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8.1 Safe and Data-Efficient Learning for Robotics

By professor Somil Bansal, USC

This work [1] is at the intersection of Learning & Perception and Control Theory.

8.1.1 Main Question

Navigation in unknown environments: How can a robot with a monocular RGB camera navigate efficiently
to a goal state in an unknown environment

8.1.2 Autonomous driving

Approaches to solve the problem:

• End-to-End (E2E) Learning. Pixels to Control actions: Output direct control commands.

– Pros: It can generalize to unknown environments.

– Cons: The sample complexity is very high.

• Mapping + Planning. SLAM based approach

– Pros: State of the art in academia and industry.

– Cons: Doesn’t contain semantic information (we know that chairs in real world have legs, thus
adding learning would be helpful for generalization).

failure modes: sim to real gap, for example glare on the floor, power lines, branches

• Learning based Perception + Model based Control (LB-WayPtNav, see Figure 8.1).

– Decomposes learning and control and utilize the strengths of each approach;

– Leads to more modular architectures (e.g., replace robot with quadrotor while keeping perception
module unchanged);

– Provides robustness to sim to real transition (i.e., by data augmentation during training);

– Can be extended to dynamic environments (i.e., infer from visual cues human behaviour and
adapt control outputs to inferred human behaviour)
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https://people.eecs.berkeley.edu/~somil/
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Figure 8.1: Learning based perception + model based control

8.1.3 Experiments of Learning Based Perception + Model Based Control

• Dataset: Stanford 2d-3d dataset, see [2].

• Training and Testing: Simulations are conducted in environments derived from scans of real world
buildings. Scans from 2 buildings were used to generate training data to train LB-WayPtNav. 185
test episodes (start, goal position pairs) in a 3rd held-out building were used for testing the different
methods. Test episodes are sampled to include scenarios such as: going around obstacles, going out of
the room, going from one hallway to another.

• Data Augmentation: Data augmentation is conducted by applying a variety of random distortions
to images, which significantly improves the generalizability of LB-WayPtNav to unseen environments.

• Results (success rate in terms of reaching the goal):

– E2E: 56.16%;

– LB-WayPtNav: 82.19%

• Explanation of the Gap: Pure learning strategies struggle whenever intricate control is required
(i.e., narrow corridors).

• Observations: Both E2E and LB-WayPtNav improve with more data, and LB-WayPtNav is 10x
more data efficient.

8.1.4 Discussion

1. Q. (Simon Zhai): “How is the model incorporated in the system?”

A. (Somil Bansal): There is no model in E2E; in LB-WayPtNav, the model is incorporated via the
dynamic-based planning model which constantly output subgoals, and plan the trajectories using the
dynamic planning models and the subgoals.

https://cvgl.stanford.edu/resources.html
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2. Q. (Frank Chiu): “What other moving objects did you use? Other robots?”

A. (Somil Bansal): We tried the approach with moving human, so the model can react to humans
moving in the room. We assume that the human does not care about the robot, just the robot needs
to react to the human.

3. Q. (Yi Ma): “How would it change if you had multiple robots with their own goal”?

A. (Somil Bansal): Here it is important to model the interaction between robots, we need some kind
of game theoretic paradigm to model this interaction.

4. Q. (Jitendra Malik): “How to put humans in these environments? Renderings are not realistic; how
to to compute realistic behaviour?”

A. (Somil Bansal): We add 3D mesh and we merge the mapping to get realistic occlusions. In order
to model human behaviour we model them via optimal control to incorporate some decision making
modules. One issue is that the human is not reactive in the simulated environments.

5. Q. (Harry Zhang): “How do you tell what the goal of the robot in real life?”

A. (Somil Bansal): We have 2D layout and have coordinates. We can do this for short range
navigation, but it is challenging for long range navigation.

6. Comment. (Jitendra Malik): There are different types of goals: i.e., finding the coordinates,
finding the closest chair.

8.2 A tour of Reinforcement Learning from Continuous Control
[3]

8.2.1 Motivation and Contribution

• Can we solve continuous control problems via RL (RL typically used for discrete);

• Model based vs model free comparison;

• Strength and weaknesses of RL.

8.2.2 Basic RL/ Control Problem

• The dynamics: xt+1 = f(xt, ut, et).

• The reward function: R(xt, ut).

• Optimization:

maxEet

[
N∑
t=0

R(xt, ut)

]
, subject toxt+1 = f(xt, ut, et). (8.1)

• The dynamics
τt = (u1, . . . , ut−1, x0, . . . , xt). (8.2)

• The decision variables of the problem is a policy: ut = πt(τt), which uses previous information in the
trajectory to compute the control ut.

• Goal: Maximize rewards to obtain a “good” policy.
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8.2.3 Types of RL approaches

1. Model based System Identification / Supervised Learning

• Goal:

maxEet

[
N∑
t=0

R(xt, ut)

]
subject to xt+1 = f(xt, ut, et), ut = πt(τt), f(xt, ut, et) is unknown.

(8.3)

• A näıve method: find the dynamic model f(xt, ut, et) by injecting a random probing sequence ut
and measure the response xt+1 ≈ ϕ(xt, ut) + vt.

• ϕ could be non-parametric approximation of a neural network, e.g., fit a least square with super-
vised learning

ϕ̂ = arg min

N−1∑
t=0

‖xt+1 − ϕ(xt, ut)‖2 . (8.4)

2. Model free (Approximate Dynamic Programming and Policy Search):

• ADP: We can setup the Q function for Q learning using Bellman’s Principle of optimality

Q(x, u) = max

{
Eet

[
N∑
t=0

R(xt, ut)

]}
,

subject to xt+1 = f(xt, ut, et), (x0, u0) = (x, u).

(8.5)

• Define the terminal Q function to be QN (x, u) = R(x, u).

• The Bellman operator

Qk(x, u) = R(x, u) + Ee
[
max
u′

Qk+1(f(x, u, e), u′)
]
. (8.6)

• An optimal policy satisfies
πk(τk) = arg maxQk(xk, u). (8.7)

• For infinite time horizon, introduce the discount factor (0 < γ < 1):

max

{
(1− γ)Eet

[
N∑
t=0

γtR(xt, ut)

]}
subject to xt+1 = f(xt, ut, et), ut = πt(τt).

(8.8)

• Then we have the Bellman equation for the discounted case

Qγ(x, u) = R(x, u) + γEe
[
max
u′

Qγ(f(x, u, e), u′)
]
. (8.9)

8.2.4 Linear Quadratic Regulator LQR

• The simplest class of control problems that exhibit nontrivial results are:

minEet

[
1

2

N∑
t=0

x>t Qxt + u>t Rut +
1

2
x>N+1Sxn+1

]
subject to xt+1 = Axt +But + et, ut = πt(τt), Q,R, Sare PSD.

(8.10)
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• Under known dynamics, the optimal policy is linear state feedback:

ut = −Ktxt (8.11)

• When the horizon is infinite, the policy is stationary ut = −Kxp, where K can be obtained via solving
a Ricati equation.

Least Squares Estimation for System Identification

• When A,B are unknown, we can use the least-square estimation:

min
A,B

N−1∑
t=0

‖xt+1 −Axt −But‖2 (8.12)

• Note that the least-square estimation may not be robust (e.g., consider the case where A has an
unstable eigenvalue).

8.2.5 Discussion

1. Comment. (Jitendra Malik, Shankar Sastry): In the praise of RL. Separating ID from control
only works when the model is simple. Ben Recht says that you can perform system id; however there
are system that are more complicated, we might be able to simulate but we might not be able to nicely
describe the dynamics-the proof of this is in practice, as we have good simulation environment, who
cares about sampling complexity.

If you know that system is linear, then estimating via LS is not the best way to get accurate estimates.

2. Comment. (Jitendra Malik): Manipulation with contact is super hard to operate in the paradigm
of system id.

3. Comment. (Shankar Sastry): When you have a model, use it! When you don’t have a model, use
data. Use at least some kind of information about causation (see works of Professor Judea Pearl) –
what are inputs, what are outputs in a problem.

4. Comment. (Yi Ma): Even if you don’t have a model (but have some oracle access), nevertheless
adding some kind of even more simple modeling assumption can be useful. So some kind of model
based intuition/thinking is often useful.

5. Comment. (Claire Tomlin): In economics they try to infer causal behaviour from observational
data because RCT are too expensive/unfeasible. They look at very complex behaviours, and there is
still a lot of use in adding modeling assumptions

6. Comment. (Shankar Sastry): If you mix together inputs and outputs in observational data, can
you label the inputs and the outputs? This is a surrogate for causality.

7. Comment. (Yi Ma): Recent work on knockoffs (see works of Professor Emannuel Candès) to get at
the above problem.

8. Comment. (Claire Tomlin): It is interesting to look into algorithmic causality and approaches to
scale.

http://bayes.cs.ucla.edu/jp_home.html
https://statweb.stanford.edu/~candes/publications/
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8.3 RL and Control as Probabilistic Inference [4]

This paper makes connections between RL and probabilistic inference on a graphical model. This enables
the use of an array of tools for probabilistic graphical models (PGM).

The punchline of the paper is that we can embed a RL problem into a PGM (either as exact probabilistic
inference + structured variational inference)

8.3.1 RL as PGM

The RL objective

θ∗
.
= arg max

θ

T∑
t=1

E(st,at)∼p(s,a|θ)[r(st, at)] (8.13)

can be viewed as a PGM in the following fashion:

p(τ) = p(s1, a1, . . . , sT , aT |θ) = p(s1)

T∏
t=1

p(at|st, θ)︸ ︷︷ ︸
policy

p(st+1|st, at)︸ ︷︷ ︸
state dynamics

(8.14)

Generalize of RL/optimal control to PGM:

• Deterministic Dynamics: exact probabilistic inference.

• Stochastic Dynamics: structured variational inference.

8.3.2 Benefits of Control as Probabilistic Inference

• Able to model suboptimal behavior

• Able to utilize inference; algorithms to solve control and planning problems;

• Able to rationalize why stochastic behavior may be preferred.

8.3.3 Connection to Bellman Backup

• Define the Q-function and value function as follows:

Q(s, a) = log βt(st, at), V (st) = log βt(st). (8.15)

• Marginalizing the action, obtain the “soft-max” relationship between V and Q:

V (st) = log

∫
A

exp(Q(st, at))dat ≈ max
at

Q(st, at). (8.16)

• Obtain the Bellman backup (stochastic dynamics):

Q(st, at) = r(st, at) + logEst+1∼p(st+1|st,at)[exp(V (st+1))]. (8.17)
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8.3.4 Optimization Objective of a Deterministic Dynamics

• Consider a deterministic dynamics, the optimal trajectory distribution is given by

p(τ) =

[
p(s1)

T∏
t=1

p(st+1|st, at)

]
exp

(
T∑
t=1

r(st, at)

)
, (8.18)

and the trajectory from executing the policy is given by

p̂(τ) ∝ 1{p(τ)6=0}

T∏
t=1

π(at|st), (8.19)

where 1{·} is the indicator function.

• Next, we want to make p(τ) and p̂(τ) as close as possible. Consider the KL-divergence between p(τ)
and p̂(τ):

−DKL(p̂(τ)||p(τ))

=Eτ∼p̂(τ)
[

log p(s1) +

T∑
t=1

(log p(st+1|st, at) + r(st, at))

− log p(s1)−
T∑
t=1

(log p(st+1|st, at) + log π(at|st))
]

=Eτ∼p̂(τ)

[
T∑
t=1

r(st, at)− log π(at|st)

]

=

T∑
t=1

Eτ∼p̂(τ) [r(st, at)− log π(at|st)]

=

T∑
t=1

{
E(st,at)∼p̂(st,at) [r(st, at)] + Est∼p̂(st)[H(π(at|st))]

}
,

(8.20)

where H(·) is the entropy function.

8.3.5 Optimization Objective of a Stochastic Dynamics

In the stochastic case, both initial state distribution and the state transition distribution depend on the
optimal variables, so the KL-divergence is given as

−DKL(p̂(τ)||p(τ)) = Eτ∼p̂(τ)

[
log p(s1) +

T∑
t=1

r(st, at) + log p(st+1|st, at)

]
+H(p̂(τ)) (8.21)

8.3.6 The Recursive case

In the recursive case, the objective can be rewritten as

E(st,at)∼p̂(st,at)[r(st, at)− log π(at|st)] + E(st,at)∼p̂(st,at)[Est+1∼p(st+1|st,at)V (st+1)]

=Est∼p̂(st)

[
−DKL

(
π(at|st)

∣∣∣∣∣
∣∣∣∣∣exp(Q(st, at))

exp(V (st))

)
+ V (st)

]
,

(8.22)
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accordingly, we define

Q(st, at) = r(st, at) + Est+1∼p(st+1|st,at)[V (st+1)]

V (st) = log

∫
A

exp(Q(st, at))dat.
(8.23)

8.3.7 Connection to Structured Variational Inference

In structured variational inference, the goal is to approximate some distribution p(y) with another (poten-
tially simpler) distribution q(y). Typically, q(y) is taken to be some tractable factorized distribution, such
as a product of conditional distributions connected in a chain or tree, which lends itself to tractable exact
inference. In our case, we aim to approximate p(τ), given by

p(τ) =

[
p(s1)

T∏
t=1

p(st+1|st, at)

]
exp

(
T∑
t=1

r(st, at)

)
(8.24)

via the distribution

q(τ) = q(s1)

T∏
t=1

q(st+1|st, at)q(at|st). (8.25)

8.3.8 Maximum Entropy Policy Gradients

In terms of maximizing the entropy, the objective function is written as

J(θ) =

T∑
t=1

E(s1,at)∼q(st,at)[r(st, at) +H(qθ(at|st))] (8.26)

and the gradient is:

∇θJ(θ) =

T∑
t=1

∇θE(st,at)∼q(st,at)[r(st, at) +H(qθ(at|st))]

=
T∑
t=1

E(st,at)∼q(st,at)

[
∇θ log qθ(at|st)

(
T∑
t′=t

r(st′ , at′)− log qθ(at′ |st′)− 1

)]

=

T∑
t=1

E(st,at)∼q(st,at)

[
∇θ log qθ(at|st)

(
T∑
t′=t

r(st′ , at′)− log qθ(at′ |st′)− b(st′)

)] (8.27)

8.3.9 Maximum Entropy Actor-Critic Algorithms

A simple and straightforward approach is to represent them with parameterized functions Qφ(st, at) and
Vψ(st), with parameters φ and ψ, and optimize the parameters to minimize a squared error objectives:

E(φ) = E(st,at)∼q(st,at)

[(
r(st, at) + Eq(st+1|st,at)[Vψ(st+1)]−Qφ(st, at)

)2]
E(ψ) = Est∼q(st)

[(
Eat∼q(at|st)[Qφ(st, at)− log q(at|st)]− Vψ(st, at)

)2]
.

(8.28)
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8.3.10 Related Approaches

• Boltzmann Exploration

• Entropy Regularization

• Variational Policy Search and Expectation Maximization

• KL-Divergence Constraints for Policy Search

8.3.11 Conclusion

This paper discusses how the maximization of a reward function in Markov decision process can be formulated
as an inference problem in a particular graphical model, and how a set of update equations similar to the
well-known value function dynamic programming solution can be recovered as the direct consequence of
applying structured variational inference to this graphical model.

The classical maximum expected reward formulation emerges as a limiting case of this framework, while the
general case corresponds to a maximum entropy variant of reinforcement learning or optimal control, where
the optimal policy not only aims to maximize the expected reward, but also aims to maintain high entropy.

8.3.12 Discussion

1. Q. (Yi Ma): “Why does the entropy of the policy pop out? What is the intuition behind this?”

A. (Harry Zhang): Mathematically it turns out that minimizing KL divergence is equivalent to
optimizing reward as well as entropy, thus encouraging ’good’ behaviour as well as exploration.
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