EE 290-005 Integrated Perception, Learning, and Control Spring 2021

Lecture 13: Neuroscience Theory for Navigation
Scribes: Shinwoo Choi, Yahav Avigal, Zhe Cao, Ilija Radosavovic

13.1 Navigational System In The Brain

This section summarizes the presentation on “Microstructure of a spatial map in the entorhinal cortex” [7]
by Albert J. Qii.
13.1.1 Introduction

Brief Outline of hippocampus function in navigation. Fig. 13.1 [8] shows interesting relationships
bewtween recurrent nature for the Entorhinal Cortex in hippocampus(EC-HPC) system and the recurrent
architecture of common navigational system. They both are very similar to each other. It is also interesting
that the way theta band works is strongly reminiscent of CPU clocks
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Figure 13.1: Schematic overview of major anatomical pathways in the hippocampal formation of the rat

Entorhinal Cortex in hippocampus system. EC-HPC system plays a plethora of roles in navigation.
Fig. 13.2 shows that rats forage for food in a square-shaped environment. Whenever a spike occurs, the
location of the animal is recorded. The heat map shows the spike rate of a given cell as a function of
location. The color scale ranges from no activity in dark blue to the maximum rate in red [15] and Polar
plots indicating strong directional tuning of firing rate in the head direction cells [16]
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Figure 13.2: Firing Properties of Cell Types

13.1.2 Microstructure of a spatial map in the entorhinal cortex

Brief overview of the grid cell.

e Grid cells are spatially tuned in hexagonal patterns

Grid cells are topologically arranged in the MEC

e Receptive fields (“navigational map”) for individual cells anchored to spatial/environment cues

Robust properties of the navigational map

— Non-reliant on visual cues/lighting conditions

— Fast rate of convergence/stability

Navigational map of a single cells. Fig. 13.3 shows that brief overview of the firing fields of grid cells
which have a repetitive triangular structure. Each cell forms hexagonal patterns. Fig. 13.3 (b) shows that
the firing field formed a grid of regularly tessellating triangles spanning the whole recording surface. All
nodes of activity were sharply delineated from the background, although the individual peak firing rates
varied. The regular nature of the activity distribution was verified by spatial autocorrelation analyses, which
for all cells showed a tessellating pattern similar to that of the original rate maps. Fig. 13.3 (c) shows that
Box plot showing distribution of angles ¢1, ¢2 and ¢3 between the central peak of the autocorrelogram and
the vertices of a hexagon defined by the nearest six peaks. These angles between two vertices are roughly
60 degrees.
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Figure 13.3: Firing fields of grid cells have a repetitive triangular structure.

Optimality of hexagonal grid representation. The hexagonal tiling is the densest way to arrange circles
in two dimensions.

e Honeycomb conjecture: it states that a regular hexagonal grid or honeycomb is the best way to divide
a surface into regions of equal area with the least total perimeter.

. erimeter(CNB(0,r)) /
hmsupr—wo £ area(CNB(0,r)) = V12

(C is the union of sets of bounded connected components with finite graph complement)

e Densest circle packing: In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773
that the highest-density lattice packing of circles is the hexagonal packing arrangement, in which the
centres of the circles are arranged in a hexagonal lattice.

%DZ/S—‘{EDQ:%E%O.QOGQ (D: diameter of circles and side length for hexagons)

Grid cells are topographically organized. Grid cells in the dMEC showed a striking topographic
organization. Grids recorded at the same electrode location shared a number of metric properties, including
spacing, orientation (direction) and field size.

e Coordinate system in neuroscience (Fig 13.4).

— Vertical direction: dorsal-ventral axis for z, grid for single cell decrease in spacing and size in Z
of cell location, while grids for cells located in the same planes are phase shifted from each other

— Horizontal direction: Anterior-Posterior axis for y and lateral axis for x.

Dorsal (Z)
Posterior (Y)

Medial (X)

>
Lateral (X) : Lateral (X)

Anterior (Y)

Ventral (Z)

Figure 13.4: Coordinate system in neuroscience.
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e Evidences in spacing (Fig 13.5). Grid cell representation is quite dense in dorsal, and as you go more
and more to ventral, the more spaced out between grid cells. Grid cell is also larger in ventral.

(a) Dorsal (b) Ventral

Figure 13.5: Evidences in spacing on dorsal and ventral.

Topological map in brain. Topological map seems one of the general options in brain architecture.

e For example in vision, there are ocular dominance columns or orientation tuning columns that arranged
in 2d patterns (Fig 13.6(a)).

e We also have a similar topological map in brain for motor and sensory area with different parts of the
body. (Fig 13.6(b)).

e This is very similar to modular design in computation.

Vision

Tongue
Swallowing

sensory cortex
(precentral gyrus) (posteentral gyrus)

(a) The ice cube model of the cortex

(b) Motor and sensory areas

Figure 13.6: Topological map in Vision, Motor and Sensory areas in brain.

Anchoring to the environment

e Grid cells have very high correlation in rotational position in an environment. For example, when the
grid cells are placed in a certain environment with a certain stimulus in a direction, one with a certain
direction and the other with a rotated direction. Grid cells produces very high correlation in their
patterns. (Fig. 13.7)
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e One possible explanation (perhaps less interesting) is that the brain simply establishes some anchor
point and creates the map with that coordinate. It would be interesting, however, if the brain detects
rotation, but gradually use feedback control to rotate back.
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Figure 13.7: Grids are aligned to environment-specific landmarks.

Robust features(1) Invariance in light conditions

o Grid cell representation doesn’t just disappear when you complete turn off the light.

e The grid cell architecture seems to be not merely a response to visual representation but functional
without significant visual cues (Fig. 13.8)
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Figure 13.8: Grids persist in darkness.
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Robust features(2) Rapid convergence and stability of map structure across time

e The grid cells are able to establish the stability of map structure across the time. When grid de-
velopment in a novel environment, firing locations were mostly stable across the time rapidly (Fig.
13.9)
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Figure 13.9: Grid structure of AMEC cells is expressed instantly in a novel environment.

Summary of grid cell

e Geometrically: optimal packing
e Anatomically: topological organization, phase shift and tuning of receptive field

e Functionally: stable and rapid formation in novel environment; not requiring visual context; anchoring
to environmental cues

13.1.3 Other types of navigation related cells
Boundary detection cells. [17]
o Their representation is invariant to the room size or room shape. (Fig. 13.10 (a))
e Boundary cells react to environment remorph and such remorph is reversible (Fig. 13.10 (b))

o Mathematically these cells could signify:

— some risk function giving punishment to reaching the end of the environment.

— Or simply marking the end blocking the state transition probability.
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Figure 13.10: Boundary detection cells express proximity to boundaries in a number of environmental con-
figurations.

Head-direction tuning Cells. [16]

e Selected subset of neurons not tuned for places nor displaying grid-like structure.
o The set of neurons instead tune to head orientation.

e Instead of placing a navigational map,
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Figure 13.11: Head-direction cells in the MEC.
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Place Cells. A type of a neuron within the hippocampus that fires when an animal enters a specific area
in its environment. The place cells have interesting properties compared to the grid cells, such as local
re-mapping, which happens when the animal enters a completely new area and the firing rate associated
with a spatial coordinate changes, and global re-mapping where the place cells are associated with a new
spatial coordinate after entering a new environment.

Sessions with slightly different environments Sessions with very different environments
Place Cells (Hippocampus) Grid Cells (MEC)
Rate Remapping Global Remapping

Rate Remapping  Global Remapping Ho&ldlnlilrnlnt Grid Realignment

o o :
TR

Rennd-Costa et al. 2017

Figure 13.12: Place cells can re-map as a result of changes in the environment.

Extrom et al. [4] analyzed the behaviour of place cells in epileptic subjects by recording the signals of 317
neurons while the subjects navigated a virtual town, and learned that the cells fired when presented with
specific locations even though the environment is virtual.
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Figure 13.13: Extrom et al [4] experiments in a virtual environment
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Dragoi et al. [3] investigated a phenomenon called ”preplay” where temporal firing sequences reflecting
the future order of place cell firing can happen during sleep or rest in some animals before they had any
experience on long linear tracks (B in Fig.13.14), which indicates that temporal sequences of place cells
are not necessarily caused by an ongoing external input-driven stimuli, but rather represent the internal
organization of the hippocampal network.

Pl; {[f
Preplay acecels M1 N2 N3 N4 Replay

sleep/rest Running on track sleep/rest

Figure 13.14: Dragoi et al [3] demonstrate ”preplay”.

Sanders et al. [15] discuss “theta sequences” where place cells fire during a theta cycle in order of the position
of their place fields, as seen in Fig.13.15. In spite of the fact the subject animal moves very little during a
theta cycle, each cell fires at the order of its position (where cell 1 represents position 1, cell 2 represents
position 2, etc.) even if the corresponding location is ahead of the animal at the same moment in time,
which can be thought of anticipating or planning ahead. The firing patterns can be split to the first and
second halves of the theta cycle, where in the first half they actively represent the current positions through
positions coming from the path integration to the place cells and in the second half the grid cells integrate
velocity vectors towards the “anticipated” locations (Fig.13.16).
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Figure 13.15: Sanders et al [15] show theta cycles.
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Figure 13.16: The firing patterns can be split to the first and second halves of the theta cycle.

13.2 Vector-based navigation using grid-like representations in ar-
tificial agents

This section summarizes the presentation on “Vector-based navigation using grid-like representations in
artificial agents” [1] by Allen Shen.

The paper considers the problem of training deep reinforcement learning (RL) agents for navigation. While
navigation was explored in prior work [14, 9, 12] it was still not at the level of other deep learning successes.
The paper takes inspiration from mammals and aims to operationalize it within a computational framework.

13.2.1 Neuroscience theories

The proficiency of mammalian spatial behavior is underpinned by grid cells in the entorhinal cortex [7].
Grid cells are thought to provide multi-scale periodic representation that functions as a metric for coding
space [6, 10]. This is believed to be critical for self-motion integration (path integration) [7, 6, 11] and
planning direct trajectories to goals (vector-based navigation) [6, 5, 2].

13.2.2 Path integration

Path integration is basically tracking the position and direction of moving agent based on initial position
using information about velocity. Medial entorhinal cortex (MEC) is the core of the path integration system.
Specifically, place cells memorize past locations, head-direction cells sense movement and direction, and grid
cells divide the spatial environment into a honeycomb hexagonal grid similar to the coordinate system on a
map.

The paper trained an (Long Short-Term Memory network) LSTM using backpropagation through time for
a path integration. The input to the network is the relative velocity, and the initial head direction. The
output is the future location at each time step for both head-direction cells and Place cells. The LSTM
which contains few linear layers is trained with cross-entropy loss and dropout.

As shown in Figure 13.17, remarkably, many units in the linear layer became like the grid cells found in the
medial entorhinal cortex (MEC) of mammals — these cells had clearly defined firing fields that were arranged
in a hexagonal pattern in both square and circular enclosures. Other cells had border- and head direction-
related firing as well as conjunctive tuning, representing the full complement of functional cell-types found
in the MEC.
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Figure 13.17: Entorhinal-like representations emerge in a network trained to path integrate. a, Schematic
of network architecture (see Extended Data Figure 1 for details). b, Example trajectory (15s), self-location
decoded from place cells resembles actual path (respectively, dark and light blue). ¢, Accuracy of decoded
location before (blue) and after (green) training. d, Linear layer units exhibit spatially tuned responses
resembling grid, border, and head direction cells. Ratemap shows activity over location (top), spatial au-

tocorrelogram of the ratemap with gridness indicated (middle), polar plot show activity vs. head direction
(bottom).
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Importantly, the linear layer was subject to regularization, in particular dropout, such that 50% of the units
were randomly silenced at each time step. Grid-like structure did not appear when dropout was not applied.

13.2.3 Vector-based navigation

Vector-based navigation enables the brain to calculate the distance and direction to a desired destination,
“as the crow flies,” allowing animals to make direct journeys between different places even if that exact route
had not been followed before. Entorhinal grid cells proposed to provide a Euclidean spatial metric, allowing
for the calculation of goal-directed vectors and enabling animals to follow direct routes to a remembered
goal. However, experimental evidence for the direct involvement of grid representations in goal-directed
navigation is still lacking in existing work.

13.2.4 Navigation experiments

The authors use network with grid representations and train an agent for navigation tasks using deep RL.
The Figure 13.18 shows the architecture of the grid cell agent which contains the grid network (light blue
dashed) and the visual module (green dashed) and an actor critic learner (based on A3C [13]; dark blue
dashed). The vision module, i.e., is a convolutional neural network that produces place and head direction
cell activity patterns. The grid cell network of the agent was implemented as in the supervised learning
set up except that the LSTM (“GRID LSTM”) was not initialised based upon ground truth place cell
activations but rather set to zero. Velocity signals are perturbed with random noise as well as visual input
to grid network. Interesting, input to grid network is only provided 5% of the time to mimic the imperfect
visual observations. The output of the linear layer of the grid network, corresponding to the agent’s current
location, was provided as input to the “policy LSTM”, a second recurrent network controlling both the
agent’s actions and outputting a value function. Additionally, whenever the agent reached the goal, the
7goal grid code” — activity in the linear layer — was subsequently provided to the policy LSTM during
navigation as an additional input.

Conventional simultaneous localization and mapping (SLAM) techniques typically require an accurate and
complete map to be built, with the nature and position of the goal externally defined. By contrast, the
deep reinforcement learning approach described in this work has the ability to learn complex control poli-
cies end-to-end from a sparse reward, taking direct routes involving shortcuts to goals in an automatic
fashion—abilities that exceed previous deep reinforcement learning approaches, and that would have to be
hand-coded in any SLAM system.

13.2.5 Support for neuroscience theories

Overall, the results provide support for neuroscience theories. First, artificial grid cells resemble biological
grid cells: (1) Percentage of grid cells (25%), head direction cells (10%), and border cells (8.7%) is similar
to distribution in medial entorhinal cortex. (2) Directionality of the head direction units showed a six-fold
symmetry, echoing the six-fold symmetry found in the human brain during active navigation.

There are also evidence that grid cells enable vector-based navigation: (1) Grid cell agent circled a fake
goal grid code when real goal was not present (similar to rodent behavior). (2) Withholding goal grid code
from policy LSTM led to poor performance. (3) Decoded Euclidean distance and allocentric goal direction
represented more strongly in grid cell agent compared to place cell agent. (4) Silencing grid-cells resulted
in worse performance and impaired navigation compared to silencing non-grid cells. (5) Place cells provide
a robust representation of self-location but are not thought to provide a substrate for long range vector
calculations.
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Figure 13.18: The architecture of the supervised network (grid network, light blue dashed) was incorporated
into a larger deep RL network, including a visual module (green dashed) and an actor critic learner (based
on A3C [13]; dark blue dashed). In this case the supervised learner does not receive the ground truth c0
and hO to signal its initial position, but uses input from the visual module to self-localize after placement at
a random position within the environment. Visual module: since experimental evidence suggests that place
cell input to grid cells functions to correct for drift and anchor grids to environmental cues, visual input was
processed by a convolutional network to produce place cell (and head direction cell) activity patterns which
were used as input to the grid network. The output of the vision module was only provided 5% of the time
to the grid network;
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13.3 Discussions

Q1 (Professor Tomlin) When navigation is defined, is it just you know your destination and you have a
map or a sort of learning the map as well?

A1l (Alber Qu) Good question! Throughout the presentation, I will hopefully show some of the evidences
that it actually does a little of both. You can see a localization of the current location. and also it can be
seen that there might be a searching or planning for the future motions.

Q2 (Professor Ma) For different directions that they encode the information with different fequency of
firing?

A2 (Alber Qu) Yes, for example, if I am going to the north, then there is a north touring cell that is firing
very hard.

Q3 (Professor Ma) So, you're saying that there is a sort of carrying signal? I mean that there are some
kinds of periodic waves that does those firing pattern were carried down different phases? and those waves
are physical?

A3 (Alber Qu) Yes. you can measure them. One of the results is that when people place these electrodes
in the brain, you will be able to measure that. Its functioning as a clock across the different regions in the
brain. In my understanding, the field is still developing people all have completing hypothesis.

Q4 (Kshitij Kulkarni) Do we know the evolutionary history of these parts of the brain / why they might
be particularly attuned to recognizing high-frequency regions vs. body parts, etc?

A4 (Alber Qu) To my knowledge to answer the evolutionary history is very difficult because we don’t have
access to that. However there are some studies different levels like birds, as you go higher in a evolutionary
tree, it might be able to develop some correspondences but as you go lower down it becomes harder and
harder to record the brain activity.

Q5 (Professor Ma) When animal goes from familiar place to novel environment, what do they adjust or
do with place cells?

A5 (Alber Qu) There are two possible things that might happen for the Place cells. In general, when
animal is placed in the new environment, some cells that previously encoded with some certain x and y, they
still fire but relatively insignificant(decreased firing rate or some differences in firing rate) in the same x and
y in another environment. However, there is a also global remapping in the completely new environment.
Firing takes place in completely different x and y (actually x’ and y’)
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