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How to efficiently navigate an autonomous system with a monocular RGB
camera to a goal in an a priori unknown environment?

[Bansal, Tolani, Gupta, Malik, Tomlin, CoRL 2019]
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B model-based . E2E

82.19

Success rate In reaching the goal (%):

Time taken to reach the goal (s):

30

Average acceleration along
the trajectory (m/s?):

Average jerk along the
trajectory (m/s>):




Agent Input Success (%) Time taken (s) Acceleration (m/ s?) Jerk (m / s3)

Expert Full map 100 10.78 £2.64 0.11 £0.03 0.36 £0.14
LB-WayPtNav (our) RGB 80.65 11.52 £3.00 0.10 £0.04 0.39 £0.16
End To End RGB 58.06 19.16 £10.45 0.23 £0.02 8.07 £0.94
Mapping (memoryless) Depth 86.56 10.96 £2.74 0.11 £0.03 0.36 £0.14

Mapping Depth + Spatial Memory 97.85 10.95 £2.75 0.11 £0.03 0.36 £0.14
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Agent Input Success (%) Time taken (s) Acceleration (m/s?) Jerk (m/s°)

L.B-WayPtNav (our) RGB 95 22.93 +2.38 0.09 +0.01 3.01 +0.38
End To End RGB 50 33.88 £3.01 0.19 £0.01 6.12 £0.18
Mapping (memoryless) RGB-D 0 N/A N/A N/A

Mapping RGB-D + Spatial Memory 40 22.13 £0.54 0.11 £0.01 3.44 £0.21




Some lessons learned

* Data representation Is important

* Optimal control can be too optimal

* Waypoint representation



More lessons learned

* Building on existing NN architectures
* |mage and perspective distortions during training

* RL on supervised learning
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Satety Challenges

Monitor: Is the iImage data in the fraining distribution?e
What is the uncertainty around the oufput of the
perception modulee

How should this uncertainty affect the planning and
conftrole

More complex-environmentse
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Summary

Incorporating perception in the control loop

Supervising learning using optimal control
* a perception-planning-control pipeline
* comparison with a more traditional SLAM pipeline
* applied to a vision-based navigation task

Models of human motion

Challenges for safe control



