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What is SLAM?
• Motivation: 
• If you know a robot’s location, you can construct a map of its surroundings.

• If you have a map of a robot’s surroundings, you can determine its location.

• What if you have neither?


• Simultaneous Localization and Mapping:          (SLAM) 
• Localization — Determine the robot’s state in its surroundings. The robot state 

may include its pose (position + orientation), velocity, etc.

• Mapping — Construct a metric map of its surroundings. This is represented by 

objects of interest (landmarks, objects, etc.) in the robot’s surroundings.

4
Leonard et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” 
IEEE Transactions on Robotics, 2016.



Why do we need SLAM?
• Why SLAM is useful: 
• SLAM research has produced the visual-inertial odometer algorithms used today 

(E.g., MSCKF)

• SLAM allows use of metric information in establishing loop closures, thus helping 

the robot to construct a robust representation of the environment.

• SLAM is necessary for many applications that require a globally consistent map 

(e.g., to construct a map and report back to a human operator).

• When SLAM is unnecessary: 
• When sufficient localization can be done without SLAM (e.g., Navigation scenario 

with access to GPS + LiDAR)

• When a metric map is unnecessary for the task (e.g., Simple navigation tasks)

5
Leonard et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” 
IEEE Transactions on Robotics, 2016.



Is SLAM Solved?
• It depends on the robot (sensors), environment, performance 

requirement in question.

• SLAM is solved for: 

• Vision-based SLAM on slow robotic systems.

• Mapping a 2D indoor environment with a robot equipped with wheel encoders 

and a laser scanner

• SLAM is not solved for: 
• Localization with highly agile robots, mapping rapidly evolving environments

• Open problems— Robust performance, semantic understanding, resource 

awareness, task-driven perception.

6
Leonard et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” 
IEEE Transactions on Robotics, 2016.



SLAM — Problem Setup
• (1) Build a map with reference to the current location.

• (2) Move and estimate the updated location.

• (3) Observe mapped landmarks, and initialize new landmarks.

• (4) Use observations to update the position estimate and landmarks’ positions. 

7
Leonard et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” 
IEEE Transactions on Robotics, 2016.



Terminology
• Full State Vector: 
• Physical quantities describing the robot, iteratively refined in the SLAM problem

• May include the IMU state, poses, and / or feature position estimates

• Speed vs. accuracy tradeoff — Including more quantities in the robot state 

improves accuracy but lowers computational speed

• Inertial Measurement Unit (IMU) State: 
• Dynamic quantities of the robot, e.g. position, velocity, IMU biases.

• Obtained from gyroscope (angular velocity), accelerometer (acceleration).


• Pose: 
• Position and orientation of the robot camera, corresponding to an image.

• Described by a translational (e.g., vector) and rotational (e.g., SO(3) or 

quaternion) component.
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Leonard et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



Terminology
• Image Measurement: 
• 2D measurements of the surroundings, periodically captured by robot sensors 

(e.g., cameras)

• Provides features, robot measurements


• Feature: 
• Positions (2D or 3D) of notable attributes in a collection of images (e.g., corners)

• Used to identify correspondences between different images of the same part of 

the environment (e.g. an image patch of a repeatedly observed of a landmark).

9
Leonard et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



SLAM—Front End and Back End
• Front End: 
• Extracts and processes features, converts signals from sensors into abstracted 

data (e.g., position, orientation, velocity, etc.).

• Back End: 
• Does inference over abstracted data (e.g., MAP Estimation of robot states).

10
Leonard et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



Outline
• Motivation, FAQs, Terminology 
• Front End 
• Feature Extraction

• Data Association

• Outlier Rejection


• Back End 
• Optimization-Based Formulation

• Setup, Terminology

• 3 Steps—Cost Construction, Gauss-Newton Step, Marginalization


• Back End—Example 
• EKF—Standard Formulation vs. Optimization Framework

• State-of-the-art SLAM algorithms


• Global Optimization 
• Optimization on Manifolds 
• Future

11



Front End: Feature Extraction
• We want to extract repeatably 

detectable landmarks from raw 
images.


• Do this by looking for distinctive 
“image patches” that can be 
detected from multiple views of the 
scene.


• Corner points work well.

• Many commonly used corner 

detectors (e.g. FAST, HARRIS, DoG)

12
Rosten, Edward, and Tom Drummond. "Machine learning for high-speed corner 
detection." European conference on computer vision. Springer, Berlin, 
Heidelberg, 2006.



Camera is a bearing sensor
• From one observation of a point feature, we can only infer its bearing with 

respect to the optical axis.

• Can infer depth by re-observing the point from different angles (triangulation).

13



Front End: Data Association
• So, we need a way to reliably detect the same point in multiple views of a scene.

• We need to construct a “descriptor” for the image patch surrounding a feature point in a 

way that is comparable, informative, and invariant to camera orientation.

• Many methods exist: BRISK, SURF, SIFT, BRIEF, ORB

• Extract features from both images, and then compare descriptors in a nearest-neighbor 

fashion to establish correspondences.

14



Front End: Data Association

• Keep track of features throughout the image sequence as long as they are visible.

• Extract features from every image, then match descriptors between consecutive frames.

• Assumption is that matched image features correspond to the same point feature in the 

environment.

• Given estimate of camera pose, can get estimate of feature location by triangulating 

from multiple views.

15

Feature Tracks



Front End: Outlier Rejection
• Nearest neighbor matching of feature descriptors is a very local operation, and hence 

can lead to erroneous matches.

• Need to reject “outlier” feature matches.


1. RANSAC (Random Sampling and Consensus)

Estimate fundamental matrix, reject matches that violate epipolar constraint.

Estimate Perspective-N-Point solution, reject matches with high reprojection 
error.


2. Mahalanobis distance test (“chi-squared rejection test”)

When a known feature is detected, accept the match only if the location of the 
new image feature is within 3 standard deviations of the expected location given 
the current best estimate.

16



Front End: Outlier Rejection

17

image at time t-1 image at time t

Top: Raw matches

Bottom: After outlier 
rejection using RANSAC



Front End: Other Tricks
• Use binary descriptors; comparison using hamming distance 

is faster than using float vector distance (BRISK, ORB, etc.).

• Pre-rotate image patches before describing them to achieve 

rotation invariance (ORB etc.).

• When IMU is available, can also pre-rotate features to be 

aligned with gravity vector (OK-Vis).

18

Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart and Paul Timothy Furgale. Keyframe-based 
visual–inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015.


Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to SIFT or SURF. 
ICCV 2011
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Back End: Optimization Formulation
• Key Idea: 
• State-of-the-art SLAM algorithms exhibit different design choices 

• How much information, from our model and measurements, should our SLAM 

algorithm take as input?

• How should we process that information?


• Selecting design choices  Selecting different tradeoffs in computation time, 
localization accuracy, precision of constructed maps, etc.


• Goal—Recast design choices into a unified optimization framework that allows:

• (1) Experimentation with different designs, 

• (2) Interpolation between different state-of-the-art SLAM implementations.

→
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Back End: Optimization Formulation
• Filtering (Recursive) Framework: 
• Dynamics map—Propagates mean / covariance of the state vector.

• Measurement map + new images—Update mean / covariance of the state vector.

• Use statistical tools to iteratively refine the mean and covariance of the state 

vector’s posterior distribution.

• Optimization (Smoothed) Framework: 
• Dynamics and measurement maps impose constraints on the state vector, 

expressed as residuals.

• These constraints are then encoded into a nonlinear least-squares cost.

• The cost can then be solved via iterative linearization methods (e.g., Gauss-

Newton algorithms).

21



Back End: Setup and Terminology
• Full State: 
• Camera pose, at time t:                              

• Position of feature j at time t in global frame:       

• Full state, at time t:                                         


•        

• Full State Example—Extended Kalman Filter (EKF): 
• In EKF SLAM, the state vector consists of the most current pose and all features 

ever detected (e.g., p features):

22

(The full state consists of the concatenation of multiple poses and features)

x̃t = (xt, ft,1, ⋯, ft,p) ∈ ℝdx+pdf := ℝd

(Variables to estimate)
xt ∈ ℝdx, ∀t ≥ 0.
ft,j ∈ ℝdf, ∀t ≥ 0,j ≥ 1.

, with prior           x̃t ∈ ℝd, ∀t ≥ 0 N(μt, Σt)



Back End: Setup and Terminology
•Dynamics map: 
• General form: 


• Associated residual: 


•Examples: 
• Discrete time robot model with associated input .

• Integrated IMU readings

• (See Appendix for a simple, 2D example)

ut

23

, with .xt+1 = g(xt) + wt wt ∼ N(0,Σw), ∀t ≥ 0

xt+1 − g(xt)

Pose at

time  t

Additive noise to

dynamics at time  t

Pose at

time  t + 1



Back End: Setup and Terminology
•Measurement map: 
• Image measurement of feature j at time t:  

• General form: 


• Associated residual: 

24

, with .zt,j = h(xt, ft,j) + vt,j vt,j ∼ N(0,Σv), ∀t ≥ 0

zt,j − h(xt, ft,j)

Pose at

time  t

Image measurement

of feature  at time  j t

Position estimate 
of feature  at 
time  

j
t

Additive noise to 
measurement of 
feature  at time  j t

zt,j ∈ ℝdz, ∀t, j ≥ 0.



Back End: Setup and Terminology
Measurement map Example—Pinhole camera model

25



Back End: Main Steps

• Cost Construction


• Gauss-Newton Step(s)


• Marginalization Step(s)

26



Back End: Cost Construction
•Constraints imposed by dynamics and measurement maps: 
• Dynamics map :                 


• Measurement map :   


•Weighted Least-Squares Cost: 
• Idea—If the models are accurate, then all residuals should be small.

• Define cost = sum of norms squared of residuals we care about.

• Ex: Suppose we wish to constrain residuals of  recent poses and  features:


• Goal—Find  that minimizes .

g : ℝdx → ℝdx

h : ℝdx × ℝdf → ℝdz

n p

x̃t c(x̃t)
27

(where )∥v∥Σ := v⊤Σv

Residual: xt+1 − g(xt)

Residual: zt,j − h(xt, fj)

, with xt+1 = g(xt) + wt wt ∼ N(0,Σw), ∀t ≥ 0.

, with zt,j = h(xt, fj) + vt,j vt,j ∼ N(0,Σv), ∀t ≥ 0.



•Concatenated Cost Vector (Example) 
• Stacking up the residual terms in the cost, we have:


•

28

Define the full cost vector  by:C(x̃t)

Back End: Gauss-Newton Step

∈ ℝd

∈ ℝnpdz

∈ ℝ(n−1)dx

We then have: c(x̃t) = ∥C(x̃t)∥2

∈ ℝd+npdz+(n−1)dx



Back End: Gauss-Newton Step
• Jacobian Computation: 
• Jacobian of  at linearization point :           


•Gauss-Newton Update: 
• 1st-order Taylor expansion of  about :


•

C(x̃t) x̃⋆
t

c(x̃t) x̃⋆
t

29

x̃⋆
t = μt J :=

dC
dx̃t x̃⋆

t

where:



Back End: Marginalization
•Motivation: 
• To reduce computational burden, sometimes we wish to remove components of 

 from the optimization problem.

• Splitting the State and Cost: 
• Splitting the Concatenated State:


• Splitting the Cost:


•

x̃t

30

where:

where:



Back End: Marginalization
• Splitting the State and Cost: 
• To remove , minimize  w.r.t.  :


• Goal—Replace  with a linear least-squares term:


•

x̃t,M c(x̃t) = c(x̃t,K, x̃t,M) x̃t,M

min
x̃t,M

∥C2(x̃t,K, x̃t,M)∥2

31

where the mean  and covariance  encapsulate information encoded in the 
residuals comprising .

μt,K Σt,K
C2(x̃t,K, x̃t,M)

(x̃t,K − μt,K)⊤Σ−1
t,K(x̃t,K − μt,K)



Back End: Marginalization
• Jacobian Computation: 
• Jacobian of  at linearization point :    


•Marginalization: 
• Linearly approximate :


•Goal— Minimize , which is easier than minimizing .

c(x̃t) x̃⋆
t

c2(x̃t,K, x̃t,M) = ∥C2(x̃t,K, x̃t,M)∥2

c′ 2(x̃t) c2(x̃t)
32

x̃⋆
t = (x̃t,K, x̃t,M) = (μt,K, μt,M) JK :=

dC2

dx̃t,K x̃⋆
t,K

JM :=
dC2

dx̃t,M x̃⋆
t,M



Back End: Marginalization
•Marginalization: 
• Minimize  w.r.t. :


•Note—This is related to the Schur complement method in optimization theory 
(see Appendix).


• 

c′ 2(x̃t,K, x̃t,M) x̃t,M

33

where:
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Extended Kalman Filter (EKF)

35

• Introduction: 
• Extended Kalman Filter — Recursive, filtering-based algorithm for updating a full 

state vector, using dynamics and measurement maps.

•Brief Outline of Upcoming Slides: 
• Present Extended Kalman Filter (EKF) in its standard formulation

• Present algorithm modules for the key steps of the EKF algorithm— Feature 

augmentation, feature update, and state propagation

• Define cost functions, and apply the optimization framework on previous slides.

• Conclusion — Descent steps on the cost functions give the same update and 

propagation equations, for the full state, as the EKF algorithm modules



Extended Kalman Filter (EKF)

36

• Setup: 
• Full State —In EKF SLAM, the state vector consists of the most current pose 

and all features ever detected (e.g., p features):


• Dynamics, Measurement Maps:


• Steps for iteratively refining  — Feature augmentation, feature update, and 
state propagation.

x̃t

x̃t

x̃t = (xt, ft,1, ⋯, ft,p) ∈ ℝdx+pdf := ℝd

(For detailed descriptions of g, h, see previous slides)

Dynamics map :                     , with 

Measurement map :     , with 

g : ℝdx → ℝdx xt+1 = g(xt) + wt wt ∼ N(0,Σw), ∀t ≥ 0.
h : ℝdx × ℝdf → ℝdz zt,j = h(xt, fj) + vt,j vt,j ∼ N(0,Σv), ∀t ≥ 0.



Extended Kalman Filter (EKF)

37

• Step 1—Feature Augmentation: 
• Augment  with position estimates of newly detected featuresx̃t



Extended Kalman Filter (EKF)

38

• Step 2—Feature Update: 
• Update  with position estimates of features already described in x̃t x̃t



Extended Kalman Filter (EKF)

39

• Step 3—State Propagation: 
• In , replace the current pose  with the new pose x̃t xt xt+1



Extended Kalman Filter (EKF)

40

•Repeat Steps 1 to 3: 
• Increment  by 1, and repeat.t

t ← t + 1



Extended Kalman Filter (EKF)
• EKF, Standard Formulation:            (Algorithm 1)

41

Feature Augmentation Step

Feature Update Step

State Propagation Step

For loop running through  
the finite time horizon  



Optimization-Based Framework
• Feature Augmentation = Gauss-Newton Step: 

• Idea of Theorem: 
• Filtering approach—Linearize inverse measurement map (image  feature 

position), then perform a MAP estimate update using this linearized function

• Optimization approach—Use measurement map to form a nonlinear least-

squares cost, then perform one Gauss-Newton step on this cost

• This theorem shows that these two approaches are equivalent.

→
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Optimization-Based Framework
• Feature Update = Gauss-Newton Step: 

• Idea of Theorem: 
• Filtering approach—Linearize measurement map, then perform a MAP estimate 

update using this linearized function

• Optimization approach—Use measurement map to form a nonlinear least-

squares cost, then perform one Gauss-Newton step on this cost

• This theorem shows that these two approaches are equivalent.

43



Optimization-Based Framework
• State Propagation = Marginalization Step: 

• Idea of Theorem: 
• Filtering approach—Linearize dynamics map, then perform a MAP estimate 

update using this linearized function

• Optimization approach—Use dynamics map to form a nonlinear least-

squares cost, then perform one marginalization step on this cost

• This theorem shows that these two approaches are equivalent.

44



State-of-the-art SLAM Algorithms:
• Below, we cast state-of-the-art SLAM algorithms into our optimization 

framework, and compare / contrast them

• One iterate of each algorithm is described as follows:

• (1) Extended Kalman Filter (EKF) — Performs 1 Gauss-Newton step, 

marginalizes all poses but current one, does not marginalize features

• (2) Iterative Extended Kalman Filter (iEKF) — Same as EKF SLAM, but 

performs multiple Gauss-Newton steps

45

J. Sola. Simulataneous localization and mapping with the Extended Kalman Filter. arXiv, 2014.
S. Tully, Hyungpil Moon, G. Kantor, and H. Choset. Iterated filters for bearing-only SLAM, ICRA, 2008, pages 1442-1448.



State-of-the-art SLAM Algorithms:
• Below, we cast state-of-the-art SLAM algorithms into our optimization 

framework, and compare / contrast them

• One iterate of each algorithm is described as follows:

• (3) Multi-State Constrained Kalman Filter (MSCKF) — Performs 1 Gauss-

Newton step, marginalizes all poses except the most recent k poses, 
marginalize features as soon as they are no longer seen by the current pose


• (4) Fixed Lag Smoother — Same as MSCKF, but performs multiple Gauss-
Newton steps 

• (5) Open Keyframe Visual-Inertial SLAM (OK-Vis) — Same as MSCKF, but 
performs multiple Gauss-Newton steps and drops some intermediate poses 
(used in OpenARK)

46

Mourikis and S. I. Roumeliotis. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation.Proceedings, ICRA, pages 3565–3572, 2007.

S. Tully, Hyungpil Moon, G. Kantor, and H. Choset.  Iterated filters for bearing-only SLAM, ICRA, pages 1442–1448, 2008.

S.  Leutenegger,  S.  Lynen,  M.  Bosse,  R.  Siegwart,  and  P.  Furgale.  Keyframe-based Visual-Inertial Odometry using Nonlinear Optimization. The International Journal of 

Robotics Research, 34:314 – 334, 2015.




State-of-the-art SLAM Algorithms:
• Below, we cast state-of-the-art SLAM algorithms into our optimization 

framework, and compare / contrast them

• One iterate of each algorithm is described as follows:

• (6) Graph SLAM — Performs multiple Gauss-Newton steps when all 

information has been collected, does not marginalize any variable. 
• (7) Bundle Adjustment — Same as Graph SLAM, but without motion 

constraints, may add more constraints to account for scale ambiguity 
• (8) Pose Graph SLAM — Same as Graph SLAM, but measurements are 

relative pose constraints.

47

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.
G. Grisetti, R. K~A 14mmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4):31{43, 2010.
F. Daellert, “Visual SLAM Tutorial: Bundle Adjustment,” CVPR 2014.
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Global Optimization
• In addition to real-time tracking, we also maintain a "global" optimization 

problem over all robot poses.

• Every time a pose is marginalized out of the local problem, it is introduced 

into the global problem.

• The global optimization maintains global consistency between the poses, and 

is what separates SLAM from odometry.


• In addition to incremental pose constraints, we also introduce "loop closure" 
constraints which are activated when the robot re-visits a part of the map it 
has seen before.

49



Global Optimization
• In addition to incremental pose constraints, we also introduce "loop closure" constraints 

which are activated when the robot re-visits a part of the map it has seen before.

• Inference is done each time a new loop closure is registered.

50

1) Original global problem 2) Introduce loop closure 

constraint

3) Run inference



Global Optimization: Loop Closure Detection
• To establish loop closures, we need to detect when the camera is looking at 

the same place as some time in the past.

• Naive way: compare every detected feature to every feature we have seen so 

far. Terrible.


• Instead, we seek to compute a global descriptor of the entire image, which 
can be compared to descriptors of past images.


Bag-of-words approach: assigns a binary descriptor to each image 
encoding the presence or absence of certain features.

51

Gálvez-López, Dorian, and Juan D. Tardos. "Bags of binary words for fast place recognition in image sequences." IEEE 
Transactions on Robotics 28.5 (2012)
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The elephant in the room...
• So far, we have freely been speaking of performing a Taylor 

expansion on an objective function f.

53

• In the 3D SLAM case, the variable x consists of poses: 

	 with rotation matrix R and translation vector T.



Optimization on Manifolds
• In reality, our optimization variables lie on some smooth manifold 

M, not in regular Euclidean space. So we need a different notion 
of a "differential change" than simple addition.


• Idea: Use the tangent space TxM at a given point x to locally 
parameterize small changes from that point.

54



Optimization on Manifolds
•Define a new "plus" operator:

•Define a new "minus" operator:

55



Optimization on Manifolds
• For Lie groups, such as SO(3) (the rotation group) and SE(3) 

(the group of rigid body transformations), the exponential and 
logarithmic maps give us straightforward definitions for these 
operations.

56



Optimization on Manifolds
•With these in hand, we define our optimization problem as


•Note that the covariances are now defined over the tangent-space deviation from the 
mean.


• The correct Taylor expansion is now

57

where 



Optimization on Manifolds
• And our update rules generalize as:

• Gauss-Newton descent:


• Marginalization:


• And the new prior is introduced into the optimization problem as

58
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Deep Learning Interventions
• Deep pose estimation:


Kendall, Alex, Matthew Grimes, and Roberto Cipolla. "Posenet: A convolutional network for real-time 6-dof 
camera relocalization." Proceedings of the IEEE international conference on computer vision. 2015.

Mohanty, Vikram, et al. "Deepvo: A deep learning approach for monocular visual odometry." arXiv preprint 
arXiv:1611.06069 (2016).

Wang, Sen, et al. "Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural 
networks." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.


• Deep data association:

Hou, Yi, Hong Zhang, and Shilin Zhou. "Convolutional neural network-based image representation for visual 
loop closure detection." 2015 IEEE international conference on information and automation. IEEE, 2015.

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Toward geometric deep slam." arXiv preprint 
arXiv:1707.07410 (2017).
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Deep Learning Interventions
• Tight fusion into the SLAM pipeline:


Li, Ruihao, Sen Wang, and Dongbing Gu. "Deepslam: A robust monocular slam system with unsupervised 
deep learning." IEEE Transactions on Industrial Electronics 68.4 (2020): 3577-3587.

Li, Yang, Yoshitaka Ushiku, and Tatsuya Harada. "Pose graph optimization for unsupervised monocular 
visual odometry." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.


• Deep map enhancement:

Salas-Moreno, Renato F., et al. "Slam++: Simultaneous localisation and mapping at the level of objects." 
Proceedings of the IEEE conference on computer vision and pattern recognition. 2013.

McCormac, John, et al. "Semanticfusion: Dense 3d semantic mapping with convolutional neural networks." 
2017 IEEE International Conference on Robotics and automation (ICRA). IEEE, 2017.

Nicholson, Lachlan, Michael Milford, and Niko Sünderhauf. "Quadricslam: Dual quadrics from object 
detections as landmarks in object-oriented slam." IEEE Robotics and Automation Letters 4.1 (2018): 1-8.

Yu, Chao, et al. "DS-SLAM: A semantic visual SLAM towards dynamic environments." 2018 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
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Dynamic SLAM
• In motion planning, some features often belong to moving objects that may 

be other robotic agents, dynamic obstacles, etc.

• Extend the SLAM pipeline to track features on a collection of moving rigid 

bodies in the scene.

• In these scenarios, the above optimization framework must be adapted to 

account for feature motion.

• Additional optimization variables for moving features.

• Motion constraints between moving features.

• Motion model?


Wang, Chieh-Chih, et al. "Simultaneous localization, mapping and moving object tracking." The International 
Journal of Robotics Research 26.9 (2007): 889-916.
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Questions?
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Appendix



Back End: Setup and Terminology
•Dynamics map with an example: 
• General form: 


• Associated residual: 

• Example—2D Extended Kalman Filter (EKF): 
• Pose:

• Noise:

• Dynamics:

69

, with .xt+1 = g(xt) + wt wt ∼ N(0,Σw), ∀t ≥ 0
xt+1 − g(xt)

g : ℝdx → ℝdx

·x1
t = v cos θt + w1

t
·x2
t = v sin θt + w2

t·θt = ω + w3
t

wt := (w1
t , w2

t , w3
t ) ∈ ℝ3

xt := (xt,1, xt,2, θt) ∈ ℝ3



Back End: Setup and Terminology
•Measurement map with an example: 
• General form: 


• Associated residual: 

• Example—2D Extended Kalman Filter (EKF): 
• Feature positions:

• Image measurements:

• Noise:

• Measurement map:

70

, with .zt,j = h(xt, ft,j) + vt,j vt,j ∼ N(0,Σv), ∀t ≥ 0
h : ℝdx × ℝdf → ℝdz

zt,j − h(xt, ft,j)

ft,j := ( f1
t,j, f2

t,j) ∈ ℝ2

zt,j := (z1
t,j, z2

t,j) ∈ ℝ2

vt := (v1
t , v2

t ) ∈ ℝ2

z1
t,j = f1

t,j − x1
t + v1

t

z2
t,j = f2

t,j − x2
t + v2

t



Back End: Marginalization
•Marginalization: 
• Equivalence to the Schur complement method:


• 
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Optimization-Based Framework — Proof
• Feature Augmentation = Gauss-Newton Step: 

• Proof (Sketch): 
• Concatenate terms:


• Rewrite cost:
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Optimization-Based Framework — Proof
• Feature Augmentation = Gauss-Newton Step: 

• Proof (Sketch): 
• Compute  and :


• Apply Gauss-Newton Equations:

C(x̃t) J
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Optimization-Based Framework — Proof
• Feature Augmentation = Gauss-Newton Step: 

• Proof (Sketch): 
• Result — The Gauss-Newton Equations above yield Alg. 2, Lines 4, 9:
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Optimization-Based Framework — Proofs
• Feature Update = Gauss-Newton Step: 

• Proof (Sketch): 
• Concatenate terms:


• Rewrite cost:
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Optimization-Based Framework — Proofs
• Feature Update = Gauss-Newton Step: 

• Proof (Sketch): 
• Compute  and :


• Apply Gauss-Newton Equations:

C(x̃t) J
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Optimization-Based Framework — Proofs
• Feature Update = Gauss-Newton Step: 

• Proof (Sketch): 
• Result — The Gauss-Newton Equations above yield Alg. 3, Lines 5-6:
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Optimization-Based Framework — Proofs
• State Propagation = Marginalization Step: 

• Proof (Sketch): 
• Identify :


•

cK, cM, CK, CM
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Optimization-Based Framework — Proofs
• State Propagation = Marginalization Step: 

• Proof (Sketch): 
• Compute , and apply Marginalization equations:JK, JM
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Optimization-Based Framework — Proofs
• State Propagation = Marginalization Step: 

• Proof (Sketch): 
• Result — The Marginalization Equations above yield Alg. 4, Lines 5-6:
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