gaussian.

Therefore, normalizing flows for transformations are such that we learn an invertible transformation of Pk
to a Gaussian.

9.1.12 Proposed Approach

9.1.12.1 A Ladder Towards Failure

In order to sample from a rate probability, we decompose it to a sequence of network probability (a ladder
towards failure). We let this βk to be increasing and finally go to plus infinity; that’s how we approach our
target density of the distribution.

ρx(x) := ρ0(x)exp(βk[γ − f(x)])

where

Pk: the kth distribution

ρk: the kth un-normalized density

Zk :=
∫
X
ρk(x)dx: the normalizing constants

exp(βk[γ − f(x)]): exponential barrier function

to iteratively compute the probability of γ

Lecture 9: Safety and Performance Guarantee 9.9

pγ := P0(f(X) ≤ γ) = EPk
[
ZK
Z0

ρ∞(X)

ρK(X)

]

ZK
Z0

=

K∏
k=1

Zk
Zk−1

Figure 9.1 shows one example of the sequence of the ρ case.

Figure 9.8: Threshold for dangerous events

Figure 9.2 is an example of choosing space function as the standard Gaussian function and we’re interested
in the choice of safety measure. By picking the value of γ function the pink area on the top right is our
region of interest.

Figure 9.9: Finding the Right Space Function

The proposed algorithm consists of three steps:

• Exploit: determine the next β using current samples (kth distribution)

• Explore + optimize: utlize gradient-based MCMC to sample from (k + 1)st distribution

• Estimate: compute Zk+1/Zk via bridge sampling

9.10 Lecture 9: Safety and Performance Guarantee

9.1.12.2 Exploit

In the exploitation step we explore the existing samples those points in the blue cluster to estimate the next
intermediate distribution by doing a binary search to solve an optimization problem.

Binary search: choose βk+1 such that

Zk+1

Zk
≈ α

9.1.12.3 Explore + optimize

In this step we will use the gradient based Hamiltonian Monte-Carlo sampling method to sample from the
updated distribution. The gradient to the intermediate density as the figure shows how automatically trades
up between the exploration with the ρ0 and optimization with the gradient out.

Trade-off between exploration and optimization

∇ log ρk(x) = ∇ log ρ0 − βk∇f(x)I{f(x) > γ}

∇ log ρ0: exploration

βk∇f(x)I{f(x) > γ}: optimization

9.1.12.4 Estimate

After two steps now we have the new sample from the updated distribution which is shown as the red cluster.
Our final goal is to estimate the ratio of the normalizing constant Zk+1

Zk
via bridge sampling.

Figure 9.10: Estimation Update

9.1.12.5 Bridge Sampling

Putting all those three steps together we now have all the variables that translate from the blue cluster into
the pink region of interest.

Lecture 9: Safety and Performance Guarantee 9.11

Figure 9.11: Bridge Sampling Reaches the Region of Interest

9.1.13 Summary of the Approach

We summarized the overall approach presented in the paper here.

Figure 9.12: Pseudocode for the algorithm

9.1.14 MCMC with an Exponential Barrier

We summarize the exploration and optimization process via HMC. First, we realize that HMC is volume
preserving, and therefore, there is no need to adjust the acceptance probability, and therefore a Hessian
calculator is unnecessary.

Exponential barriers combine exploration and optimization with the following function:

log ρk(x) = log ρ0(x) + βk[γ − f(x)] (9.17)

βk is a modulation factor that measures how much ∇f (the optimization component) and ∇ log ρ0(x) (ex-
ploration component) contribute.

9.12 Lecture 9: Safety and Performance Guarantee

9.1.15 Bridge Sampling Estimation

We introduce bridge sampling. It estimates the ratio of normalizing constants Zk/Zk+1 in our case. We
define the geometric bridge:

ρBk (x) =
√
ρk−1ρ(x) (9.18)

The ratio of ρk−1(x) and ρ(x) cancel out the ρ0(x) dependence.

Therefore, in bridge sampling estimation, we have Ek = Zk/Zk−1 and therefore Ek can be estimated without
calculating ρ0(x).

9.1.16 Neural Warping

For neural warping, we improve HMC mixing by transforming a space into an isotropic Gaussian. This
also improves the bridge sampling efficiency of Pk. We look for invertible transformations of the form
yki = Wk(xki).

Minimizing the KL divergence between the transformed samples and the standard Gaussian results in the
following objective:

min
θ

N∑
i=1

|detJWk
(xki ; θ) +

1

2
‖Wk(xki ; θ)‖22 (9.19)

9.1.17 Adaptive Intermediate Distributions

In order to choose βk, we exploit the previous progress to choose βk online.

We choose βk as the solution to the optimization problem (with binary search). Optimization therefore
balances the naive Monte Carlo estimate of pγ with neural warping estimate of pγ to determine the severity
of exploration.

9.1.18 Performance Analysis

We can bound the asymptotic relative mean squared error:

E[(ρ̂γ/ρgamma)2] (9.20)

is encapsulated in the following figure:

Figure 9.13: Bound on mean-squared error

Lecture 9: Safety and Performance Guarantee 9.13

The above upper bound is empirically estimable.

There is an overall efficiency gain of O(1
pγ

log(pγ)2) over Monte Carlo. These are the relative advantages:

Figure 9.14: Relative Efficiency Gains over Monte Carlo

9.1.19 Experiments

The main task of this paper is to evaluate the safety of autonomous systems efficiently.

The experiments are divided into parts:

1. Synthetic problem

2. Formally verified neural network controller on the OpenAI Gym example continuous MountainCar
under a domain perturbation.

3. There are two examples of engineering design in high dimensional settings:

(a) Comparing thruster sizes to safely land a rocket in the presence of wind

(b) Comparing two algorithms on the OpenAI Gym CarRacing environment.

The baseline methods are:

1. Naive Monte Carlo

2. Ablation studies for the effects of neural warping (denoted as NB with warping and B without).

3. Adaptive multilevel splitting

All methods are given the same computational budget as measured by evaluations of the simulator.

The ground-truth values pγ for the non-synthetic problems using a fixed very large number of MC queries.

9.1.19.1 Experiments: Synthetic Problem

As an example, we consider the synthetic problem:

f(x) = −min(|x1|, x2) (9.21)

and γ = −3 and P0 = N (0, I).

Experiments lead to:

9.14 Lecture 9: Safety and Performance Guarantee

Figure 9.15: Caption

9.1.19.2 Experiments: Formally-Verified Controller under Domain Shift

Although this controller is verified, but it is kind of brittle or not robust to the distribution shift. So
it assume the velocity to be zero at the initial point but in this case we add some perturbation to the
initial-like condition.

• IWA + 2019 created a formally-verified neural network controller to achieve reward > 90 over all initial
positions in [0.59, 0.4] and 0 initial velocity.

• The guarantees of formal verification hold only with respect to the specified domain; even small domain
perturbations can affect system performance.

• Here, adding a small perturbation to the initial velocity.

Figure 9.16: Experiments on the MountainCar Environment. The dashed horizontal line in (b) is the line
along which the controller is formally verified. 10 trails are used for the variance ratios in (c). The irregular
geometry degrades performance of AMS and B, but B benefits slightly from gradients over AMS. NB uses
gradients and neural warping to outperform all other techinques.

9.1.19.3 Experiments: Rocket Design

A usable case for the estimation method.

• The amount of thrust which the rocket is capable of deploying to land safely must be balanced against
the payload it is able to carry to space; stronger thrust increases safety but decreases payloads.

Lecture 9: Safety and Performance Guarantee 9.15

• Compare two rocket designs.

• Evaluate their respective probabilities of failure (not landing safely on the landing pad) for landing pad
sizes up to 15 meters in radius.

• Help engineers quickly judge whether to increase the size of the landing pad or build a better rocket.

Figure 9.17: Rocket design experiments. NB’s high-confidence estimates enable quick design iterations to
either increase the landing pad radius or consider a third rocket that fails with probability around 10−5. Lo-
dimensional visualization shows that Rocket2’s failure types are more concentrated than those of Rocket12,
even though Rocket2 has a higher overall probability of failure.

9.1.19.4 Car Racing

In the deep reinforcement learning scenario for car racing, the paper compares two recent approaches:

• AttentionAgentRacer [TNH 2020]

• WorldModelRacer [HS 2018]

Both systems utilize one or more deep neural networks to plan in image-space, so neither has performance
guarantees.

9.1.20 Experiments Comparison

Table 1 shows that the method proposed in this paper can estimate the pγ more accurately with other
baseline approach.

9.1.21 Discussion

(Chat) Albert Qü: What does “guard set” mean in this context?

(Comment) Yiling You: Some criteria need to jump from one hybrid system to another.

(Chat) Claire Tomlin: Guard set is the set of states from which you can take a transition from one dis-
crete state to another, as Yiling just said.

9.16 Lecture 9: Safety and Performance Guarantee

Figure 9.18: CarRacing Experiments. MC cannot distinguish between the policies below γtest = 160.
NB’s high-confidence estimates enable model comparisons at extreme limits of failure. Low-dimensional
visualization of the failure modes hows that the algorithms fail in distinct ways.

Figure 9.19: Experiments Comparison

(Chat) Ayush Agrawal: I think this is a nice paper that talks about using tools from reachability where the
model of the system is not explicitly known: Bridging Safety and RL Paper

(Chat) Chinmay Maheshwari: Are we supposed to solve the SDE in the MALA algorithm?

(Chat) Kshitij Kulkarni: In order to do the two-step process in MALA, you will have to discretize the
diffusion, right?

(Comment) S.Shankar Sastry: For the Langevin equation, are you using the steady state distribution or
are you using the time-varying solution?

(Comment) Michael Lim: Yeah so I think in order to use the Langevin equation what you are plugging
in for the potential of the gradient is like some information about the target distribution or like at least the
gradient of the target distribution at that point.

(Comment) S.Shankar Sastry: I presume the stationary distribution is exponential of minus u of x plus
one half mx dot squared divided by the square of that variance of the white noise. That’s the stationary
distribution. So what do you do with that x dot squared term? So the diffusion on the 2n-dimensional space
whereas you are sampling x in Rn.

https://people.eecs.berkeley.edu/~jfisac/papers/Bridging_Safety_and_RL.pdf

Lecture 9: Safety and Performance Guarantee 9.17

(Comment) Claire Tomlin: You are also sampling x dot, right? That’s what you would have to do if
you think about that as a vector differential equation.

(Comment) Yi Ma: In practice, you have to discretize.

(Comment) Claire Tomlin: The state space is 2n-dimensional.

(Comment) Michael Lim: We add some damping term, estimate the finite different, and add some white noise.

(Comment) Yi Ma: We follow the gradient dynamics and use the Metropolis acceptance condition to sam-
pling your state.

(Comment) Yi Ma: (summary for the overall approach) It depends on the F now, if f is multi model,
the exploration can be high. How some one can certain if this will be converged?

(Comment) Yaodong Yu: You do need to sample all the region.

(Comment) Yi Ma: How do you establish the target distribution?

(Comment) Michael Lim: targeted distribution is the main part of bridge sampling. Use Barrier func-
tion to estimate, not sure about the kinetic energy though

(Chat) Albert Qü: So is the idea is that you sample both the second order and the first order? Or you
sample second order and calculate first order X?

((Chat) Albert Qü: so I am assuming the second order sampling is to correct the bias with the first or-
der sampling?

(Chat) Michael Lim: MCMC Demo Link

(Chat) Yi Ma: Here is a good website for MCMC samplers: Link

(Chat) Albert Qü: In perceptual problems, would framing f as the mis-classification / detection like ac-
curacy scores be a good risk function to use and then use the sampling method to constrain the risk? (To
some extent this seems very circular because the risk commonly were in the objective function explicitly?)
I mean to calculate the derivative.

(Chat) Yaodong Yu: Also, for most examples studied in this paper, the f is kind of well defined. For
example, the reward is used to act as the ‘safety metric’ for the DRL examples.

(Chat) Albert Qü: It looks like this is flipping the optimization problem of minimizing objective func-
tion and convert this to learning the distributions on the feasible set through a sequence of bridges?

(Chat) Yaodong Yu: Yeah, that sounds reasonable to me.

(Chat) Yi Ma: In general the task can seem ambitious and intractable. However, for proper class of distri-
butions (as functions) with nice properties, this might not be daunting.

(Chat) Kshitij Kulkarni: @Prof Ma: The paper gives an example of the following function where gradi-
ent descent collapses xi to a line. The function is f(x) = min(|x[1]|, x[2]) for x in R2. Their argument is
that the non smoothness of this function doesn’t allow one to track how volumes have been distorted.

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=banana
https://pints.readthedocs.io/en/stable/mcmc_samplers/index.html

9.18 Lecture 9: Safety and Performance Guarantee

(Chat) Yiling You: G is the so-called “Bhattacharyya coefficient”. Intuitively it measures the distance
between the distributions.

(Chat) Yi Ma: The variational auto-encoding part is a little strange: one essentially assume the distribution
is unimodal. . . hence a smooth transformation to Gaussian. . . otherwise, if the distribution is multi-modal,
you are approximating its convex envelop — sampling in between can be wasteful. . .

(Chat) Yi Ma: I always believe auto-encoding needs to address the multi-modal problem of possible mixed
distributions — which is a more realistic assumption for real data. But that entails us to do clustering or
unsupervised learning better. In the uni-modal case, the logdet objective of (6) is the “volume” or “coding
rate” of the (Gaussian-like) distribution. Interested students can read our rate reduction paper: Link to
paper This is a rather universal quantity. But one has to use it properly in case the data are multi-modal
(and the distribution can be degenerate).

(Chat) Jay Monga: In this sense, does the work in the paper seem more useful for judging which ac-
tions will increase safety (changing aspects of rocket design for example), or to provide assurance beyond
doubt of if a system is safe enough?

(Chat) Yaodong Yu: @Jay Yeah, I think the safety measurement could be helpful for judging which ac-
tions can increase safety.

(Chat) Yiling: This is a good point, I also wonder how this safety measurement can systematically aux-
iliate the design of safe controllers.

[2] [1] [4] [3]

References

[1] “Illustration of hamiltonian monte carlo.” [Online]. Available: https://github.com/chi-feng/mcmc-demo

[2] “Illustration of markov chain monte carlo.” [Online]. Available: https://www.researchgate.net/figure/
Illustration-of-Markov-Chain-Monte-Carlo-method fig1 334001505

[3] “Illustration of normalizing flow.” [Online]. Available: https://arxiv.org/pdf/1505.05770.pdf

[4] “Illustration of variational autoencoder.” [Online]. Available: https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73

[5] A. Sinha, M. O’Kelly, R. Tedrake, and J. Duchi, “Neural bridge sampling for evaluating safety-critical
autonomous systems,” 2020.

https://arxiv.org/abs/2006.08558
https://arxiv.org/abs/2006.08558
https://github.com/chi-feng/mcmc-demo
https://www.researchgate.net/figure/Illustration-of-Markov-Chain-Monte-Carlo-method_fig1_334001505
https://www.researchgate.net/figure/Illustration-of-Markov-Chain-Monte-Carlo-method_fig1_334001505
https://arxiv.org/pdf/1505.05770.pdf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

	Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
	Motivation: Operating Safety-Critical Control Systems
	Governing Goal: Estimation of Adverse Event Probability
	Related Works
	Naive Monte Carlo Approaches
	Safety Evaluation: Verification & Falsification
	Sampling Techniques and Density Estimation

	Markov Chain Monte Carlo Methods
	Metropolis Hastings
	Metropolis-adjusted Langevin Algorithm
	Hamiltonian Monte Carlo
	Overview of MCMC Methods
	Autoencoding
	Variational Autoencoders
	Normalizing Flows
	Proposed Approach
	A Ladder Towards Failure
	Exploit
	Explore + optimize
	Estimate
	Bridge Sampling

	Summary of the Approach
	MCMC with an Exponential Barrier
	Bridge Sampling Estimation
	Neural Warping
	Adaptive Intermediate Distributions
	Performance Analysis
	Experiments
	Experiments: Synthetic Problem
	Experiments: Formally-Verified Controller under Domain Shift
	Experiments: Rocket Design
	Car Racing

	Experiments Comparison
	Discussion

