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14.1 KeyPoint Affordances for Category-Level Robotic Manipu-
lation (kPAM)

14.1.1 Overview

It is very important to extract useful information from images captured by a camera in order for a robot
to accurately manipulate the objects in the scene, especially semantically. Paper KeyPoint Affordances for
Category-Level Robotic Manipulation [4] (kPAM) aims at detecting the three-dimensional (3D) semantic key
points of an object given an image containing it. After the key points are semantically extracted from the
image, information such as the pose of the object is inferred and used for the planning stage of the robot.
For example as shown in Figure 14.1, such a task can be hanging a mug on a rack where the bottom, top
and handle of the mug along with their position information are obtained from the image, as well as the
relative position and pose of the branches of the rack. The robotic arm is then planned to grab the handle
of the mug and match it with one of the branches.

Figure 14.1: The mug and rack task using kPAM. Green, red and yellow points stand for the top, bottom
and handle of the mug.

14.1.2 Literature review

Most of the previous methods specify the desired configuration as a target 6-degree-of-freedom (6DOF) pose.
The pose of the object is then used for planning. The disadvantages are mainly concentrated on these two
points. Firstly, they often fail to capture large intra-category shape variation, for instance, the policy trained
on some seen mugs may not be capable on unseen new types of mugs. Secondly, only the knowledge of the
pose of the target is not sufficient for completing the task. For example, knowing the pose and size of a
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coffee mug relative to some canonical mug is not enough for the robot to successfully hang it on a rack by
its handle. A nice demonstration of the two disadvantages can be found in Figure 14.2.

Figure 14.2: Three point clouds of the alignment of different shoes, showing that the previous methods
are mostly object-dependent. Given 3D point clouds of some shoes, the robot may not necessarily be able
to manipulate if the shoes are of different types. The robot may place the shoe at (a) different poses for
a sneaker of a boot and (b) sometimes the misalignment of the point clouds can cause totally different
configuration. Finally, (c) shows a legitimate alignment of the point clouds of different shoes.

14.1.3 Methodology

An intuitive way to mark the object is to place semantic 3D key points as the representation. The overall
pipeline proposed starts from instance segmentation of the scene, meaning that the target objects are filtered
from the background. Next, semantic 3D key points are placed on the segmented objects. This is followed by
an optimization-based robot action planning step to generate a manipulation plan. Eventually, the geometric
grasping and robot action are sent to execution.

This pipeline provides the user with an interpretable specification of the manipulation, and in the meantime,
generalises the existing pose-based manipulation methods. An overview of the manipulation formulation can
be found in Figure 14.3.

Figure 14.3: An overview of the manipulation formulation using the ‘put mugs upright on the table’ task as
an example: (a) a category-level key point detector is trained to produce two key points: pbottom-center and
ptop-center. (b) Given an observed mug, its two key points on bottom center and top center are detected.
The rigid transform Taction, which represents the robotic pick-and-place action, is solved to move the bottom
center of the mug to the target location ptarget and align the mug axis with the target direction vtarget-axis.

A category-level pick-and-place pipeline is also introduced in the work. This pipeline is shown in Figure
14.4.
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Figure 14.4: An overview of the category-level pick-and-place pipeline using the manipulation formulation.
Given an RGBD image with instance segmentation, the semantic 3D key points of the objects in question
are detected. We then feed these 3D key points into an optimisation-based planning algorithm to compute
the robot pick-and-place actions, which is represented by a rigid transformation Taction. Finally, we use an
object-agnostic grasp planner to pick up the object and apply the computed robot action.

14.1.4 Experimental results

The author did experiments with manipulation of shoes and mugs. Illustrative graphs are shown in Figure
14.5 and quantitative results are listed in Figure 14.6. The video of the experiments can be found here .

Figure 14.5: An overview of the experiments. (a) and (b) are the semantic key points used for the manip-
ulation of shoes and mugs. Three manipulation tasks are used to evaluate the proposed pipeline: (c) put
shoes on a shelf; (d) put mugs on a mug shelf; (e) hang mugs on a rack by the mug handles.

https://youtu.be/fm5RZ-ht1y0
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Figure 14.6: Quantitative results from the 3 hardware experiments. (a) and (b) show some of the test objects
for the experiments. (c) statistics of the training data (d) We report the average heel and toe errors (along
the horizontal direction) from their desired locations as well as the standard deviation. (e) The reported
errors for the mug on shelf task are the distance from the bottom center key point to the target location of
that key point in the optimization program. (f) reports success rates for the mug on rack task for different
sized mugs. Mugs with handles having either height or width less than 2cm are classified as small (more
details in supplementary material). A trial was deemed successful if the mug ended up hanging on the rack
by the mug handle.
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14.2 Keypoints into the Future[5]

How does this paper relate to the previous paper?

• While supervised learning is used for detecting the key points in the previous work, where as in [5] it
is self supervised.

• In the previous paper, the task is completed by manually specifying the target keypoints and solving
an optimization problem. In [5], a prediction model is learned and a model predictive control is to
follow a demonstrated task .

14.2.1 An Overview

Step one, is to learn a semantically meaningful object keypoints, for instance labeled blue. (see 14.7).
The next step is to collect random interaction data between the robot and the object. This interaction is

Figure 14.7: Shows semantically meaningful object keypoints. Blue keypoints refer to the initial pose and
green refer to the final goal pose.

recorded as training data. A prediction model is learned using the object’s key points and the robot’s action;
for instance, the robot moving the object from one point to another, as shown in the Figure 14.8. i.e., a
forward prediction model is learned on the keypoints.

Figure 14.8: Random interactions between the robot and the object to collect the training data.

—
Prof. Malik: Is this similar to Pulik’s work on learn to poke by poking[1] but at the level of keypoints?

Yes, but without an inverse model.
—
Finally, A single demonstration is used to specify the task. During testing, the learned model uses the model
predictive control to achieve the goal state (where the demonstration defines the goal state.)
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14.2.2 How to get keypoints?

How are the keypoints generated, since it is not supervised? Note, this process is not specified in [5] but
from the previous literature [3] of the same authors.

• Build a dense visual correspondence model (dense SIFT)

• Extract ”reliable” and spatially separated” sparse keypoints.

The pipeline is similar to traditional computer vision, where SIFT features exist for the pixels and extracting
meaningful keypoints from these SIFT features. Here, a learning-based method is used instead of SIFT.

14.2.3 The Dense Correspondence Model

Multiple RGB-D cameras, with known extrinsic and intrinsic camera matrices, are used to capture different
objects’ images from different angles. The images and the depth information are used to construct a mesh
model for the objects. This process helps in identifying the pixel’s location on the 3D mesh. Contrastive

Figure 14.9: The Dense Correspondence Model. (a) Multiple RGBD images at various angles are captured.
(b) 3D mesh of the object is reconstructed and (c) Contrastive Learning where the loss function decreases
the loss between matching points and maximizes the loss between non-matching points.

learning applies a convolution network on a pair of images to reduce the loss function,

Lmatches (Ia, Ib) =
1

Nmatches

∑
Nmathes

D (Ia, ua, Ib, ub)
2

Lnon-matches (Ia, Ib) =
1

Nnon-matches

∑
Nnon-maththes

max (0,M −D (Ia, ua, Ib, ub))
2

L (Ia, Ib) = Lmatches (Ia, Ib) + Lnon-matches (Ia, Ib)

(14.1)

where the loss function Lmatches reduces the distances between the matches and maximizes Lnon-matches the
distance between non-matching points. Finally, the learned object descriptor can be visualized as shown in
Figure 14.10. To visualize, the feature is projected to a 3D dimensional space, if the pixels are in the same
color, they are the same points in the 3D space.
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Figure 14.10: Learned object descriptor for the Contrastive Learning, and the descriptor are consistent across
significant deformation

Prof. Malik: Why chose keypoints as the representation of an object? Traditionally, keypoints were
used in computer vision to solve the correspondence problem. We have the same object from different
views, say for structure from motion or stereo, we need to have correspondence and then triangulate.
We need to have a way of specifying the pose of the object, and one way of doing it is through
these keypoints. However, it is just one choice, but a more fundamental way of representing it is,
say, a mesh representation of an object, and the mesh has a canonical coordinate system. Therefore
every vertex on the mesh has a specific physical meaning on the object; if we have that, why go the
keypoints. Keypoints are a way to represent the mesh, but the mesh is a complete representation
or alternately 6DOF pose for minimal representation. Regarding keypoints as an end-goal is strange
because it is neither a minimal representation nor a complete representation.
Objects in an image can be detected with varying degrees of information. A bounding box around the
object is the simplest method of detecting an object but does convey enough information as it does
not capture the orientation of the object. The next level of sophistication is segmenting the object,
i.e., identifying the pixel corresponding to the object, but this method will not suffice because it still
does not capture the orientation. Thus, a higher level of identification is required, which enables us
to estimate the orientation/pose of the object from the image. Thus, the choice of mesh, keypoints,
or point cloud comes into play to represent the structure.
Question: Would the keypoints be the minimal representation need to account for the deformation
in the objects?
Yes, for deformable objects, keypoints might be a good way of representing the objects.
Prof. Mailk: To given an extremely deformable object, consider the human body. The usual keypoints
would be the various joints, left shoulder, right elbow, etc., which is not considered a complete
representation of a human body. Mesh is a better(full) representation; for instance, is ¡¡smpl¿¿
representation, Angjoo Kanazawa [2] has work done on this. That is like a canonical representation
of the entire body shape, at the mesh level, where every vertex has a meaning corresponding to the
human body. Of course, smpl is a specialized case for human bodies. However, for simpler objects
keypoints can be an approximation.
Question: Is it possible to learn the low-level representation, such as the keypoints, instead of the
representation itself?
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14.2.4 Keypoints extraction

• Given the dense image descriptor, how to extract meaningful keypoints?

• From the interaction data, get spatially spread yet confident matches.

Figure 14.11: Visualization of the learned visual-correspondence model on a reference image (left) and target
image(right). Colored numbers in the target image represent the probability that the detected correspondence
is valid. Green reticle shows a valid correspondence with a high confidence score, red reticle shows a case
where no correspondence exists in the target image due to occlusion, hence the low confidence probability.
Confidence heatmap shown in bottom right.

The correspondence model is essentially the feature representation for each of the pixels. Different points
on the object are randomly sampled, and each of the sampled objects is compared to other objects in the
training set and run a visual correspondence model as shown in the Figure. Similarity values and confidence
levels are used to compare the query image and the training set for occluded feature points. Finally, the
following conditions are observed when extracting the keypoints,

• ensuring that keypoints are not occluded

• points are randomly sampled

• keypoints are not clustered together.

14.2.5 Learning the forward model

• A Neural network with supervised learning

• Given input image, extract keypoints

Once the feature points are extracted, interaction between the robot and the object is considered at each
item step. A neural network is model is constructed with inputs consisting of the keypoint locations zt and
the robot actions at to predicted the keypoint location at the next time step, as shown in the equation below,

ẑt+1 = f̂θdyn
(zt−l:t,at) . (14.2)
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A network with the following loss function to minimize the distance between the predicted and ground truth
keypoints locations is considered,

Ldynamics =

H∑
h=1

‖ẑt+h − zt+h‖22 , ẑt+h+1 = f̂θdyn (ẑt−l:t,at+h) , ẑt = zt. (14.3)

A trajectory specified by the keypoint movement is given, a model predictive control and cross entropy
method are used to reach the goal state using online planning.

Figure 14.12: The demonstration trajectory used for the hardware experiments. The left image of each row
shows the starting position blended with the goal position. The SDS keypoints are shown in teal for each
frame. Thegreen lines show the paths followed by the keypoints moving from the starting position to the
final position. The right image of each row shows the final/goal position.

14.2.6 Cross Entropy Method
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14.3 MPC Planning

MPC is further discussed in the later sections.

14.3.1 Results

Figure 14.13: As shown in the bottom right is the demonstration to specify the task and the trajectory is
executed by the robot.

Prof Ma: It is very much based on sample paths to do sort of MPC. How do they compute the cost?
Do they back-propagate the end points?
Task is defined by a demonstration and the trajectory is recorded at each time point and they optimize
on this.
Prof. Ma: Do they need to record the pre executed trajectory?
Each task needs to be specified and in the process few demonstrations are recorded. 10 minutes is
the training required between the robot and the object.
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14.4 Model Predictive Control[8]

14.4.1 Introduction to MPC

Model Predictive Control (MPC) is to solve an optimal control problem with input and state constraints
with system dynamics. A typical MPC, as shown in Fig. 14.14, is designed to solve repeatedly online: the
solution of MPC provides states and input trajectories with multi-step preview under constraints and only
exerts the first step input, and MPC replans using the same schematic by using the measured states to get
the next control input. The challenge of MPC is to solve the MPC online with high-frequent replans, which
is a big burden for computing resources. And there are some successful experiments on drones to using the
MPC.

Figure 14.14: A MPC for longitude speed and lateral position regulation for an autonomous car. The MPC
can be solved for a trajectory with different horizon, and the car only exerts the very first input. For the
next control step, the states of the car is updated, and the MPC with the same formulated is solved again,
and keeps this process.

The MPC is also known as receding horizon control. And for the state estimation, a state estimator, such as
Kalman Filter (KF) for a linear system, Extended KF and particle filter for nonlinear system, or combining
the learning-based preception such as keypoint extraction, can be applied. In order to tune the MPC,
adjusting the predictive horizon and cost could affect the MPC results.

14.4.2 Model-Based Reinforcement Learning

Recent work on Model-Based Reinforcement Learning (MBRL) which typically learns the dynamics model
can be cooperated with MPC as illustrated in Fig. 14.15, where the policy to execute is a MPC and tran-
sition is the learned dynamics model in the Markov chain. This method can be also referred to Learning
MPC (LMPC) [7].

A modified MBRL is to do backpropagte through the learned dynamics model into the policy to optimize the
policy, and applies the policy output and gets the next states, and do the process to collect state transition
pair and update the learned dynamics model. An evolution of MBRL is:

v0.5 collect random samples, train dynamics, and plan. The pro is that this is simple without iterating
procedure, while may suffers from distribution problem.

v1.0 iteratively collect data, replan, collect data. The pro is simple and is able to solve distribution mis-
match, while the open-loop plan may perform poorly.

v1.5 iteratively collect data using MPC which replans at each step. The pro is robust to small modelling
errors while this method is computationally expansive and requires an existing MPC.
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Figure 14.15: A model-based reinforcement learning framework that can be used with MPC. The dynamics
model of the system is obtained by learning the collected observed states and predicted states, and the
dynamics model can be represented by a linear model or a simple neural network. MPC can be used to
obtain the action at the current states, and collect a transition pair and repeat the process.

v2.0 backpropagate directly into policy. The pro is computationally cheap during the runtime while is
numerically unstable.

14.4.3 Pros and Cons of MPC

In conclusion, compared to MBRL, the MPC is good at being a flexible general technique and being able
to handle nonlinear models, approximate models, and explicit constraints and soft penalties, while having
preview capability.

Figure 14.16: The Weakness of MPC. MPC is not good at the manipulation tasks where the robot needs to
pick up soft mats or fruits. This is because that soft contact is hard to model and this may cause issue to
MPC because there is a huge modeling error.

However, MPC needs to solve an optimization problem online, which takes time. Moreover, if MPC needs to
run on a embedded device, it should also consider the memory limitations on hardware. There is a trade-off
between the accuracy of MPC and solving time and memory budget. If MPC needs to replan fast, the model
used should be simple, such as a linear model, and with less horizon to have less memory. But a linear
system could not represent the full-dynamics of a general nonlinear system, and reducing horizon loses the
preview properties. People can use a complex nonlinear model to solve in MPC, but this will increase the
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computing time and consumed memory dramatically and may cause the MPC computationally infeasible
online. And the target state is encoded by adding a terminal cost not explicit constraints in order to have
feasibility of the optimization. Moreover, MPC requires a dynamics model, but having a precise model is
hard. Although MPC is able to solve a certain range of unknown dynamics, such as an adaptive MPC, but
could increase the design complexity. It is also challenging to use MPC to deal with manipulation tasks with
soft contacts as shown in Fig. 14.16.

There are also several ways to improve MPC, such as to 1) truncate time horizon, 2) truncate reduced state
space, 3) using adaptive MPC to deal with modeling error, 4) to pre-solve the problem in offline regime and
formulate a look-up table for online control policy, which is refer to Gain scheduled MPC or Explicit MPC,
5) solve the optimization with a warm start by using proper initial guess, 6) to use parameterized MPC as
introduced in the following section.
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14.5 Parametrized Model Predictive Control

14.5.1 Standard MPC Overview

Standard model predictive control is widely used in industry, but it is hard to solve efficiently since it has
lots of decision variables, and the number of decision variables scales with prediction horizons. There are
some ways to alleviate this issue, such as truncated time horizon, truncated state space, adaptive MPC, full
offline presolve, warm start, and parametrized MPC, etc.

14.5.2 Parametrized MPC Formulation

Today, in order to solve the above challenges, we will introduce parametrized model predictive control which
simplifies the computational cost [8]. At each sampling time, parametrized MPC will

1. learn a parametric description of input and state trajectories,

2. solve an approximate optimization problem for an infinite horizon,

3. apply predicted input to the system for the duration of the sampling interval.

Before diving into the trajectory tracking problem, we first start with a simplified stabilizing problem. An
infinite-horizon stabilizing model predictive control formulation is given below

J∞ := inf

∫ ∞
0

l(x(t), u(t), t)dt (14.4)

ẋ(t) = Ax(t) +Bu(t) (14.5)

x(0) = x0 (14.6)

x(t) ∈ X (14.7)

u(t) ∈ U (14.8)

Here, we have an infinite horizon cost J∞ for some loss function l(x(t), u(t), t) which is assumed to be convex
and differentiable (14.4). We consider linear time invariant (LTI) system (14.5). Initial condition is given in
(14.6), and state and input constraints are defined in (14.7) and (14.8).

The goal of parametrization of input and state trajectories is to approximate u(t) and x(t) as linear com-
binations of some basis functions τ(t) ∈ L2([0,∞),Rs). ũ is a linear combination of some basis functions
parametrized by ηu. Similarly, x̃ is a linear combination of some basis functions parametrized by ηx.

ũ(t) := (Im ⊗ τ(t))T ηu, ηu ∈ Rms, (14.9)

x̃(t) := (In ⊗ τ(t))T ηx, ηx ∈ Rns, (14.10)

where m is the input dimension, and n is the state dimension. s represents the number of basis functions.

The basis functions are defined as follows

τi(t) ∈ eλtspan{1, t, . . . , ts−1}. (14.11)

We would like these basis functions to have some properties: 1) these basis functions are orthonormal 2)
τ̇(t) = Mλτ(t). The second property is actually a time-shift property, which is the key to prove recursive
feasibility and stability. Using these basis functions, we can reformulate the dynamics as

˙̃x(t) = Ax̃(t) +Bũ(t). (14.12)
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This dynamics expression has τ inside, however, we want the reformulated dynamics only parametrized by
η. Through a detour to the calculus of variation, we can get the following dynamics

(A⊗ Is − In ⊗MT
λ )ηx + (B ⊗ Is)ηu = 0. (14.13)

After presenting the reformulation of state, input, and dynamics, we have the parametrized MPC formulation
as follows

Js :=min

∫ ∞
0

l((In ⊗ τ(t))T ηx, (Im ⊗ τ(t))T ηu, t)dt (14.14)

(A⊗ Uτ − In ⊗ UτMT
λ )ηx + (B ⊗ Uτ )ηu = 0 (14.15)

(In ⊗ τ(0))T ηx = x0 (14.16)

(In ⊗ τ(t))T ηx ∈ X (14.17)

(Im ⊗ τ(t))T ηu ∈ U (14.18)

If we use a larger set of basis function, we can get a lower infinite horizon cost

Js ≥ Js+1 ≥ · · · ≥ J∞. (14.19)

14.5.3 Results

This paper considers a task that is balancing a pole on a quadrotor while tracking a figure 8 trajectory. There
are a few added difficulties, e.g., disturbances, unmodeled dynamics. The formulation using parametrized
MPC is

x̃(t) := (In ⊗ τ(t))T ηx + xss, (14.20)

x̃ref(t) := (In ⊗ τ(t))T ηx,ref + xss, (14.21)

ũ(t) := (Im ⊗ τ(t))T ηu + uss, (14.22)

ũref(t) := (Im ⊗ τ(t))T ηu,ref + uss, (14.23)

ṽ(t) := (Iv ⊗ τ(t))T ηv + vss. (14.24)

where xss and uss are reference trajectory and input, and ṽ(t) represents disturbance.

The trajectory generation result is shown in Fig. 14.17. In order to improve trajectory approximation, the
proposed method replaces single approximation by N piecewise approximation. The influence of multiple
intervals in the trajectory generation is shown in Fig. 14.18. The parametrized MPC can also handle
disturbance well. Fig. 14.19 shows how a single disturbance’s component is estimated and approximated,
and Fig. 14.20 describes the trajectory tracking performance with disturbance estimates.

14.5.4 Strength and Limitations of Parametrized MPC

Having introduced the parametrized MPC formulation and presented the results, we now summarize the
strength and limitations of the parametrized model predictive control.

The strength of parametrized MPC is as follows [6, 9]

1. Parametrized MPC has recursive feasibility guarantee.

2. Parametrized MPC has inherent stability guarantee. There is no need for terminal cost / terminal
state constraints.
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Figure 14.17: Result of the trajectory generation procedure. A three-dimensional figure-eight (in solid red),
with sharp edges, is approximated by a feasible trajectory (in dashed black) that is parametrized with basis
functions and steady-state offsets.

Figure 14.18: Influence of multiple intervals in the trajectory generation procedure. Because of the lim-
ited representation power of the basis functions, it is not possible to fit arbitrary long trajectories, see
(A). To overcome this problem, it is proposed to split the trajectory over multiple intervals, with different
parametrizations for each of these, see (B). Merging the different intervals trajectories results in a more
accurate fit, as shown in (C)

3. Parametrized MPC leads to an optimization problem with typically fewer variables compared to the
discrete-time finite-horizon description of standard MPC.

The limitations of parametrized MPC is given below

1. All derivations so far only work with LTI dynamics.

2. There is no formal analysis of approximation quality for input and state trajectories.
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Figure 14.19: The above plots show how a single disturbances component is estimated and approximated.
In (A), the first disturbance vectors component is shown over different trials. The plot (A), where the
last estimate is shown in blue (thick), indicates convergence of the disturbance trajectory. In (B), the
last estimate is compared with the approximation (parametrized by the basis functions) obtained from the
trajectory generation procedure.

Figure 14.20: Trajectory tracking performance. The feasible reference trajectory (in dashed black) is tracked
for 22 subsequent trials. The disturbance estimate improves over the trials, yielding better tracking perfor-
mance. The first three trials are shown in (A), while some of the other trials are shown in (B).
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