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Geometric Nonlinear Control

• Main idea: exploit underlying structures in the 
system to systematically design feedback 
controllers

• Explicitly connects ‘global’ and ‘local’ system 
structures 

• Gives fine-grain control over system behavior

• Amenable to formal analysis

• Difficult to learn to exploit non-parametric 
uncertainties
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Deep Reinforcement Learning
• Main idea: sample system trajectories to 

find (approximately) optimal feedback 
controller

• ‘Discovers’ connection between global and 
local structure     

• Automatically generates complex 
behaviors, but requires reward shaping

• Effectively handles non-parametric 
uncertainty

• Can require large amounts of data 3

[Levine et. al.](IJRR 2020)

[Open AI](2019)



Motivating Questions 
• Can we design local reward signals with global structural information 

‘baked in’ using geometric control?

• Can we use these structures to provide correctness and safety 
guarantees for the learning? 

• Does reinforcement learning implicitly take advantage of these 
structures? What structures make a system ‘easy’ to control?
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Thesis Proposal
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Part 1: Overcome 
non-parametric 
uncertainty by combining 
RL and geometric control

MB 
Controller

Learned
Correction



Tyler’s PhD research
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Part 1: Overcome 
non-parametric 
uncertainty by combining 
RL and geometric control

MB 
Controller

Learned
Correction

Example: Learning a stable walking gait
 with ~20 seconds of data

Use structures from geometric control as a
‘template’ for the learning 



Project Flow
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Part 1: Overcome 
non-parametric 
uncertainty by combining 
RL and geometric control

MB 
Controller

Learned
Correction

Part 2: Provide correctness 
and safety guarantees for 
specific learning 
algorithms: 

High-probability tracking tube

Part 3: Future work:

• What makes a reward 
signal difficult to learn 
from? 

• What makes a system 
fundamentally 
difficult to control?

• Where should 
geometric control be 
used in the long-run? 



Part 1 Outline
• Steps in design process

• Example control architectures

• Feedback Linearization

• Control Lyapunov Functions

• Other architectures

• Trade-offs with ‘Model-based’ RL8



Steps in Design Process
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Step 1: Choose 
geometric control 
architecture which 
produces desired global 
behavior

e.g. feedback linearizing 
controller

Step 2:  Augment the 
nominal controller with 
a learned component: 

learned augmentation

Step 3: Formulate 
reward which captures 
desired local behavior

Minimize loss with RL 



Feedback Linearization
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Goal: Output Tracking

• Consider the system

with               the state,              the 
input and             the output. 
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• Goal: track any smooth reference         
with one controller 



Calculating a Linearizing Controller
• For the time being assume          . To obtain a direct relationship between 

the inputs and outputs we differentiate    : 

• Now if                   for each              then the controller 

yields  

1
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Calculating a Linearizing Controller
• For the time being assume          . To obtain a direct relationship between 

the inputs and outputs we differentiate    : 

• Now if                   for each              then the controller 

yields  

1
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If this is zero the controller 
is undefined



Calculating a Linearizing Controller
• Now if                   then we differentiate    a second time and obtain and 

expression of the form

• Now if                  for each              then the control law   

yields

1
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Calculating a Linearizing Controller
• In general, we can keep differentiating    until the input appears:

• At this point we can apply the control

which yields 

1
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‘Inverting’ the Dynamics 
• Take time derivatives of outputs 

to obtain an input-output 
relationship of the form
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• Applying the control law                                     yields
 

Vector Relative Degree



Normal Form
• Choose the outputs and their derivatives as new states for the 

system:  
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• If              we can ‘complete the basis’ by appropriately 
selecting                    extra variables:

May become unstable!

Can track          using linear control

Zero Dynamics (Systems is minimum-phase if these 
are asymptotically stable)



Zero Dynamics
• We refer to the un-driven dynamics 

as the zero dynamics. 

• We say that the overall control system is minimum-phase if the 
zero dynamics are asymptotically stable 

• We say that the system is non-minimum-phase if the zero 
dynamics are unstable

1
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Tracking Desired Outputs
• To track the desired output 

• If we design      such that                    is Hurwitz then this control 
law drives                       exponentially quickly 

• However, the zero dynamics may not stay stable!

1
9

Feedforward Term Feedback Term



Model Mismatch
• Suppose we have an approximate dynamics model:
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• Why not just learn the forward dynamics?

May be singular!



Directly Learning the Linearizing 
Controller

• We know the linearizing controllers are of the form
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• There is a “gap” between the two controllers:

“Feedback linearization for uncertain systems via RL” [WFMAPST] (2020)

• To overcome the gap we approximate



Penalize Deviations from 
Desired Linear Behavior

• We want to find a set of learned parameter such that
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• We then define the optimization problem

Distribution
 of states

Distribution of 
virtual inputs

• Thus, we define the point-wise loss 



Solutions to the Problem
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Theorem: [1] Assume that the learned controller is of the form

where             and             are linearly independent sets of features. Then 
the optimization problem     is strongly convex. 

Corollary: Further assume that                                                                   for 
some feasible              .   Then          is the unique optimizer for    . 

where                  and                    are linearly independent sets of features. 
Then the optimization problem     is strongly convex. 

Remark: There are many known bases which can recover any 
continuous function up to a desired accuracy (e.g radial basis functions).

. 



Discrete-Time Approximations with 
Reinforcement Learning

• In practice, we use a discretized version of the reward as a running cost 
in an RL problem:
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Finite difference approximate to  

Gaussian noise added for exploration, 
enables use of policy gradient algorithms 



12D Quadrotor Model
• Nominal dynamics model: 

25

Choose Outputs

After Feedback Linearization:



Improvement After ~1 Hour of Data 

26

“Proximal Policy Optimization Algorithms” [Schulman et. al.] (2017)



Effects of Model Accuracy
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7-DOF Baxter Arm
 After ~1 Hour of Data 
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Learning a Stable Walking 
Gait in ~20 Minutes 

• Feedback linearization is 
commonly used to design stable 
walking gates for bipedal robots 

• Outputs are carefully designed so 
that zero dynamics generated a 
stable walking gate
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“Improving I-O Linearizing Controllers for Bipedal Robots Via RL” [CWAWTSS] (2020)

“Continuous Control With Deep Reinforcement Learning” [Lillicrap et. al.] (2015)



Control Lyapunov Functions
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Generalized ‘Energy’ Functions
• Consider the plant

31

• We say that the positive definite 
function                     is a control 
Lyapunov function (CLF) for the 
system if  

User-specified energy dissipation rate



Learning Min-norm 
Stabilizing Controllers

• Given a Control Lyapunov Function                   the associated 
min-norm controller for the plant is given by
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• To learn the min-norm controller we want to solve:



Penalizing the Constraint
• To remove the constraint we add a penalty term to the cost:
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scaling parameter penalty function

“Learning Min-norm Stabilizing Control Laws for systems with Unknown Dynamics” [WCASS] (CDC 2020, To Appear)

• If the controller in linear in its parameters        is strongly convex, 
    under the additional assumption that  



Learning the
 ‘Forward’ Terms

• Other approaches estimate the terms 
in the constraint [1][2]: 

3
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Advantages of our approach:
• Faster update rates for learned controller

• Learned controller always ‘feasible’

• Does not require implicit ‘inversion’ of learned 
terms: • Then incorporate into QP: 

[Choi et. al] (2020) [Taylor et. al] (2019)



Double Pendulum ~ 4 Minutes of Data 



Learning a Stable Walking Controller 
With ~20 Seconds of Data

Nominal Controller Learned Controller
“Soft Actor-Critic: Off-Policy Maximum Entropy Deep RL with a 

Stochastic Actor: [Haarnoja et. al. ] (2018) 



Steps in Design Process

37

Step 1: Choose 
geometric control 
architecture which 
produces desired global 
behavior

e.g. feedback linearizing 
controller

Step 2:  Augment the 
nominal controller with 
a learned component: 

learned augmentation

Step 3: Formulate 
reward which captures 
desired local behavior

Minimize loss with RL 



• Geometric Controllers on 

[Lee et. al.] (2010)

Specific Architectures
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• Time Varying CLFs

[Kim et. al.] (2019)

[Ames et. al.] (2019)

• Control Barrier Functions



Trade-offs With
 ‘Model-Based’ RL

• Mb-RL: learn a neural network dynamics 
model from scratch, use for online 
planning or training controllers offline 
with model-free RL

39

Main Advantage of Mb-RL: 

• Can be used when ‘ideal’ control 
architecture is not known

Advantages of our Approach:

• Fine grain control over system behavior

[Nagabandi et. al.] (2018)



Key Take Aways

• Connecting local and global geometric structure allows us 
to efficiently overcome model uncertainty

• Learning a forward dynamics model may be incompatible 
with geometric control  



Relevant Papers
• “Feedback Linearization for Uncertain Systems via Reinforcement 

Learning” [WFMAPST] (ICRA 2020)

• “Improving Input-Output Linearizing Controllers for Bipedal Robots Via 
Reinforcement Learning” [CWAWTSS] ( L4DC 2020)

• “Learning Min-norm Stabilizing Control Laws for systems with Unknown 
Dynamics” [WCASS] (IEEE, CDC 2020, Dec. 2020)

• “Learning Feedback Linearizing Controllers with Reinforcement Learning” 
[WFPMST] (IJRR, In Prep)

• “Learning Time-based Stabilizing Controllers for Quadrupedal Locomotion” 
(TBD) 41

• “Directly Learning Safe Controllers with Control Barrier Functions” (TBD)



4
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Current Work + Extensions 

Can we use model-free policy 
optimization to overcome model 
mismatch in high dimensions for 

specific control architectures?

Can we use geometric control to 
systematically design rewards which 

are ‘easy’ to optimize over, and 
achieve the desired objective?

Control Architectures

CLFs 
+

CBFs

Other Control 
Architectures

Feedback 
Linearization

Combining Learning 
and Adaptive Control

Probabilistic
Safety 

Guarantees

Choice of 
Learning 

Algorithm



Project Flow
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Part 1: Overcome 
non-parametric 
uncertainty by combining 
RL and geometric control

MB 
Controller

Learned
Correction

Part 2: Provide correctness 
and safety guarantees for 
specific learning 
algorithms: 

High-probability tracking tube

Part 3: Future work:

• What makes a reward 
signal difficult to learn 
from? 

• What makes a system 
fundamentally 
difficult to control?

• Where should 
geometric control be 
used in the long-run? 



Part 2 Outline
• Goal: show that we can safely learn a linearizing controller online 

using standard RL algorithms

• Provide probabilistic tracking tracking bounds for overall learning 
system

• Simple policy gradient algorithms

• More sophisticated algorithms (Future Work)

• Comparison with ‘model-based’ adaptive control 
44



Analysis and Design Steps

45

Step 1: Use our loss 
function from before to 
design an ‘ideal’ CT 
update rule

Step 3: Provide 
probabilistic safety 
guarantees for the 
overall learning system

High-probability tracking tube

Step 2: Model DT 
model-free policy 
gradient algorithms as 
noisy discretization of 
the CT process



Modeling Learning 
as CT Process

• Goal: track a desired trajectory 
while improving estimated 
parameters

4
6



• Apply estimated controller

Modeling Learning 
as CT Process

• Goal: track a desired trajectory 
while improving estimated 
parameters

4
7

Recall the normal form:



• Apply estimated controller

Modeling Learning 
as CT Process

• Goal: track a desired trajectory 
while improving estimated 
parameters

4
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Recall the normal form:

Assumption: Controller is linear is parameters: 



• Apply estimated controller

Modeling Learning 
as CT Process

• Goal: track a desired trajectory 
while improving estimated 
parameters

4
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Recall the normal form:

Assumption: Controller is linear is parameters: 

Assumption: There exists a unique set of parameters    



• Apply estimated controller

Modeling Learning 
as CT Process

• Goal: track a desired trajectory 
while improving estimated 
parameters

5
0

Recall the normal form:

• Tracking Error Dynamics: 

Assumption: Controller is linear is parameters: 

Assumption: There exists   



Modeling Learning 
as CT Process

• Goal: track a desired trajectory 
while improving estimated 
parameters

5
1

• CT reward function:

• Ideal CT update rule:

Assumption: Controller is linear is parameters: 



Modeling Online Learning 
as CT Process

• Goal: track         while 
improving estimated parameters        
and using the estimated 
controller 

52

Assumption 1: Controller is linear in parameters: 

• We apply the ‘ideal’ update

Least square loss from before

Assumption 2: There exists a unique              s.t. 

Define:

• Under a persistency of excitation 
condition we show                  
exponentially quickly



• Apply estimated controller

Modeling Online Learning 
as CT Process

• Goal: track a desired trajectory 
while improving estimated 
parameters

5
3

Recall the normal form:

• Tracking Error Dynamics: 

• CT reward function: • Ideal CT update rule:



Adaptive Control Approach

• Goal: track a desired trajectory while 
improving estimated parameters 

• Apply estimated tracking controller:

• Tracking error dynamics

5
4

CT Reward:



• Under this condition we have

exponentially quickly as

Persistency of Excitation
• We say that          is persistently exciting if 

for some 

 

5
5



• On the interval                we apply the noisy control       

Analyzing DT RL Algorithms

56

Noisy Estimate
of 

Learning
 Rate

Sampling 
Period

and apply noisy parameter updates of the form 



Implementable DT Stochastic 
Approximations

• Main idea: model standard policy gradient updates as (noisy) 
discretization of the ideal parameter update

• To explore the dynamics,                         we apply the control

5
7



Implementable DT Stochastic 
Approximations

• Main idea: model standard policy gradient updates as (noisy) 
discretization of the ideal parameter update

• To explore the dynamics,                         we apply the control

• This leads to a discrete time process of the form

5
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Implementable DT Stochastic 
Approximations

• Main idea: model standard policy gradient updates as (noisy) 
discretization of the ideal parameter update

• To explore the dynamics,                         we apply the control

• This leads to a discrete time process of the form

5
9

Learning Rate Estimate for gradient of 



‘Vanilla’ Policy Gradient
• As a first step in analysis, we consider the simple policy 

gradient estimator: 

6
0



Convergence of ‘Vanilla Policy 
Gradient’ 

61

Theorem: For each             put                                     . Further assume the PE condition holds. 
Then there exists                       ,                                                            such that

and with probability 



Double Pendulum

62

 

Tracking With Learning Tracking Without Learning



Step-size Selection
• Many convergence results from the 

ML literature require:
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• In a forthcoming article, we 
will show that the learning 
‘converges’ if we take



Trade-offs with Model-Based 
Adaptive Control

• Advantages:

• Can deal with non-parametric uncertainty 

• More freedom in choosing function approximator

• Disadvantages:

• Generally slower

• Loss of deterministic guarantees
64



L1 Adaptive Control
• Model unknown nonlinearities as a disturbance to be identified: 

• Control size of tracking by using fast adaptation for 

6
5

Estimate with  Estimate with  



(Near) Future Work: More 
Sophisticated Algorithms
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Adaptive
 Control

Reinforcement
 Learning

Filtering Theory

Data Reuse/
 Off-Policy Methods

Large Batches/
Hybrid Updates 

Baselining 
+ 

Advantage Estimation

Bound Effects of 
Reconstruction Error

Reward Clipping
+ 

Gradient Rescaling



Thesis Proposal
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Part 1: Overcome 
non-parametric 
uncertainty by combining 
RL and geometric control

MB 
Controller

Learned
Correction

Part 2: Provide correctness 
and safety guarantees for 
specific learning 
algorithms: 

High-probability tracking tube

Part 3: Future work:

• What makes a reward 
signal difficult to learn 
from? 

• What makes a system 
fundamentally 
difficult to control?

• Where should 
geometric control be 
used in the long-run? 



Relavent Papers
• “Adaptive Control for Linearizable Systems Using On-Policy Reinforcement 

Learning” [WMFPTS] (CDC 2020, To Appear) 

• “Reinforcement Learning for the Adaptive Control of Linearizable Systems” 
[WSMFTS] (Transaction on Automatic Control, In Prep)

• “Data-Efficient Off-Policy Reinforcement Learning for Nonlinear Adaptive 
Control” [WSMFTS] (TBD)
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Where do these 
techniques fit in? 

• Can we use geometric control to 
partially reduce the complexity of 
learning more difficult tasks? 

69

• Can we combine our approach with 
techniques such as meta-learning?[Finn et. al.] (2017)

• Can we automatically synthesize 
rewards for families of tasks? 



Understanding 
Geometric ‘Templates’

• So far: use geometric structures as ‘templates’ for learning

• Can we formalize what makes a local reward signal ‘compatible’ with 
the global structure of the problem?   

• Can we quantify the difficulty of a RL problem in terms of how much 
global information the reward contains?

• Does reinforcement learning implicitly take advantage of the 
structures we’ve identified? 

• Can we apply general structural results from geometric control?70



What makes a system difficult 
to control? 

• Control theory has many colloquial ways to describe what makes a 
system difficult to control

• Can we use sample complexity to make these notions rigorous? 
[1][2]

• Can we use ideas from geometric control to separate out different 
‘complexity classes’ of problems? 

• For example, Minimum-Phase << Non-Minimum Phase?

71

[1] Dean, Mania, Matni, Recht, Tu (2018) [2] Fazel, Ge, Kakade, Mesbahi(2018)



Non-Minimum Phase Tracking 
Control

• When zero dynamics are NMP we 
cannot ‘forget’ them 

• Example: steering a bike

72

Recall the normal form:

x
y



Non-Minimum Phase Tracking 
Control

• When zero dynamics are NMP we 
cannot ‘forget’ them 

• Example: steering a bike
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Recall the normal form:

x
y



Non-Minimum Phase Tracking 
Control

• When zero dynamics are NMP we 
cannot ‘forget’ them 

• Example: steering a bike

74

Recall the normal form:

“Counter-Steering”

• Can we learn these behaviors?



Non-Minimum Phase Tracking 
Control

• When zero dynamics are NMP we 
cannot ‘forget’ them 

• Example: steering a bike
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Recall the normal form:

• Can we learn these behaviors?

• Can we quantify what makes it 
difficult to learn these 
behaviors?

“Counter-Steering”

• Can we learn safely? 

Look Ahead Window

• How much preview do we need 
to learn?

[Devasia et. al.] (1999)



Questions?
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