
EE 290-005 – Integrated Perception, Learning, and Control Spring 2021

Lecture 7: Learning and Predictive Control
Scribes: Michael H. Lim, Yiling You, Yaodong Yu

Presentation by Jay Monga, Tiffany Cappellari and Valmik Prabhu.

7.1 Combining Optimal Control and Learning for Visual Naviga-
tion in Novel Environments

7.1.1 Research Questions

The main research questions studied in this paper are the following:

• How can a robot autonomously navigate in an unknown environment?

• What if it is supposed to accomplish some tasks?

• What if there are obstacles that make planning nontrivial?

7.1.2 Related Work

7.1.2.1 Classical Robot Navigation

The classical robotics approaches adopt the Map-then-Plan idea, where we take the following approach:

• A map of the environment is first created using RGB / RGB-D images / LiDAR scans.

• Model-based control techniques are used for navigating that environment.

The estimation of 3D structure of the environment can be accomplished through the use of SLAM algorithms,
as was discussed by Frank and Amay in week 4. Once a map of the environment has been made, classical
planning approaches like optimal control can be leveraged. Plans generated through optimal control are
smooth, dynamically feasible for the robot, and can be robust to disturbances.

Concerns with this method include:

• Techniques to estimate depth from RGB images are sensitive to lighting conditions and object textures.

• Algorithms that involve collecting lots of depth information to generate a 3D map can be computa-
tionally intensive, and maybe even unnecessary depending on the required navigation task.

7-1

https://pages.github.berkeley.edu/ee290-005/sp21-site/assets/lec/SLAM_Presentation___02102021.pdf

7-2 Lecture 7: Learning and Predictive Control

Figure 7.1: Overview of LB-WayPtNav framework, highlighting the interface between perception and plan-
ning/control modules.

7.1.2.2 End-to-End (E2E) Learning for Navigation

The End-to-End (E2E) learning involves learning to predict appropriate control signals or local plans for
a robot directly from state and image data through the usage of neural net architectures. E2E learning
approaches enjoy the following properties.

• Generalize well to unknown environments.

• Generate policies for obstacle avoidance (specifically in the context of locomotion).

Concerns with this method include:

• Many fully end-to-end approaches ignore the dynamics of the system they are acting on, and as a result
will generate non-smooth, jerky trajectories that can be non-ideal for a navigation task and potentially
damage the robot.

• End-to-end approaches are known to have high sample complexity.

7.1.3 Learning-Based Waypoint Approach to Navigation (LB-WayPtNav)

In this paper [1], the authors aim to combine the “the best of optimal control and learning:”

• Optimal control allows for robust tracking of smooth, dynamically feasible trajectories.

• Learning approaches can generalize, leverage statistical inference to predict unknown environment
from “partial views” (i.e. RGB images), and do not need to generate costly maps.

The hope is to combine the two approaches to leverage the robust performance of optimal control while
navigating an unknown environment.

Lecture 7: Learning and Predictive Control 7-3

7.1.3.1 Problem Setup

• Task: The robot is given a goal position p∗ = (x∗, y∗) in reference to its own coordinate system, and
the task is to navigate to the goal state while avoiding obstacles in an unknown map.

• Assumptions:

– Perfect odometry information available

– Static environment

– The robot has a relatively simple known dynamics model (approximated with Dubin’s car model)

• Source of environmental perception: A front-facing RGB camera.

7.1.4 Model-based Learning for Navigation

The LB-WayPtNav makes use of two submodules, perception and planning, to devise a closed-loop controller.

7.1.4.1 Perception Module

The perception model is implemented using a CNN with the following inputs and outputs:

• Inputs:

– The 224× 244 RGB image It from camera input

– The goal position p∗t
– The current linear / angular velocities ut

• Outputs:

– The next waypoint ŵt := (x̂t, ŷt, θ̂t)

The perception module is trained in simulation with maps taken from the Stanford Large-Scale 3D Indoor
Dataset (S3DIS). During the training, knowledge of the map is assumed to generate an expert trajectory
to a random goal configuration in the map, which is solved using MPC by optimizing for a trajectory that
avoids obstacles and goes toward the goal. This supervised learning approach requires no human labeling
and develops a perception module that can adequately generate waypoints for feasible trajectories to a target
state.

7.1.4.2 Planning and Control Module

The planning and control module constitute the “optimal control” part of the system. After the perception
module determines a waypoint, the control module performs the following to devise and track a trajectory
that leads to the given waypoint:

• A third order spline is fitted to create a dynamically feasible trajectory from the robot current state
to the waypoint, parameterized by a sequence of states and velocities.

• The nonlinear dynamics of the robot are linearized over the trajectory so that the LQR can determine
the optimal feedback matrix and the optimal feedforward input.

7-4 Lecture 7: Learning and Predictive Control

• This procedure is done over a horizon of H timesteps and repeated after every horizon, until the robot
reaches the goal position.

Together, these components form an explicit integration of perception and control, and an implicit integration
of learning. See 7.1 for a diagram of the closed-loop system consists of the perception and planning modules.

7.1.5 Simulation Experiments

The LB-WayPtNav is tested in environments from scans of real-world buildings. The success metrics include:

• Success rate

• Average time to reach the goal

• Average acceleration

• Jerk along the robot trajectory

The results are compared to 2 different approaches: E2E Learning and Geometric Mapping and Planning.
The main simulation results are summarized below.

• Comparison with E2E learning

– LB-WayPtNav had the robot reach the goal with a 22% higher success rate, 40% faster, and with
50% less acceleration resulting in less power consumption while maintaining safety of the robot
and successful navigation.

– LB-WayPtNav only needs to learn “where to go” (i.e. the waypoints) while E2E needs to learn
“how to go” there (i.e. the policy).

• Comparison with Geometric Mapping and Planning

– LB-WayPtNav is a reactive planning framework so a memory-less version of Geometric Map-
ping and Planning was used for comparison. Memory-less mapping slightly outperformed LB-
WayPtNav because of the perfect depth estimation in simulation.

– Geometric Mapping and Planning with memory outperformed all other planners in a simulated
environment, but as we see later, it quickly fails in realistic environments due to it not being as
robust to different distributions of images caused by irregularities in lighting conditions.

Even though LB-WayPtNav is able to perform navigation tasks in novel environments, it can only do local
reasoning and gets stuck in some situations: This is mainly due to the LB-WayPtNav not having a memory
structure in the network. The most prominent failure modes are:

• When the robot is too close to an obstacle

• When the robot needs to “backtrack” from an earlier planned path

Lecture 7: Learning and Predictive Control 7-5

7.1.5.1 Hardware Experiments and Results

The LB-WayPtNav is also tested using Turtlebot 2 hardware testbeds and on-board odometry sensors. The
main results indicate that LB-WayPtNav outperforms rest of the planners:

• LB-WayPtNav achieves 95% success rate and operates much better without need for extra information
like depth sensors and without building explicit maps.

• Using LQR feedback control compensates for the crude approximations of the robot’s physics from the
simulation dynamics model and lets the robot closely track the desired trajectories.

• LB-WayPtNav can perform well under extreme lighting conditions due to aggressive data augmentation.

• LB-WayPtNav is agile and reactive, can adapt to changes in the environment.

7.1.6 Conclusion

• LB-WayPtNav combines learning and model-based control for goal-driven navigation in novel indoor
environments:

– Better at reaching unseen goals.

– Can generalize from simulation to real-world robots.

• When objects are too different in simulation compared to real-world, it fails to predict good waypoints.

• It may not be optimal for long range tasks due to it being a reactive planner without memory structures.

7.1.7 Class Discussion Points

Dealing with Oscillatory Behavior of WayPtNav (by Prof. Tomlin)

• There is some oscillatory behavior of WayPtNav where it zigzags to the goal.

• Caused by the case when the robot has the goal outside of FOV, it turns and the goal is outside of
FOV again, and keeps repeating.

• One possible solution is to have a persistent memory structure.

• But how can we get over this without adding too much memory architecture? Open architecture /
training question.

Comparison with SLAM vs. WayPtNav

• Prof. Malik on failure modes of SLAM:

– Failures of SLAM are due to having mismatched models (ex. Sunlight, irregularity, etc.).

– Nature of noise is not “Gaussian”, while SLAM assumes a rigid Gaussian noise structure.

• Prof. Sastry on reconstruction:

– Reconstruction in SLAM is done in a very geometric way, a lot of constraints.

7-6 Lecture 7: Learning and Predictive Control

– We are solving a problem we don’t need to solve – For waypoint style navigation, we just need to
know where to go next that is safe.

• Prof. Tomlin: WayPtNav does not focus so much on the environment (or reconstruction of it), so it
can put more focus on the task at hand.

• Frank’s question on quasi-static approaches: Where do quasi-static approaches fail? Where is more
metric-type representation needed?

– Prof. Malik: Two extremes exist:

1. No maps, purely reactive systems – shouldn’t work well. Any big environments, it wouldn’t
work either.

2. Full metric maps? – topological maps are probably sufficient.

– If robots are agile and are in tight corners, metric information from SLAM could be useful.

• Prof. Sastry on making SLAM competitive for different/adversarial lightings:

– SLAM relies on point based features.

– Extract higher level features and higher level landmarks.

• Prof. Ma: SLAM is good for mapping, not the navigation

– Need higher level, robust features.

General Comment on Learning in the Context of Navigation (by Prof. Malik)

• Most navigation algorithms solve a “static” problem – stop-move-stop-move...

• Don’t take dynamics of moving vehicle/robots into account.

• Need “quasi-static” approach which would make it more robust in real scenarios.

Certainty Equivalence Principle in Action

• Prof. Sastry: End-to-End (E2E) does both reconstruction and navigation at the same time:

– Does it mix up too many things to do at once, or is it even more fundamental than that?

– How does certainty equivalence outperform E2E?

• Prof. Tomlin: Separating out two tasks makes the planner perform better:

– Don’t have to learn dynamics, can optimize for planning.

– When failures happen, a planner would still do what good control algorithms would do.

• Prof. Sastry: Certainty Equivalence is “comfortable.” What about having some probabilistic modeling,
and do stochastic control/probabilistic RL?

– Prof. Malik: Sample complexity could be very high

∗ Utilizing control part crushes the sample complexity.

∗ Probabilistic viewpoint used to be popular before deep learning took over (ex. Using particle
filters).

∗ In deep learning, the modules are concatenated, and probabilistic parts are coming in purely
through the sample distribution.

Lecture 7: Learning and Predictive Control 7-7

· Prof. Sastry: Neural net somehow embodies all probabilistic aspects.

– Prof. Tomlin: Does certainty equivalence hold in this case? It was trained using knowledge of the
planning and control algorithms, which makes the method more supervised.

Bringing the Control Planner to Realistic Scenarios (Question raised by Prof. Ma)

• To bring this kind of systems to real world, imagine we need to deploy these kinds of robots to a shopping
mall or a restaurant where there are moving people around or other independent/collaborative robots
around. How will the perception, planning and control be?

• Valmik: Gather new data from the environment, which were not present.

• Prof. Ma: Adaptation requires three main tasks:

– Improve through training

∗ Amay: To use the same kind of supervision on the job as is done in this paper though,
wouldn’t you need to have a backend generating a map anyway as the robot acts?

∗ Valmik: Yes potentially, but that map doesn’t need to be all-encompassing, you can just use
more localized 3D data.

– Improve through adaptation

∗ Kshitij: It also seems that in complicated environments like a shopping mall, etc., there is a
need to model game-theoretic interactions because not only should the robot adaptively learn
from mistakes, but other agents (perhaps humans) are modulating their actions with respect
to each other and the robots.

– Improve through mistakes

∗ Michael: How do we know when mistakes, big or small, happen?

∗ Prof. Ma: Most mistakes are conspicuous, but we still need to be careful.

• Prof. Tomlin: How do you set up databases of people moving?

– Generating a database of simulating people can aid.

– HumANav dataset.

7-8 Lecture 7: Learning and Predictive Control

xt

henc
�

hdec
✓

pt

µt

⌃t

zt

htrans
 Bt

At

ot

ut

ẑt+1 ⇡ zt+1

Q̂ Q�

KL
henc
�

µt+1

⌃t+1

hdec
✓

pt

xt+1

Figure 1: The information flow in the E2C model. From left to right, we encode and decode an
image xt with the networks henc

� and hdec
✓ , where we use the latent code zt for the transition step.

The htrans
 network computes the local matrices At,Bt,ot with which we can predict ẑt+1 from zt

and ut. Similarity to the encoding zt+1 is enforced by a KL divergence on their distributions and
reconstruction is again performed by hdec

✓ .

2.3 A locally linear latent state space model for dynamical systems

Starting from the SOC formulation, we now turn to the problem of learning an appropriate low-
dimensional latent representation zt ⇠ P (Zt|m(xt),⌃!) of xt. The representation zt has to fulfill
three properties: (i) it must capture sufficient information about xt (enough to enable reconstruc-
tion); (ii) it must allow for accurate prediction of the next latent state zt+1 and thus, implicitly, of the
next observation xt+1; (iii) the prediction f lat of the next latent state must be locally linearizable for
all valid control magnitudes ut. Given some representation zt, properties (ii) and (iii) in particular
require us to capture possibly highly non-linear changes of the latent representation due to transfor-
mations of the observed scene induced by control commands. Crucially, these are particularly hard
to model and subsequently linearize. We circumvent this problem by taking a more direct approach:
instead of learning a latent space z and transition model f lat which are then linearized and combined
with SOC algorithms, we directly impose desired transformation properties on the representation zt

during learning. We will select these properties such that prediction in the latent space as well as
locally linear inference of the next observation according to Equation (4) are easy.

The transformation properties that we desire from a latent representation can be formalized directly
from the iLQG formulation given in Section 2.2 . Formally, following Equation (2), let the latent
representation be Gaussian P (Z|X) = N (m(xt),⌃!). To infer zt from xt we first require a
method for sampling latent states. Ideally, we would generate samples directly from the unknown
true posterior P (Z|X), which we, however, have no access to. Following the variational Bayes
approach (see Jordan et al. [13] for an overview) we resort to sampling zt from an approximate
posterior distribution Q�(Z|X) with parameters �.

Inference model for Q�. In our work this is always a diagonal Gaussian distribution Q�(Z|X) =
N (µt, diag(�2

t)), whose mean µt 2 Rnz and covariance ⌃t = diag(�2
t) 2 Rnz⇥nz are computed

by an encoding neural network with outputs

µt = Wµhenc
� (xt) + bµ, (6)

log�t = W�henc
� (xt) + b�, (7)

where henc
� 2 Rne is the activation of the last hidden layer and where � is given by the set of all

learnable parameters of the encoding network, including the weight matrices Wµ, W� and biases
bµ, b� . Parameterizing the mean and variance of a Gaussian distribution based on a neural network
gives us a natural and very expressive model for our latent space. It additionally comes with the
benefit that we can use the reparameterization trick [6, 7] to backpropagate gradients of a loss
function based on samples through the latent distribution.

Generative model for P✓ . Using the approximate posterior distribution Q� we generate observed
samples (images) x̃t and x̃t+1 from latent samples zt and zt+1 by enforcing a locally linear rela-
tionship in latent space according to Equation (4), yielding the following generative model

zt ⇠ Q�(Z | X) = N (µt,⌃t),

ẑt+1 ⇠ Q̂ (Ẑ | Z,u) = N (Atµt + Btut + ot,Ct),
x̃t, x̃t+1 ⇠ P✓(X | Z) = Bernoulli(pt),

(8)

where Q̂ is the next latent state posterior distribution, which exactly follows the linear form re-
quired for stochastic optimal control. With !t ⇠ N (0,Ht) as an estimate of the system noise,

3

Figure 7.2: The information flow in the E2C model. From left to right, we encode and decode an image xt
with the networks hencφ and hdecθ , where we use the latent code zt for the transition step. The htransψ network

computes the local matrices At, Bt, ot with which we can predict ẑt+1 from zt and ut. Similarity of the
predicted ẑt+1 to the encoding zt+1 is enforced by a KL divergence on their distributions and reconstruction
is again performed by hdecθ .

7.2 Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images

This paper [3] studies how to model the learning and control of non-linear dynamical systems from raw pixel
images. By applying the learned deep generative models, the proposed Embed to Control (E2C) framework
is able to generate image trajectories from a latent space in which the dynamics is constrained to be locally
linear.

7.2.1 Stochastic Optimal Control in the Latent Space

E2C considers the control of unknown dynamical systems of the form:

st+1 = f(st, ut) + ξ, ξ ∼ N (0,Σξ), (7.1)

where t denotes the time step, st ∈ Rns the system state, ut ∈ Rnu the applied control and ξ the system
noise. The goal of E2C is to infer a low-dimensional latent state space model in which optimal control can
be performed, i.e.,

zt = m(xt) + ω, ω ∼ N (0,Σω),

zt+1 = f lat(zt, ut).
(7.2)

Thus, E2C aims to learn a function m, a mapping from high-dimensional images xt to low-dimensional
vectors zt ∈ Rnz with nz � nx, such that the control problem can be solved using zt instead of xt.

7.2.1.1 Problem Assumptions

1. Assumes known dynamics model.

2. Low-dimensional state representation can be achieved – learn the dynamics in the latent space.

3. Consider quadratic cost and linearized dynamics (iLQG [2]).

7.2.1.2 Main Features of the Framework

Some highlights of the framework include:

Lecture 7: Learning and Predictive Control 7-9

1. Latent space representation of nonlinear dynamics (assume Gaussian noise).

2. Linearized/quadraticized control and cost.

3. Learn model f lat or the linearized dynamics of it.

In order to learn the latent space, a good framework should satisfy the following properties:

1. Must sufficiently capture xt for reconstruction (observability).

2. Must enable prediction of zt+1.

3. This prediction must be locally linearizable for any magnitude of control.

This means that in general, our system should satisfy observability, predictability, and linearizability. Fur-
thermore, it implies that we need some level of bijection between the latent state and the image state.

7.2.2 Architecture

The architecture of E2C consists of three modules, encoding, decoding, and transition. The overall architec-
ture is shown in Figure 7.2:

1. Encoding module: learn latent embedding, from xt to zt

2. Decoding module: decompose the latent space representation and reproduce the raw image, from zt to
xt

3. Transition module: predict the dynamics using learned linearized dynamics models, from zt to zt+1

Encoding Module Qφ: To infer the latent state, we additionally assume the Variational Gaussian poste-
rior distribution assumption, such that we can approximately sample from the latent space using Gaussian
distributions. Thus, we assume the following approximate Gaussian form

Qφ(Z|X) = N (µt,diag(σ2
t)), (7.3)

where the encoding network parameters are given by

µt = Wµh
enc
φ (xt) + bµ (7.4)

log σt = Wσh
enc
φ (xt) + bσ. (7.5)

Decoding Module Pθ: The transition model also assumes Gaussian transition. As in Figure 7.2, A-matrix
is assumed to be a perturbed matrix, an assumption that makes sense as it is discrete time transition, which
should usually have an identity term. The transition model with the Gaussian transition assumption gives
rise the following equation for the density model of the next state prediction ẑt+1 (for now, we assume that
the At, Bt, ot are known):

Q̂ψ(Ẑ|Z, u) = N (Atµt +Btut + ot, Ct). (7.6)

where the uncertainty is drawn from estimation error as well as measurement noise:

Ct = AtΣtA
>
t +Ht. (7.7)

7-10 Lecture 7: Learning and Predictive Control

This update is inspired by the Kalman filter uncertainty update.

The generative model to reconstruct the image, from both zt and ẑt+1 utilizes the Bernoulli distribution,
which lets us generate black and white images,

Pθ(X|Z) = Bernoulli(pt), (7.8)

where pt is the output of the decoding neural net:

pt = Wph
dec
θ (zt) + bp. (7.9)

Note this seems to only work for Boolean states (black-and-white images). (Remark: what about greyscale?
Looks pretty limiting.)

Transition Module Q̂ψ: Up until now, we assumed that we know the At, Bt, ot parameters. In order to
learn these parameters, we learn the dynamics models from the neural network htransψ :

vec[At] = WAh
trans
ψ (zt) + bA, At = (I + vtr

>
t), (7.10)

vec[Bt] = WBh
trans
ψ (zt) + bB (7.11)

ot = Wo, h
trans
ψ (zt) + bo. (7.12)

7.2.3 About training

To train all the deep learning modules, E2C uses stochastic gradient descent (SGD) on a single loss function
for all three neural nets at once (in Figure 7.2). This loss term includes:

1. KL on predicted model vs. actual model – (i.e., enforce that the transition in latent space matches up
with the encoding)

2. Loss term from Variational Autoencoder for two time steps t, t+ 1 (evidence lowerbound, ELBO)

The loss function is given as the following:

L(D) =
∑

(xt,ut,xt+1)∈D
Lbound(xt, ut, xt+1) + λKL(Q̂ψ(Ẑ|µt, ut)||Qφ(Z|xt+1), (7.13)

Lbound(xt, ut, xt+1) = E zt∼Qφ
ẑt+1∼Q̂ψ

[− logPθ(xt|zt)− logPθ(xt+1|ẑt+1) + KL(Qφ||P (Z))] . (7.14)

7.2.4 Experimental setup

This paper studies 4 visual tasks, where in each of the tasks, we are given a third person view image of the
robot performing these tasks:

1. An agent in plane with obstacles.

2. Inverted pendulum swing-up task.

3. Balancing a cart-pole system.

4. Control of a 3-link robotic arm.

Lecture 7: Learning and Predictive Control 7-11

Observed

Predicted

1 2 3 4

5 6 7 8

Figure 4: Left: Trajectory from the cart-pole domain. Only the first image (green) is “real”, all
other images are “dreamed up” by our model. Notice discretization artifacts present in the real
image. Right: Exemplary observed (with history image omitted) and predicted images (including
the history image) for a trajectory in the visual robot arm domain with the goal marked in red.

action, while for the arm the real state can be described in 6 dimensions (joint angles and velocities)
and controlled using a three-dimensional action vector corresponding to motor torques.

As in previous experiments the E2C model seems to have no problem finding a locally linear em-
bedding of images into latent space in which control can be performed. Figure 4 depicts exemplary
images – for both problems – from a trajectory executed by our system. The costs for these trajec-
tories (11.13 for the cart-pole, 85.12 for the arm) are only slightly worse than trajectories obtained
by AICO operating on the real system dynamics starting from the same start-state (7.28 and 60.74
respectively). The supplementary material contains additional experiments using these domains.

4 Comparison to recent work

In the context of representation learning for control (see Böhmer et al. [17] for a review), deep
autoencoders (ignoring state transitions) similar to our baseline models have been applied previously,
e.g. by Lange and Riedmiller [18]. A more direct route to control based on image streams is taken
by recent work on (model free) deep end-to-end Q-learning for Atari games by Mnih et al. [19], as
well as kernel based [20] and deep policy learning for robot control [21].

Close to our approach is a recent paper by Wahlström et al. [22], where autoencoders are used to
extract a latent representation for control from images, on which a non-linear model of the forward
dynamics is learned. Their model is trained jointly and is thus similar to the non-linear E2C variant
in our comparison. In contrast to our model, their formulation requires PCA pre-processing and does
neither ensure that long-term predictions in latent space do not diverge, nor that they are linearizable.

As stated above, our system belongs to the family of VAEs and is generally similar to recent work
such as Kingma and Welling [6], Rezende et al. [7], Gregor et al. [23], Bayer and Osendorfer [24].
Two additional parallels between our work and recent advances for training deep neural networks
can be observed. First, the idea of enforcing desired transformations in latent space during learning
– such that the data becomes easy to model – has appeared several times already in the literature.
This includes the development of transforming auto-encoders [25] and recent probabilistic models
for images [26, 27]. Second, learning relations between pairs of images – although without control –
has received considerable attention from the community during the last years [28, 29]. In a broader
context our model is related to work on state estimation in Markov decision processes (see Langford
et al. [30] for a discussion) through, e.g., hidden Markov models and Kalman filters [31, 32].

5 Conclusion

We presented Embed to Control (E2C), a system for stochastic optimal control on high-dimensional
image streams. Key to the approach is the extraction of a latent dynamics model which is constrained
to be locally linear in its state transitions. An evaluation on four challenging benchmarks revealed
that E2C can find embeddings on which control can be performed with ease, reaching performance
close to that achievable by optimal control on the real system model.

Acknowledgments

We thank A. Radford, L. Metz, and T. DeWolf for sharing code, as well as A. Dosovitskiy for useful
discussions. This work was partly funded by a DFG grant within the priority program “Autonomous
learning” (SPP1597) and the BrainLinks-BrainTools Cluster of Excellence (grant number EXC
1086). M. Watter is funded through the State Graduate Funding Program of Baden-Württemberg.

8

Figure 7.3: Left: Trajectory from the cart-pole domain. Only the first image (green) is “real”, all other
images are “dreamed up” by our model. Notice discretization artifacts present in the real image. Right:
Exemplary observed (with history image omitted) and predicted images (including the history image) for a
trajectory in the visual robot arm domain with the goal marked in red.

Two network types for the model are utilized to learn each of the modules:

1. Standard fully connected neural networks with up to 3 layers.

2. A deep convoluted network for the encoder in combination with an up-convolutional network as the
decoder.

Two trajectory optimization algorithms are used to solve the control problem:

1. Iterative linear quadratic regulation (iLQR) for plane and inverted pendulum.

2. Approximate inference control (AICO) for cart-pole and arm.

Planning is performed in latent state without access to any observations except the current state. We present
some visualization results of the proposed method in Figure 7.3.

7.2.5 Conclusion

1. E2C is a founding framework to tackle stochastic optimal control via latent space embedding when we
are only given access to high-dimensional image streams.

2. E2C extracts a latent dynamics model which is constrained to be locally linear in its state transitions.

3. Based on experiments, E2C can find embeddings in which control can be performed with ease, reaching
performance close to optimal control on the real system model.

7.2.6 Critiques and Suggestions

1. The experiments are differentially flat, so obtaining performance close to optimal control should not
be too challenging using conventional algorithms.

2. Black-and-White images in static third person view are not the types of sensor data where this could
be useful – what about navigation and manipulation in 3D?

3. Learning with sensor data might be more useful in soft robotics with noisy sensor and complicated /
nonlinear dynamics.

7-12 Lecture 7: Learning and Predictive Control

7.2.7 Class Discussion Points

Some Noticeable Problems of This Approach (by Prof. Ma)

• Fundamental problem: model (complexity) selection

– Using KL divergence, distributions blindly can lead to comparing degenerate distribution.

– For low dimensional systems, it’s problematic – no one talks about this, people rather use this as
a heuristic.

– How do we choose the latent dimension? No explanation given in this paper.

• Practical problem: is predicting image necessary?

– We only need to predict some of the hidden states/object level, not exactly the image.

– Valmik: The fact that they used the image is not quite as necessary?

∗ Basically, it is only doing state estimator and dynamics learning in one.

Embedding of High Dimensional Features to Latent Space (by Prof. Tomlin)

• Any notable embedding work in context of navigation and manipulation in 3D? (i.e. outward looking
images)

– Valmik: The E2C paper is cited a lot in E2E navigation papers, though not many explicit con-
nections/extensions.

∗ E2E training of deep visuomotor policies by Prof. Pieter Abbeel: use some concepts, but for
simple dynamics systems.

– Prof. Ma: Not much guarantee in this process, what kind of problems can this solve?

∗ Even for linear subspace selection like PCA, choosing dimensionality is already complex and
unclear.

∗ For driving, people have very much abandoned this approach.

Connections to Non-Linear System Identification (by Prof. Ma)

• Can this problem be thought of as non-linear SysId with images as observables?

• Prof. Tomlin: Different way of solving system identification problem - http://fenn.freeshell.org/Science.pdf.

• Local linear controls are rather promising in navigation.

• Where does it not work well?

– E.g. Games, walking.

– Valmik: Systems with cusps/bifurcations/sensitive to approximations.

Lecture 7: Learning and Predictive Control 7-13

References

[1] Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik, and Claire Tomlin. Combining optimal
control and learning for visual navigation in novel environments. In Leslie Pack Kaelbling, Danica Kragic,
and Komei Sugiura, editors, Proceedings of the Conference on Robot Learning, volume 100 of Proceedings
of Machine Learning Research, pages 420–429. PMLR, 30 Oct–01 Nov 2020.

[2] Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback control
of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control Conference,
2005., pages 300–306. IEEE, 2005.

[3] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. arXiv preprint arXiv:1506.07365,
2015.

	Combining Optimal Control and Learning for Visual Navigation in Novel Environments
	Research Questions
	Related Work
	Classical Robot Navigation
	End-to-End (E2E) Learning for Navigation

	Learning-Based Waypoint Approach to Navigation (LB-WayPtNav)
	Problem Setup

	Model-based Learning for Navigation
	Perception Module
	Planning and Control Module

	Simulation Experiments
	Hardware Experiments and Results

	Conclusion
	Class Discussion Points

	Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
	Stochastic Optimal Control in the Latent Space
	Problem Assumptions
	Main Features of the Framework

	Architecture
	About training
	Experimental setup
	Conclusion
	Critiques and Suggestions
	Class Discussion Points

