Combining Geometric Nonlinear Control with
Reinforcement Learning-Enabled Control

Tyler Westenbroek
Dept EECS
University of California Berkeley

Adapted for EECS 290-005,
February 24, 2021

Geometric Nonlinear Control

® Main idea: exploit underlying structures in the

system to systematically design feedback
controllers

® Explicitly connects ‘global’ and ‘local’ system
structures /x2

® @Gives fine-grain control over system behavior

® Amenable to formal analysis

® Diafficult to learn to exploit non-parametric
uncertainties

Deep Reinforcement Learning

® Main idea: sample system trajectories to

find (approximately) optimal feedback
controller

V(s) = E[Ri11 + YV (St41)|Se = s

® ‘Discovers’ connection between global and

local structure

® Automatically generates complex
behaviors, but requires reward shaping

® Effectively handles non-parametric
uncertainty

[Open AI](2019)

® Can require large amounts of data |

Motivating Questions

® Can we design local reward signals with global structural information
‘baked 1n’ using geometric control?

® Can we use these structures to provide correctness and safety
guarantees for the learning?

® Does reinforcement learning implicitly take advantage of these

structures? What structures make a system ‘easy’ to control?
4

Thesis Proposal

4 N

Part 1: Overcome
non-parametric
uncertainty by combining
RL and geometric control

Ug(T) = Up,(x) + Aug(x)

/)

MB Learned
Controller Correction

\ /

4 N

Part 1: Overcome
non-parametric
uncertainty by combining
RL and geometric control

Ug(T) = Up,(x) + Aug(x)

/)

MB Learned
Controller Correction

\ /

Tyler’s PhD research

Example: Learning a stable walking gait
with ~20 seconds of data

Use structures from geometric control as a
‘template’ for the learning

4 N

Part 1: Overcome
non-parametric
uncertainty by combining
RL and geometric control

Ug(T) = Up,(x) + Aug(x)

/)

MB Learned
Controller Correction

4 N

Part 2: Provide correctness

Ya (-

\ /

Project Flow

and safety guarantees for
specific learning
algorithms:

e ——

High-probability tracking tube

\ /

4 N

Part 3: Future work:

® What makes a reward

signal difficult to learn
from?

® What makes a system

fundamentally
difficult to control?

® Where should

geometric control be
used in the long-run?

\ /

Part 1 Outline

® Steps 1n design process

® Example control architectures
® Feedback Linearization
® Control Lyapunov Functions

® Other architectures

® Trade-offs with ‘Model-based’ RL

Steps in Design Process

4 N

Step 1: Choose
geometric control
architecture which

produces desired global
behavior

T = fm(m) + gm(x)um(x)

/

e.g. feedback linearizing

\ controller /

4 h

Step 2: Augment the
nominal controller with
a learned component:

g(z) = Um () + Aug(x)

/

learned augmentation

\ /

4 N

Step 3: Formulate
reward which captures
desired local behavior

min E,.x¥(x,0)

ASS,

Minimize loss with RL

\ /

Feedback Linearization

Goal: Output Tracking

* Consider the system

z = f(z) + g(z)u

y = h(z)
with % €]Ry’"'e state, “< the
input and the output. Ya(-)
® Goal: track any smooth reference ya(*)

with one controller

11

Calculating a Linearizing Controller

® For the time being assume 9 :T% obtain a direct rebationship between
the inputs and outputs wg difterentiate

§ = ——h(x)- [f(@) + g(a)u

d d
= h(z) f(z) + h(z) - g(z)u

= b1(z) + a1 (z)u

ai(z) #0 r € R"
® Now if for each then the controller
u(z,v) = ——[by (@) +
| a1(z)
yields

Calculating a Linearizing Controller

® For the time being assume 9 :T% obtain a direct rebationship between
the inputs and outputs wg difterentiate

§ = ——h(x)- [f(@) + g(a)u

d d
= h(z) f(z) + h(z) - g(z)u

=by(x) + a1(x)u

ai(z) #0 r € R"
® Now i1f for each then the controller
u(z,v) = —— by (z) +]
| a1(z)
\

If this is zero the controller
is undefined

yields .
Yy=uv

1
?

Calculating a Linearizing Controller

®* Now if %1 (a:) = Qhen we differentiate a %’econd time and obtain and
expression of the form

j = by(x) + as(x)u

as(x) # 0 r € R"
® Now i1f for each then the control law
1
u(x,v) = b
(@9) = —5lba(a) +1]

yields y —

Calculating a Linearizing Controller

® In general, we can keep differentiating urtil the Input appears:

y? = By(z) + ay(z) u

| —
£0
® At this point we can apply the cmitrol
u(z,v) = |—b~ () + v

a(z)

which yields
y' =v

1
q

‘Inverting’ the Dynamics

* Take time derivatives of outputs
to obtain an input-output
relationship of the form

y§’n)

= b(z) + A(x)u

_y(g'}’q)

* Applying the control law u=A47'(z)[-b(z) +v] vields

Y1 U1 Y = (’717727“'7'7(1)

\

- Vector Relative Degree

y('v) A

16

Normal Form

® Choose the outputs and their derivatives as new states for the
system:

: —1 _
gz(ylaylwﬂayg}ll)7°°°7qu°°7y((17q 1))ER|7|

* 1f]Y| < Mwe can ‘complete the basis’ by appropriately
selecting 7 € R™ 1ttra variables:

f — A§ + By < Can trackyq (-) using linear control

n = q(f, 77) —+ p(g, 7’,)1}4— May become unstable!

’f] — Q(O, 7’]) <+—— Zero Dynamics (Systems is minimpm-phase if these
are asymptotically stable)

17

Zero Dynamics

® We refer to the un-driven dynamics

n = q(0,n)
as the zero dynamics.

® We say that the overall control system 1s minimum-phase 1f the
zero dynamics are asymptotically stable

® We say that the system 1s non-minimum-phase 1f the zero
dynamics are unstable

Tracking Desired Outputs

® To track the desired output
v=y;" +K(&— &)
ya AN

Feedforward Term Feedback Term
K (A + BK)
® If we design such{tha)t — &4() 1s Hurwitz then this control
law drives exponentially quickly

® However, the zero dynamics may not stay stable!

Model Mismatch

® Suppose we have an approximate dynamics model:

® Why not just learn the forward dynamics?
fo(z) = fo(z)
gp(Z) =~ go(z)

May be singular!

20

Directly Learning the Linearizing
Controller

* We know the linearizing controllers are of the form

up(z,v) = By(x) + ap(x)v U (T, V) = B (T) + am(T)V

 There is a “gap” between the two controllers:
up(z,v) = [Bm(z) + AB(z)] + [am(z) + Ac(z)]v

* To overcome the gap we approximate

up(2,v) = Ug(2,v) = [Bm(2) + Bo, (2)] + lam(z) + ao(z)]v

N 0/

Model Based Components Learned Components

“Feedback linearization for uncertain systems via RL” [WFMAPST] (2020)
21

Penalize Deviations from
Desired Linear Behavior

 We want to find a set of learned parameter such that

y) =b,(2) + A, (x)te(z,v) v Vz € D,Vo € R?

* Thus, we define the point-wise loss
Uz,v,0) =|(y{",... ,yg‘J)T — (v1,... ,vq)TH%

e \We then define the optimization problem

min B, x v~v [4(z, v, 0)] (P)

0cO / \

Distribution of

Distribution virtual inputs
of states 22

Solutions to the Problem

1

heorem: [1] Assume that the learned controller is of the form

~

Kl K2
Bo,(x) =) 0FBi(z) ag,(x) =) O5ay(z)
k=1 k=1

where 3 K,and k., are linearly independent sets of features. Then
the opélrrl?'z’éfi]on ér%’th@l’ﬂ is strongly convex.
N P)
/Corollary: Further assume that u,(z,v) = tg«(z,v) Vo € D,Vv € R? for\

some feasible 0" € @hen G¢ the unique optimizer for . P

\ /

/Remark: There are many known bases which can recover any A
continuous function up to a desired accuracy (e.g radial basis functions).

N J

23

Discrete-Time Approximations with
Reinforcement Learning

® In practice, we use a discretized version of the reward as a running cost
in an RL problem: Finite difference approximate to
N /

IOHEIE{)I Lo X v~ V,wg, ~W [kz_:l Z(il?k, Uk uk)]

v =3t [fp(alt) + gp(a(t) usdt

k
ur = Ug(Tk, Vx) + Wk

\

Gaussian noise added for exploration,

enables use of policy gradient algorithms
24

12D Quadrotor Model

® Nomipal d gnamlcs model:

I = ——[sm) sin(®)) + cos(¢) cos(v)) cos(0)]

y = _E[COS() sin(?)) sin(@) — cos(1)) sin(¢)]

5= g— —[cos(9) cos(6)]

. I,—1, .. Uus
9 — _2
I #vt I, After Feedback Linearization:
CL-I
Y = 7. Yo + I (4)
h = T
Choose Outputs (4)
Yy =02
('7;7 y7 z? ’(lb) (4)
< — V3

25 ¢(2) = Vg

Improvement After ~1 Hour of Data

e 5
5 el

4

4 4

2 3

1 2

. .

//;;ﬁo 0 \//
00 02 04 06 g ,, o085 0.20.0
2 20 25 39 1.0 O

Desired Trajectory: @ Learned Controller: % Before Training: o

“Proximal Policy Optimization Algorithms” [Schulman et. al.] (2017)

26

Average epoch-wise reward

Effects of Model Accuracy

0
....20 o
40 -
_60 -
Initial parameter scaling:
= —— 0.80
~100 - — 060
— 0.33
_120 | 1 | | 1 |l
0 500 1000 1500 2000 2500

Training epochs

27

/-DOF Baxter Arm
After ~1 Hour of Data

--== Linear system
—— FB of prior model

—— Learned policy

Jo443 Juiol @30

Time (s)

28

Learning a Stable Walking
Gait in ~20 Minutes

* Feedback linearization is
commonly used to design stable T =0.00
walking gates for bipedal robots

* QOutputs are carefully designed so
that zero dynamics generated a

stable walking gate

“Improving I-O Linearizing Controllers for Bipedal Robots Via RL” [CWAWTSS] (2020)

“Continuous Control With Deep Reinforcement Learning™ [Lillicrap et. al.] (2015)
29

Control Lyapunov Functions

Generalized ‘Energy’ Functions

® Consider the plant
z = fp(z)+ gp(z)u

® We say that the positive definite

function V : R™ — R a control

Lyapunov function (CLF) for then
system if Ve e R

inf VV(z)[fp(z) + gp(z)u] < —o(x)

uelU

User-specified energy dissipation rate

31

Learning Min-norm
Stabilizing Controllers

* Given a Control Lyapunov Function V: R" — R the associated
min-norm controller for the plant is given by

u*(x) =

min |[|ul3

uelU

s.t. VV(2)|fo(z) + gp(x)u] + o(z) <0

e Tolearn the min-norm controller we want to solve:

gp(T)tp (),

o(z) <0, Vzx

Penalizing the Constraint

 To remove the constraint we add a penalty term to the cost:

. A H
(P*): minEzx [lao(@)[3 + AH(A(z,0)))
SN
scaling parameter penalty function 0 “
A >0 (P)

e |If the controller in linear in its parameters(P’\)is strongly convex,
under the additional assumption that [J = R¢

“Learning Min-norm Stabilizing Control Laws for systems with Unknown Dynamics” [WCASS] (CDC 2020, To Appear)

33

Learning the
‘Forward’ Terms

. Advantages of our approach:
® Other approaches estimate the terms

in the constraint [1][2]:
V(z) fp(xz +YV(x) gp(:v)/u < o(x) ® Learned controller always ‘feasible’

® Faster update rates for learned controller

~ae(x) ~bg ()
® Does not require implicit ‘inversion’ of learned

® Then incorporate into QP: . if ag(z) < —o(z)
1L agpr) S —0OlT

else

0
u*(z) = {_[&g(x)+0(w)](59($))T

u*(z) ~argmin ||ul|3 (bo (2),b6 (2))

u€U
s.t. ag(z) + be(z)u < —o ()

[Chot et. al] (2020) [Taylor et. al] (2019)

(OS]

Double Pendulum ~ 4 Minutes of Data

0.8 1
1.00 - oc |
0.75 1 o4
0.50 - 0.2
~N
’/

: ~ 025 - 0.0 -
o o
mi EE
0.00 - ///*““"’ ~0.2
-0.25 1 —0.4 1 e &
& -0.6 -
-0.50 1 ’/’z’ ’,/
=== -0.8 ==
-0.75 - :
0 1 2 3 4 5 0 1 2 3 4 5
Time (sec) Time (sec)

Learning a Stable Walking Controller
With ~20 Seconds of Data

Nominal Controller Learned Controller

“Soft Actor-Critic: Off-Policy Maximum Entropy Deep RL with a
Stochastic Actor: [Haarnoja et. al.] (2018)

Steps in Design Process

4 N

Step 1: Choose
geometric control
architecture which

produces desired global
behavior

T = fm(m) + gm(x)um(x)

/

e.g. feedback linearizing

\ controller /

4 h

Step 2: Augment the
nominal controller with
a learned component:

g(z) = Um () + Aug(x)

/

learned augmentation

\ /

37

-

Step 3: Formulate
reward which captures
desired local behavior

min E,.x¥(x,0)

ASS,

Minimize loss with RL

_

~

/

Specific Architectures

OB

e Control Barrier Functions

[Ames et. al.] (2019)

* Time Varying CLFs

* Geometric Controllers on SE(3) 2

[Lee et. al.] (2010)

38

Trade-otfs With
‘Model-Based’ RL

'''''''''

® Mb-RL: learn a neural network dynamics

model from scratch, use for online
planning or training controllers offline

with model-free RL

[Nagabandi et. al.] (2018)

Main Advantage of Mb-RL: Advantages of our Approach:

® Can be used when ‘ideal’ control ® Fine grain control over system behavior
architecture 1s not known

39

Key Take Aways

* Connecting local and global geometric structure allows us
to efficiently overcome model uncertainty

* Learning a forward dynamics model may be incompatible
with geometric control

Relevant Papers

* “Feedback Linearization for Uncertain Systems via Reinforcement
Learning” [WFMAPST] (ICRA 2020)

* “Improving Input-Output Linearizing Controllers for Bipedal Robots Via
Reinforcement Learning” [CWAWTSS] (L4DC 2020)

* “Learning Min-norm Stabilizing Control Laws for systems with Unknown
Dynamics” [WCASS] (IEEE, CDC 2020, Dec. 2020)

* “Learning Feedback Linearizing Controllers with Reinforcement Learning”
[WFPMST] (IIRR, In Prep)

® “Directly Learning Sate Controllers with Control Barrier Functions” (TBD)
* “Learning Time-based Stabilizing Controllers for Quadrupedal Locomotion™

(TBD) "

Current Work + Extensions

Can we use model-free policy Can we use geometric control to
optimization to overcome model systematically design rewards which
mismatch in high dimensions for are ‘easy’ to optimize over, and

k specific control architectures? / k achieve the desired objective? /

/ Control Architectures \ / Combining Learning \
and Adaptive Control

4 A N\

Probabilistic Choice of
Safety Learning
Guarantees Algorithm

Feedback Other Control
Linearization Architectures

. y, U 4

o

Project Flow

4 N [N N

Part 1: Overcome Part 2: Provide correctness Part 3: Future work:
non-parametric and safety guarantees for -

uncertainty by combining specific learning

RL and geometric control algorithms: ® What makes a reward

signal difficult to learn
from?

- ~.

® What makes a system

fundamentally
difficult to control?

® Where should
JmT | geometric control be

Ug(T) = Up,(x) + Aug(x)

/ \ Ya(:) |

MB Learned
Controller Correction High-probability tracking tube used in the long-run?

N NG /U Y

43

Part 2 Outline

® Goal: show that we can safely learn a linearizing controller online
using standard RL algorithms

® Provide probabilistic tracking tracking bounds for overall learning
system

® Simple policy gradient algorithms
® More sophisticated algorithms (Future Work)

® Comparison with ‘model-based’ adaptive control
44

Analysis and Design Steps

4 N

Step 1: Use our loss
function from before to
design an ‘ideal’ CT
update rule

-

Step 2: Model DT
model-free policy
gradient algorithms as
noisy discretization of
the CT process

~

45

4 N

Step 3: Provide
probabilistic safety
guarantees for the
overall learning system

=

.~ .

ya(-)

S

\High-probabdacking tube/

Modeling Learning
as CT Process

® Goal: track a desired tra é%:(tgry ya(*)

while improving est1mate§1
parameters

Modeling Learning
as CT Process

[Recall the normal form:

® Goal: track a desired trajyé&.o)ry

while improving est1mate§1
parameters

® Apply estimated controller
u = Uz, yc(f) + Ke)\

(€ — &a)

_

¢ = A€ + B

n=q(&n)+p&n)v

\

J

Modeling Learning
as CT Process

® Goal: track a desired tra éégry

while improving est1mate§1
parameters

® Apply estimated controller
u = Uz, yc(f) + Ke)\

(€ — &a)

Assumption: Controller is linear 1s parameters:

[Recall the normal form:

¢ = A€ + B

n=q(&n)+p&n)v

J

Modeling Learning
as CT Process

[Recall the normal form:

® Goal: track a desired trajyéégry § — A¢ + Bu
while improving est1mate§1 .
parameters n=4q(§,n)+p(&,nv

® Apply estimated controller
u = Uz, yc(f) + Ke)\

(€ — &a)

Assumption: Controller is linear 1s parameters: Bo, (z Z 07 Br(z g, (%) = E 0

Assumption: There exists a unique set of parameters Up (ZB, ’U) = Ug«(z,v)

Ve € D,Vv € R?

4
O

Modeling Learning
as CT Process

® Goal: track a desired tra é%:(tgry

while improving est1mate§1
parameters

® Apply estimated controller
u = Uz, yc(f) + Ke)\

(€ — &a)

Assumption: Controller is linear 1s parameters:

Assumption: There exists

g Recall the normal form:
¢ = A¢ + Bo
n=q(§n)+p&,n)v

® Tracking Error Dynamics:

ée=(A+BK)e+ W(t)¢

Kl K2
B, (z) = Y 0% By(z) @o:(2) = > Oay(z)
k=1 k=1

Uy (z,v) = g« (x,v)

Ve € D,Vv € R?

Modeling Learning
as CT Process

® Goal: track a desired trajyéégry

while improving est1mate§1
parameters

® CT reward function:

R(t) = 3 [W(t)¢(t)|3

® Ideal CT update rule:
0=¢=-W(Ht)"W(t)

Assumption: Controller 1s linear 1s parameters
Ky

/891(33) — ZH{“ﬂk(w) 0592 2920%

.

k=1

\

Modeling Online Learning
as CT Process

® Goal: track yd(\l/hlle
improving estimated parameters
and using the e@t?mated
controller

® We apply the ‘1deal’ update
f = —Vl(z,v,0)

/

Least square loss from before

Define: qb(t) — O(t) — 9*

.

Assumptlon 1: Controller 1s linear 1n parameters
Ky

Bo,(x) =) 05Br(z) ag,(z Zegak

k=1

\

-

_

Assumption 2: There exists a unique §* € @t.

Up(x,v) = g« (x,v) Vzr € D,Vv € R?

® Under a persistency of ? Sltath

condition we show
exponentially quickly

52

Modeling Online Learning
as CT Process

[Recall the normal form:

\

® Goal: track a desired tra}jé%:(tgry f — A¢ + By
while improving est1mate§1 .
parameters n=4q(§,n)+p(&,nv
. /
® Apply estimated controller * Tracking Error Dynamics:
u=15(z, 55" + Ke) é=(A+BK)e + W(i)s
(€ — &a) (é — 0%)
® CT reward function: ® Ideal CT update rule:

2

R(t) = 5|W(t)e(t) I3) =¢=-—WEHTW(t)s

Adaptive Control Approach

® Goal: track a desired trajectory white (")
improving estg{lﬁted parameters

® Apply estimated tracking controller: yd(°)

u = U4(z, yc(f) + Ke)\

(€ — &a)

® Tracking error dynamics
CT Reward:

¢ = (A+ BK)e + W(t)$

(6 —67)

5
A

Persistency of Excitation

® We say that W(Q persistently exciting if
t+T

ci1l < W) Wt)dt < coI Vt>0

t

for some C1,C2, 1" >0 y()

® Under this condition we have

¢(t) = 0 e(t) = 0

exponentially quickly as ¢ — 00

Analyzing DT RL Algorithms

® On the interval [tk tk‘Hvx)e apply the noisy control
U ~7rk(-|a:k,vk,<9k) :f&gk(:pk,vk) Wk Wk ~ N(0,0’,%I)

and apply noisy parameter updates of the form
Or1 = O — AtoyJy

RN

Sampling Learning
Period Rate of Vo, l(zk, vk, Ok)

Noisy Estimate

Implementable DT Stochastic
Approximations

® Main 1dea: model standard policy gradient updates as (noisy)
discretization of the 1deal parameter update

. Vit € [tk, tk—l—l)
® To explore the dynamics, we apply the control

ug ~ Tk(Zk, Ok) = Uo, (ﬂik,yfﬁ,z + Keg) + Wi, Wi~ N(0,04I)

Implementable DT Stochastic
Approximations

® Main 1dea: model standard policy gradient updates as (noisy)
discretization of the 1deal parameter update

. Vit € [tk, tk—}-l)
® To explore the dynamics, we apply the control

u ~ Tk (Tk, Ok) = Ug,, (Tk, y(W+ Kex) + Wi, Wi~ N(0,021)

®
This leads to o diKye's UnROSEE SURED, + Hy(on, e,)

drr1 = bk — AtayJy

Implementable DT Stochastic
Approximations

® Main 1dea: model standard policy gradient updates as (noisy)
discretization of the 1deal parameter update

. Vit € [tk, tk—}-l)
® To explore the dynamics, we apply the control

u ~ Tk (Tk, Ok) = Ug,, (Tk, y(W+ Kex) + Wi, Wi~ N(0,021)

®
This leads to ixyota gpRsess SRABIS, 1 H, (v, en, w)

b1 = O — AtaygJy

/N

Learning Rate Estimate for gradient of R(t k)

5
0

“Vanilla’ Policy Gradient

® As a first step 1n analysis, we consider the simple policy
gradient gstimator:

Jk — Rk . ng log(wk(uk|xk, €k, Ok))

>

Convergence of ‘Vanilla Policy

Gradient’
~ N

Theorem: Foreach k € N put ar = 1,0, = o > 0 . Further assume the PE condition holds.
Then thereexists 0 < p < 1 Ki,Ks >0 such that

Elex]| < K {pk (leo| + |#o|) + At(1 + 0)]

and with probability 1 — \
Atln(%)

_ lex — Elex]| < Kz\/ — /

K| o (leo] + dol) + At(1 + a>]

61

Double Pendulum

L

Joint Tracking Error

040

[=]

0.30 -
0.25 1
0.20 1
0.15 1
0.10 1
0.05 A
0.00 -

-0.05

Tracking With Learning

35

0

200

400

600 800
Time (sec)

(b)

62

1000

1200

1400

Tracking Without Learning

040
0.35 -
0.30 +
0.25

0.20 1
015 -
0.10 +

Joint Tracking Error

0.05 4

0.00 -

-0.05

0 200 400 600 800 1000 1200 1400
Time (sec)

(©)

Step-size Selection

® Many convergence results from the

ML literature require:

O
D g =00, o —0

® In a forthcoming article, we

will show that the learning
‘converges’ 1f we take

9%
Ozk—)O, O’k—)O,

Ok

> ()

63

Ata? In(%)

Trade-ofts with Model-Based
Adaptive Control

® Advantages:

® Can deal with non-parametric uncertainty

® More freedom in choosing function approximator
® Disadvantages:

® Generally slower

® Loss of deterministic guarantees
64

L1 Adaptive Control

® Model unknown nonlinearities as a disturbance to be 1dentified:

Az (t) + b(wu(t) + f(z(t),1))

ca(t) / \

Estimate with W (t) Estimate with 8 (t)

~~
S~
—

® Control size of tracking by using fast adaptation for) (t)

N

(Near) Future Work: More
Sophisticated Algorithms

Adaptive
Control

Reinforcement
Learning

Filtering Theory

Large Batches/
Hybrid Updates

Baselining
|

Advantage Estimation

Bound Effects of
Reconstruction Error

Reward Clipping
|

Gradient Rescaling

Data Reuse/
Off-Policy Methods

66

Thesis Proposal

4 A

Part 1: Overcome
non-parametric
uncertainty by combining
RL and geometric control

Learned
Correction

/

MB
Controller

\

-

Part 2: Provide correctness
and safety guarantees for
specific learning
algorithms:

=

N ==

High-probability tracking tube

_

~

-

/

67

_

Part 3: Future work:

® What makes a reward

~

signal difficult to learn
from?

What makes a system

fundamentally
difficult to control?

Where should

geometric control be
used in the long-run?

J

Relavent Papers

“Adaptive Control for Linearizable Systems Using On-Policy Reinforcement
Learning” [WMFPTS] (CDC 2020, To Appear)

“Reinforcement Learning for the Adaptive Control of Linearizable Systems”
[WSMFTS] (Transaction on Automatic Control, /n Prep)

“Data-Efficient Off-Policy Reinforcement Learning for Nonlinear Adaptive
Control” [WSMFTS] (TBD)

68

® Can we use geometric control to

partially reduce the complexity of
learning more difficult tasks?

® Can we combine our approach with

techniques sg

-
al

VR

Where do these
techniques fit in?

as ngsalgarning?

® Can we automatically synthesize
rewards for families of tasks?

69

Understanding
Geometric ‘Templates’

® So far: use geometric structures as ‘templates’ for learning

® Can we formalize what makes a local reward signal ‘compatible’ with
the global structure of the problem?

® Can we quantify the difficulty of a RL problem in terms of how much
global information the reward contains?

® Does reinforcement learning implicitly take advantage of the
structures we’ve identified?

® Can we apply general structural results from geometric control?

What makes a system difficult
to control?

® Control theory has many colloquial ways to describe what makes a
system difficult to control

® Can we use sample complexity to make these notions rigorous?

[1][2]

® Can we use 1deas from geometric control to separate out different
‘complexity classes’ of problems?

® For example, Minimum-Phase << Non-Minimum Phase?
[1] Dean, Mania, Matni, Recht, Tu (2018) [2] Fazel, Ge, Kakade, Mesbahi(2018)

71

Non-Minimum Phase Tracking
Control

® When zero dynamics are NMP we
cannot ‘forget’ them

® Example: steering a bike

_

Recall the normal form:

¢ = A€ + Bu
n=q(&n)+p& v

\

J

72

~.
~.
~.
~.
~.
~.
~.
~.
~
~
~
~

Eal)

Non-Minimum Phase Tracking
Control

® When zero dynamics are NMP we
cannot ‘forget’ them

®* Example: steering a bike

73

_

Recall the normal form:

¢ = A€ + B
n=q(&n)+pn)v

~

Non-Minimum Phase Tracking
Control

® When zero dynamics are NMP we

cannot ‘forget’ them

® Example: steering a bike

Recall the normal form: A
¢ = A¢ + Bo
n=q(&§n) +p(&nv

“Counter-Steering”

R(t) = [€a(t) — £@)[| + Alln(2)]

- - .

® Can we learn these behaviors?

74

Non-Minimum Phase Tracking
Control

® When zero dynamics are NMP we

cannot ‘forget’ them

® Example: steering a bike

Recall the normal form: A
¢ = A + Bo
n=q(&§n) +p(&nv

“Counter-Steering”

.-
.-
.-
.-
P

-
.-
.-
.-

>y

R(t) = ||€a(t) — E@)[| + Aln (@)

[Devasia et. al.] (1999)

f-~
~.

£q (:)

75

® Can we learn these behaviors?

® Can we quantify what makes it

difficult to learn these
behaviors?

® How much preview do we need
to learn?

® Can we learn safely?

Questions?

