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Phylogeny of Intelligence

Hominid evolution, last 5 million years
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The evolutionary progression

* Vision and Locomotion
* Manipulation
* Language

Successes In Al seem to follow the same order!



Animal Gaits
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Support Patterns

12345678

Computational Gaits
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Fig. 3. Sixteen of the many support sequences that might be used by horses doing the
gaits indicated. The initials L, R, F, and H stand for left, right, fore, and hind feet.
Black circles indicate feet supporting weight; open circles, unweighted feet. Within
each diagram, a vertical row of four circles shows a particular pattern of support. Thus,
in the fifth support pattern of support sequence No. 1, only the RH foot is on the
ground. Each sequence starts with the footfall of the LH foot. Sequences 1, 5, 9, 10,
13, 14, and 15 are relatively common for horses.



Computational Gaits — Central Pattern Generators
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Computational Gaits —Raibert Controller
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Figure 1-2: Planar two-legged model running with a bounding gait. Each leg of the mode! is controlled
independently to regulate hopping height and forward velocity. The body rocks back and forth in a
passively stabilized oscillation, with very litle up and down motion of the center of gravity. When
running i1s initiated there is a random pattern of rocking, but it soon stabilizes. TOP: The cartoon shows

behavior when running at about 4 m/sec. MIDDLE: Attitude of body. BOTTOM: Altitude of body. Figure 35: The dog trotting. The legs used a constant thrust for vertical control with differential thrust

for attitude control. During flight, each foot swung forward to the estimated center of its hip-print.
During stance, hip torques corrected the forward velocity. The errors in 4., occurred when the feet left
the ground and the legs were swept forward. This caused the body to pitch nose downward.
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Raibert, Marc H., et al. Dynamically Stable Legged Locomotion. MIT ARTIFICIAL INTELLIGENCE LAB,
1983.






Alternating Gait

Crawl| Gait




Gaits In Real Life




Gaits In Real Life
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Problem 1
Gaits are not a complete model of all legged
movement



Coupled Perception and Action
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Coupled Perception and Action
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Weakly Coupled Vision

Founder of
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Spot — Boston Dynamics Lalkago — Unitree Robotics



Problem 2
Vision Is missing, or only weakly coupled



Our AXioms
1. Solve general legged locomotion (no explicit gait models).
2. Use vision from ground up.

3. Use learning as much as possible.



Visual Control of Legged
. ocomotion

Ashish Kumar
Deepak Pathak
Stuart Anderson

Jitendra Malik



Uneven Terrain with Depth

* Trained with PPQO, small CNN (~4ms on a GPU)

* Rewards contain energy penalties inspired from Biomechanics



Depth
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Latency In Vision

1. High Level footstep (low freq) planner and low level stepping
function (high freq) — Train HL followed by LL / train LL
followed by HL

2. Train with updating the vision features with less frequency



Animal Navigation:

Niko Tinbergen (1951)

Vor. 55, No. 4

Landmarks and Maps

Current Position

Integrated Path — *

estimates Current Position, \
and gives direction, distance \
for return journey \
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Learn Skills that Enable a Robot to Move Around in Novel Environments

Robot w/camera Ia
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Come out of cubicles Go thrcugh docr Go down hallway



The classical robotics solution is SLAM
(Simultaneous Localization and Mapping)

Video Credits: Mur-Artal et al.,
Palmieri et al.




Classical Mapping and Planning

3D Reconstruction

Observed Images

Policy Execution

Localization using , Execute
current image Path Planning Action




Classical Mapping and Planning

3D Reconstruction

Path

Observed Images

\_ ciLirrent imaae
~J

 Unnecessary:
= Precise reconstruction of everything is not necessary.
= Precise localization may also not be necessary.

= [nsufficient:
* Only geometry, no semantics.

» Nothing is known till it is explicitly observed, failure to exploit
experience with similar past environments.

* Not robust to changes in the environment.

 No way to encode semantic primitives (go down the hallway, go
through the doorway).



Cognitive Mapping & Planning — Gupta et al (2017)
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Visual Memory for Robust Path Following
Kumar, Gupta, Fouhey, Levine & Malik (2018)

Given path, generate abstraction

Given abstraction, retrace with noisy world & actions

Challenges

Actuation Noise --3¢

World Noise




Perception and Interaction
456 A. M, TURING :

Instead of trying to produce a programme to simulate the
adult mind, why not rather try to produce one which simulates
the child’s? Tf this were then subjected to an appropriate
course of education one would obtain the adult brain. Pre-
sumably the child-brain i1s something like a note-book as one
buys it from the stationers. Rather little mechanism, and lots
of blank sheets. (Mechanism and writing are from our point of
view almost synonymous.) Our hope is that there 18 so httle
mechanism in the child-brain that something like it can be easily
programmed. The amount of work in the education we can
assume, as a first approximation, to be much the same as for the

human chald.

30

Language

Turing (1950)
Computing Machinery
And Intelligence



The Development of Embodied
Cognition: Six Lessons from Babies
Linda Smith & Michael Gasser

Abstract. The embodiment hypothesis 1s the 1dea that intelligence emerges in the

interaction of an agent with an environment and as a result of sensorimotor activity. In
this paper we otfer six lessons for developing embodied intelligent agents sugeested by
research in developmental psycholoey. We argue that starting as a baby grounded in a

physical, social and linguistic world 1s crucial to the development of the flexible and

inventive intellizence that characterizes humankind.



The Six Lessons

* Be multi-modal
* Be Incremental
* Be physical

* Explore

* Be social

* Use language



Model-free Reinforcement Learning has very
nigh sample eomplexity

OpenAl et al, Learning Dexterous In-Hand Manipulation, arXiv 2018
OpenAl et al, Solving Rubik’s Cube with a Robot Hand, arXiv 2019



Learning by Imitating Others

Reinforcement Learning of Skills from Videos : Peng, Kanazawa, Malik, Abbeel and Levine
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Video: Cartwheel B Reference Motion

The policies learn to recover from significant perturbations.



Human-Object Interactions in the Wild
Zhe Cao, llija Radosavovic, Angjoo Kanazawa, Jitendra Malik
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Eye Movements while making a cup of tea

Land, Mennie and Rusted (1999)

ML




Figure 1. Prints from (a) the activity video, and (b) eye-movement video of the same instant,
when the sweetener 1s dropped into the mug (3.14 on figure 3). The head-mounted camera and
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0.05.2—0.08.8 0.23.0
(a) (b)

2.23.2-2256 2478-2494

(2)

Figure 8. Examples of fixation patterns
drawn from the eye-movement video-
tape. Sequences of successive fixation
positions are i1ndicated by numbers
on the figures, and single fixations by
single black dots. Numbers beneath
each figure refer to timings in figure 3.
10 deg scale in centre applies to all
figures. (a) Initial examination of kettle.
(b) Tap control via water stream.
(c) Fitting Iid to kettle (drawing made
at fixation 4). (d) Moving kettle to
base: base 1s fixated. (¢) Hand being
directed to the tea-caddy. (f) Search
around the inside of fridge 2. The tea-
making milk 1s located at fixation 3.
(g) Fixations checking the switch and
gauge of the kettle when waiting for
1t to boil. (h) Selecting a mug. Hand
goes to fixation 4. (1) Relocating sweet-
ener prior to use requires 3 fixations.
Sweetener last seen 68 s earlier.
(1) Replacing sweetener 5 s after (1).
Location on shelf 1s fixated first.
(k) Swirling teapot: checking spout.
(1) Pouring tea: receiving vessel fixated.



Al systems need to build “mental models”

If the organism carries a small-scale model
of external reality and of its own possible
Th actions within its head, It Is able to try out

e various alternatives, conclude which is the
Nature of best of them, react to future situations before

: they arise, utilize the knowledge of past

Explanatlon events Iin dealing with the present and the
KENNETH future, and In every way to react in a much
CRAIK fuller, safer, and more competent manner to
the emergencies which face it (Craik,
1943,Ch. 5, p.61)

Commonsense Is not just facts, It is a collection of
models
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Learning 3D Human Dynamics from
Video

Angjoo Kanazawa*, Jason Zhang*, Panna Felsen*, Jitendra
Malik
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Auto-regressive prediction of 3D motion from video

o
Input Ground Predicted Different
Truth Future
Video Viewpoint
Video

Predicting 3D Human Dynamics from Video, Zhang, Felsen, Kanazawa, Malik(ICCV 2019)
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