
EE 290-005 Integrated Perception, Learning, and Control Spring 2021

Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator
Scribes: Tiffany Cappellari, Jay Monga, Valmik Prabhu

6.1 Combining Geometric Nonlinear Control with
RL-Enabled Control (Tyler Westenbroek)

6.1.1 Geometric Nonlinear Control

Main Idea: Leverage underlying structure in your problem to design feedback
controller

• Exploits the underlying structures in the system to systematically design
feed-back controllers

• Example: By designing a Lyapunov function, etc, you can take a global
problem like stabilization to a local problem (reducing the energy).

• Your controllers give you fine-grain control and are amenable to formal
analysis.

• Problem: They require high-fidelity models and perform poorly under
non-parametric uncertainty

6.1.2 Deep Reinforcement Learning

Main Idea: sample the system trajectories to approximately find the optimal
feedback controller.

• Success in complex manipulation tasks

• By sampling the system trajectories, you’re essentially “discovering” con-
nections between ’local’ and ’global’ structures.

• Problem: Hard to define the reward that gets the system to do what you
want. Need reward shaping and lots of data to work well.

6.1.3 Thesis Proposal and Research

High level overview of Tyler’s work:

1. Start with nominal model based control and add RL based correction term

6-1

6-2 Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator

• Lyapunov stabilizing controller, feedback linearization, and other ar-
chitectures for global control

• Local control assisted through a learned correction

• Main focus of this presentation

2. Develop correctness and safety guarantees for learning algorithms

3. Future questions about fundamental use of control

• Explore necessary and sufficient conditions for these control strategies

Figure 6.1: A diagram of the project flow.

Figure 6.2: A diagram of the design process.

6.1.4 Combining Control Architectures and Model Based
Learning

The idea is to start with some model of our system and augment it with a
learning-based term to increase performance

1. Start with some geometric control architecture which has desired perfor-
mance. Standard classical nonlinear control techniques

ẋ = fm + gm(x)um(x)

Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator 6-3

2. Augment the controller with a learned component to increase performance

ûθ(x) = um(x) + ∆uθ(x)

3. Shape reward to penalize deviation from model (

min
θ∈Θ

Ex∼X l(x, θ)

6.1.5 Feedback Linearization

The idea is to ”invert” the nonlinearities out of our dynamics

• Choose a control input that makes the dynamics behave like a linear sys-
tem. Once we have a linear model, we can leverage classical technique of
linear control. Given dynamics of the form

ẋ = f(x) + g(x)u

and a set of outputs of the form

y = h(x)

We want to keep differentiating y until the input appears: Take γ deriva-
tives of the output and ”invert” the dynamics to get

y
(γ1)
1
...

y
(γn)
n

 = b(x) +A(x)u

Then apply the control law

u(x, v) =
1

Aγ(x)
[−bγ(x) + v]

which yields
yγ = v

to get

y(γ) =∆

y

(γ1)
1
...

y
(γn)
n

 =

 v1

...
vn

• Problems: If you have model mismatch, you can’t properly invert these

dynamics. However, if your overall architectural assumptions hold (rela-
tive degree), there does exist a true feedback linearizing controller, so you
can learn an error term between the nominal controller and this “true”
linearizing controller. Then by penalizing deviations from the desired lin-
ear behavior, you can learn this error term. Basically, you’re learning

6-4 Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator

a controller to make your system act like a linear system you know how
to control. In this case, (if you have an orthogonal basis representing
your learned controller) you end up getting a strongly convex optimiza-
tion problem. Using a neural network negates this guarantee, but it still
works well in practice.

6.1.5.1 Directly Learning the Linearizing Controller

• We know the controller is going to take some specific form

up(x, v) = βp(x) + αp(x)v

um(x, v) = βm(x) + αm(x)v

• Mismatch in controllers due to mismatch in model creates a ”gap” between
the controllers

up(x, v) = [βm(x) + ∆β(x)] + [αm(x) + ∆α(x)]v

To overcome this we approximate

• We will design a reward that penalizes deviations for our desired linear
system behaviour

Assuming that that our learned parameters are of the form,

βθ1(x) =

K1∑
k=1

θk1βk(x) αθ2(x) =

K2∑
k=1

θk2αk(x)

where {βk}K1

k=1, {αk}
K2

k=1 are linearly independent sets of features, our optimiza-
tion problem is actually strongly convex and has a unique solution. It’s impor-
tant to note that our learned parameters are continuous functions that we are
approximating with some basis, and the choice of basis can determine how well
that approximation is.

In practice, we will take the reward signal we generate, discretize it, and
feed that into RL solvers optimized for these kinds of problems.

6.1.6 Results

This control methodology has been successfully used in several platforms, both
hardware and simulation.

Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator 6-5

6.1.6.1 12D Quadcopter

• Highly nonlinear system controlled under a learned feedback linearized
model

• Immense improvement in 1 hour of training, great improvement with
relatively low amount of data/training compared to other RL based ap-
proaches

6.1.6.2 Augmented Lyapunov Controllers

• Design controller using control lyapunov function with learned parameters.
Constrained optimization problem looks like

u∗(x) = min
u∈U

Ex∼X ||u||22

s.t. ∆V (x)[fp(x) + gp(x)ûθ(x)] + σ(x)︸ ︷︷ ︸
∆(x,θ)

≤ 0,∀x

but we will work with the unconstrained problem

min
θ∈Θ

Ex∼X [||ûθ(x)||22 + λ H(∆(x, θ))︸ ︷︷ ︸
penalty function

]

Under the assumption of a controller linear in its parameters, this opti-
mization problem is also strongly convex.

This technique has been successful in simulation environments. High-
lighted in the presentation was achieving desired performance for control
of a double pendulum and a stable walking gait on a bipedal robot with
only ∼ 20 seconds of training data.

6.1.7 Q&A

6.1.7.1 Comments from Professors

• Learning to improve feedback linearization ties into general role of deep
learning in approximating dynamics of system

• How would performance work on real world walking robot?

– Shouldn’t expect 20 seconds of data to work

– Richness of data available in simulation may also make things much
easier

• We have many choices when choosing where to employ learning. It’s very
important to recognize where learning is employed, which Tyler explained
well

– Learn the entire model, or start with approximation

6-6 Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator

– Learn deviation from model

– Basis functions to be used in formulating model deviation

• Tyler asked about how to effectively handle learning in multiple stages as
proposed

– Professor Ma pushes for alternating approach

– Low-dimensional structure of problem should salient

– Should converge to global optimum under broad conditions

• Professor Sastry wanted to bring up robustness in control

– Needs more tests on non-simulator environments

– Geometry of systems can make control inherently complex

• Professor Ma brings up that we don’t have a theory to describe computa-
tional complexity or sampling complexity to achieve desired performance

6.2 Feedback Linearization vs Koopman Oper-
ator

Presentation by Jason Choi, Fernando Castaneda Garcia-Rozas, Ayush Agarwal

6.2.1 Intro

6.2.1.1 Motivations:

• Find a linear representation of a nonlinear system, so we can use linear
control techniques

– Class of effective techniques for analysis and control of linear systems

– Much more developed, established techniques vs nonlinear case

• Identify modes of a nonlinear system (natural/dominant frequencies). Re-
member, we can do this easily with linear systems by looking at the eigen-
vectors/eigenvalues.

6.2.1.2 A Simple Example:

Given the system:

ẋ1 = µx1

ẋ2 = λ(x2 − x2
1)

Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator 6-7

Define the set of observables y1

y2

y3

 =

 x1

x2

x2
1

By setting these as the states (lifting the system to this higher dimensional

space), we can get the following linear system ẏ1

ẏ2

ẏ3

 =

 µ 0 0
0 λ −λ
0 0 2µ

 y1

y2

y3

This is great! Can we do this more generally?

6.2.1.3 Koopman Operator

Unfortunately, it’s not always possible to find finite linear basis representations
for arbitrary nonlinear functions. So the general theory here is that we are
lifting a finite dimensional nonlinear system into an infinite dimensional linear
system. The map between the original system and the lifted one is called the
Koopman Operator.

Then we can take some finite subset of this infinite dimensional basis and
get a linear approximation of the nonlinear dynamics. There are two ways to
do this: Dynamic Mode Decomposition and finding Koopman Eigenfunctions.

6.2.1.4 Dynamic Mode Decomposition (DMD)

Dynamic Mode Decomposition essentially approximates the infinite-dimensional
linear system with data using linear least squares. Just take a lot of data, each
point with an arbitrarily high number of orthogonal observables X (often one
million). Then calculate the A matrix XTX. You then get a giant linear matrix
describing the dynamics.

By examining the eigenvectors and their corresponding eigenvalues, you can
observe the modes of the Koopman-linearized system. By including only those
observables which correspond to high amplitude modes (have high-magnitude
eigenvalues), you can get a smaller finite dimensional approximation which still
preserves most of the dynamics.

6.2.1.5 Identifying Observables

• The other way to approximate systems is to find the “right” observables
which efficiently capture the dynamics.

• Example:

ẋ = x2

6-8 Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator

We can define some candidate observables:

y =

[
x
x2

]
The problem is that taking the dynamics gives you

ẏ =

[
x2

2x3

]
=

[
y2

2y1y2

]
Which leads you to expand the number of observables, which has the
same problems, etc. Using this method, you need an infinite number of
observables. However, if you use the function

y = e−
1
x

You get

ẏ = e−
1
x

1

x2
ẋ = e−

1
x

1

x2
x2 = y

And this gives you a linear system in one dimension, though your orig-
inal state x is not in the set of observables. This is an example of an
eigenfunction.

6.2.1.6 Finding Eigenfunctions

An eigenfunction has two very useful properties

• Guarantees closure of update

• Linear system

Solving for such an eigenfunction requires solving some PDE and getting
some eigenvalues, but in fact much better methods exist. Recent work has
shown success with auto-encoder decoder neural network structure.

Given the discrete time dynamics

xk+1 = Ft(xk)

we want to find an eigenfunction φ(x) such that

λφ(x) = φ(Ft(x))

In continuous time the definition is

d

dt
φ(x) = λφ(x)

In continuous time, this is a partial differential equation. What you do here
is parameterize the eigenfunction using a set of orthogonal basis functions (such
as polynomials), and solve the PDE. This gets you one of the observables you’ll
be using to represent the system (the different solutions to the PDE are the
different eigenfunctions).

Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator 6-9

6.2.1.7 Control Inputs

By lifting the system, you sometimes get a linear system. In this case, control
is easy. But for arbitrary control-affine nonlinear systems, you get bilinear
systems, which we still don’t know how to control. Most people just linearize
the bilinear system at that point to eliminate the bilinear term.

6.2.1.8 Key Takeaways

Koopman analysis has some main benefits

• Allows us to use linear systems techniques on nonlinear systems

• Lets us identify the dominant modes of the dynamics

• Reduction to finite dimensional system is still a linear approximation

6.2.2 Q&A

6.2.2.1 Comments from Professors

• Would be good to see under what conditions such approximations (finite-
dimesional linear approximation) work

– Still get guarantees on qualitative performance

– See performance on chaotic systems

• Ties back into fundamental questions of data analysis - how to represent
system with linear approximation of low rank. Professor Ma calls this a
common punchline

• Sastry brings up the how classical linearization looks at embedding into the
space of monomials but that will not generalize well enough; motivating
departure from analytic functions and usage of neural networks.

• Yi thinks it would be nice to look into

– What family of functions we allow for approximation?

– How compact we allow our representation to be?

– To what precision can original space be encoded?

6.2.2.2 Questions from Students

• Valmik: How does Koopman analysis to control a bilinear system compare
to normal linearization of nonlinear system? Answer: See Advantages of
Bilinear Koopman Realizations for the Modeling and Control of Systems
with Unknown Dynamics Bruder et al

https://arxiv.org/abs/2010.09961?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
https://arxiv.org/abs/2010.09961?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
https://arxiv.org/abs/2010.09961?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529

6-10 Lecture 6: Geometric Nonlinear Control with RL; Koopman Operator

• Kshitij: Will our learned transformation φ always be perfectly reversable
by φ−1? Answer: No, there is no guarentee. In most systems, the eigne-
functions do not perfectly recover the state. In EDMD, get around this
by encoding state in observation but then we can lose invariance

	Combining Geometric Nonlinear Control with RL-Enabled Control (Tyler Westenbroek)
	Geometric Nonlinear Control
	Deep Reinforcement Learning
	Thesis Proposal and Research
	Combining Control Architectures and Model Based Learning
	Feedback Linearization
	Directly Learning the Linearizing Controller

	Results
	12D Quadcopter
	Augmented Lyapunov Controllers

	Q&A
	Comments from Professors

	Feedback Linearization vs Koopman Operator
	Intro
	Motivations:
	A Simple Example:
	Koopman Operator
	Dynamic Mode Decomposition (DMD)
	Identifying Observables
	Finding Eigenfunctions
	Control Inputs
	Key Takeaways

	Q&A
	Comments from Professors
	Questions from Students

