Perception, Learning and Control

Jitendra Malik UC Berkeley

Phylogeny of Intelligence

Hominid evolution, last 5 million years

Anaxogaras: It is because of his being armed with hands that man is the most intelligent animal

Bipedalism Tool use

Cambrian Explosion 540 million years ago

Variety of life forms, almost all phyla emerge

Animals that could see and move

Gibson: we see in order to move and we move in order to see

Modern humans, last 50 K years

Opposable thumb

Language Abstract thinking Symbolic behavior

The evolutionary progression

- Vision and Locomotion
- Manipulation
- Language

Successes in AI seem to follow the same order!

walk

trot

canter

amble

Animal Gaits

pace

gallup / run

-Stephen Cunnane

Fig. 3. Sixteen of the many support sequences that might be used by horses doing the gaits indicated. The initials L, R, F, and H stand for left, right, fore, and hind feet. Black circles indicate feet supporting weight; open circles, unweighted feet. Within each diagram, a vertical row of four circles shows a particular pattern of support. Thus, in the fifth support pattern of support sequence No. 1, only the RH foot is on the ground. Each sequence starts with the footfall of the LH foot. Sequences 1, 5, 9, 10, 13, 14, and 15 are relatively common for horses.

Computational Gaits

Symmetrical Gaits of Horses

Gaits can be expressed numerically and analyzed graphically to reveal their nature and relationships.

Milton Hildebrand

Fig. 3a and b. Network II. a Structure. b Outputs; $a_{ii}=1.5$, $s_1 = s_2 = 5$, $s_3(t) = 0.05t$; the other parameters are the same as in Fig. 2b

Fig. 4a and b. Network III. a Structure. b Output; $a_{ii} = 1.5$ for every *i* and *j*; $s_1(t) = 0$ for 40 < t < 50, otherwise $s_1(t) = 5$; $s_1 = s_2 = 5$ at every t; the other parameters are the same as in Fig. 2b

Computational Gaits — Central Pattern Generators

Matsuoka, Kiyotoshi. "Mechanisms of frequency and pattern control in the neural rhythm generators." *Biologic* al cybernetics (1987)

Computational Gaits — Raibert Controller

running is initiated there is a random pattern of rocking, but it soon stabilizes. TOP: The cartoon shows behavior when running at about 4 m/sec. MIDDLE: Attitude of body. BOTTOM: Altitude of body.

1983.

Figure 3-5: The dog trotting. The legs used a constant thrust for vertical control with differential thrust for attitude control. During flight, each foot swung forward to the estimated center of its hip-print. During stance, hip torques corrected the forward velocity. The errors in θ_3 occurred when the feet left the ground and the legs were swept forward. This caused the body to pitch nose downward.

Raibert, Marc H., et al. Dynamically Stable Legged Locomotion. MIT ARTIFICIAL INTELLIGENCE LAB,

Spot - Boston Dynamics

HITTER THERE

Alternating Gait

Crawl Gait

Gaits in Real Life

Gaits in Real Life

Figure 2.

(A) Sample footprint path showing the calculation of standard gait measures obtained on the pressure-sensitive gait carpet (step length, step width, and dynamic base angle). (B) Schematic drawing of the laboratory playroom. The squiggly line represents a typical path in Cole, Whitney G., Scott R. Robinson, and Karen E. Adolph. "Bouts of steps: The organization of infant exploration." *Development*

<u>Problem 1</u> Gaits are not a complete model of all legged movement

Coupled Perception and Action

"We see in order to move, and we move in order to see" — J.J. Gibson

Coupled Perception and Action

Flat Terrain Α

В

Matthis, Jonathan Samir, Jacob L. Yates, and Mary M. Hayhoe. "Gaze and the control of f

Medium Terrain

Rough Terrain

Weakly Coupled Vision

Spot — Boston Dynamics

Laikago — Unitree Robotics

Problem 2 Vision is missing, or only weakly coupled

Our Axioms

- 1.
- 2. Use vision from ground up.
- 3. Use learning as much as possible.

Solve general legged locomotion (no explicit gait models).

Visual Control of Legged Locomotion

Ashish Kumar Deepak Pathak Stuart Anderson Jitendra Malik

Uneven Terrain with Depth

- Trained with PPO, small CNN (~4ms on a GPU)

Rewards contain energy penalties inspired from Biomechanics

Uneven Terrain with Egocentric Depth

Testing on Medium Difficulty

Uneven Terrain with Egocentric Depth

• Testing on High Difficulty

Latency in Vision

- followed by HL

1. High Level footstep (low freq) planner and low level stepping function (high freq) — Train HL followed by LL / train LL

2. Train with updating the vision features with less frequency

Animal Navigation: Landmarks and Maps

Niko Tinbergen (1951)

Vol. 55, No. 4

THE PSYCHOLOGICAL REVIEW

COGNITIVE MAPS IN RATS AND MEN¹

BY EDWARD C. TOLMAN

July, 1948

THE HIPPOCAMPUS As a cognitive map

JOHN O'KEEFE and LYNN NADEL

Learn Skills that Enable a Robot to Move Around in Novel Environments

Robot w/camera

In novel environment

Come out of cubicles

Go around obstacles

Go down hallway

Go through door

The classical robotics solution is SLAM (Simultaneous Localization and Mapping)

Video Credits: Mur-Artal et al., Palmieri et al.

Classical Mapping and Planning

3D Reconstruction

Observed Images

Policy Execution

current image

Mapping

3D Reconstruction

Classical Mapping and Planning

• Unnecessary:

- Precise reconstruction of everything is not necessary.
- Precise localization may also not be necessary.

Insufficient:

- Only geometry, no semantics.
- Nothing is known till it is explicitly observed, failure to exploit experience with similar past environments.
- Not robust to changes in the environment.
- No way to encode semantic primitives (go down the hallway, go through the doorway).

Cognitive Mapping & Planning – Gupta et al (2017)

Visual Memory for Robust Path Following Kumar, Gupta, Fouhey, Levine & Malik (2018)

Perception and Interaction

456

A. M. TURING :

Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates the child's ? If this were then subjected to an appropriate course of education one would obtain the adult brain. Presumably the child-brain is something like a note-book as one buys it from the stationers. Rather little mechanism, and lots of blank sheets. (Mechanism and writing are from our point of view almost synonymous.) Our hope is that there is so little mechanism in the child-brain that something like it can be easily programmed. The amount of work in the education we can assume, as a first approximation, to be much the same as for the human child.

Language

Turing (1950) **Computing Machinery** And Intelligence

The Development of Embodied **Cognition: Six Lessons from Babies** Linda Smith & Michael Gasser

inventive intelligence that characterizes humankind.

- Abstract. The embodiment hypothesis is the idea that intelligence emerges in the
- interaction of an agent with an environment and as a result of sensorimotor activity. In
- this paper we offer six lessons for *developing* embodied intelligent agents suggested by
- research in developmental psychology. We argue that starting as a baby grounded in a
- physical, social and linguistic world is crucial to the development of the flexible and

The Six Lessons

- Be multi-modal
- Be incremental
- Be physical
- Explore
- Be social
- Use language

Model-free Reinforcement Learning has very high sample eomplexity

OpenAl et al, Learning Dexterous In-Hand Manipulation, arXiv 2018 OpenAl et al, Solving Rubik's Cube with a Robot Hand, arXiv 2019

Learning by Imitating Others

Reinforcement Learning of Skills from Videos : Peng, Kanazawa, Malik, Abbeel and Levine

Human-Object Interactions in the Wild Zhe Cao, Ilija Radosavovic, Angjoo Kanazawa, Jitendra Malik

Eye Movements while making a cup of tea

Land, Mennie and Rusted (1999)

Figure 1. Prints from (a) the activity video, and (b) eye-movement video of the same instant, when the sweetener is dropped into the mug (3.14 on figure 3). The head-mounted camera and

0.05.2 - 0.08.8

(a)

0.37.1

(d)

(g)

¢,

(b)

0.59.0

(e)

2.23.2 - 2.25.6

10 deg

2.47.8 - 2.49.4(h)

3.15.5 7:5

3.45.0 71\

Figure 8. Examples of fixation patterns drawn from the eye-movement videotape. Sequences of successive fixation positions are indicated by numbers on the figures, and single fixations by single black dots. Numbers beneath each figure refer to timings in figure 3. 10 deg scale in centre applies to all figures. (a) Initial examination of kettle. (b) Tap control via water stream. (c) Fitting lid to kettle (drawing made at fixation 4). (d) Moving kettle to base: base is fixated. (e) Hand being directed to the tea-caddy. (f) Search around the inside of fridge 2. The teamaking milk is located at fixation 5. (g) Fixations checking the switch and gauge of the kettle when waiting for it to boil. (h) Selecting a mug. Hand goes to fixation 4. (i) Relocating sweetener prior to use requires 3 fixations. Sweetener last seen 68 s earlier. (j) Replacing sweetener 5 s after (i). Location on shelf is fixated first. (k) Swirling teapot: checking spout. (1) Pouring tea: receiving vessel fixated.

Al systems need to build "mental models"

The Nature of Explanation

KENNETH CRAIK

If the organism carries a `small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and the future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it (Craik, 1943, Ch. 5, p.61)

CAMBRIDGE UNIVERSITY PRESS

Commonsense is not just facts, it is a collection of models

Learning 3D Human Dynamics from Video

Angjoo Kanazawa*, Jason Zhang*, Panna Felsen*, Jitendra Malik

* Equal contribution

Auto-regressive prediction of 3D motion from video

Input

Video

Ground Truth

Video

Predicting 3D Human Dynamics from Video, Zhang, Felsen, Kanazawa, Malik(ICCV 2019)

Predicted Future Different

Viewpoint

Input Video