EECS208 Written HW1

Issued: Sep. 1. Due: Sep. 12, 11:59 PM via Gradescope

Reading: Chapters 1, 2, and Appendix A of High-Dim Data Analysis with Low-Dim Models.

Problem 1 (/’-norm)

Given p > 0, define the function |-, : R" — Ras
el = (al? + feal? -+ )7,
where we slightly abuse the notation by defining ||x[|, = >°1"; |2;|° and ||z ., = max;e[,) |2;|. Prove that

1. Vp € [0,1), |||, is not a norm of R™;

2. Vp € {1,2,00}, ||, is a norm of R".

Solutions

1. Prove by contradiction: pick e; = [1,0,...,0]",e2 = [0,1,...,0]" from R™. Then when p € [0, 1), we
have
lex + eall, =27 > 2 = [les |, + lleall, (0.1)

which contradicts the subadditivity.

2. From definition, it is easy to show that Vp € 1,2, oo, |-, is positive definite and nonnegatively homoge-
neous, we will only show the subadditivity:

e Whenp =1, Va,b € R", we have
la+bll, = lai+bi <> lail + Y [bi] = llall, + [b]]; - (0.2)
i=1 i=1 i=1

e When p = 2, Va,b € R", we have

n n
la+bl5 = > _(ai+b:)* = [lall5 + Ibll; +2 ) aibi < [la]3 + [Ibll5 + 2 lal, [l (0.3)
=1 i=1 .

= (lall, + [1B]l,)*-
e When p = oo, we have

||a + bHOO = IIlZaX \a,; + b7| = |ai* + bﬁ‘ S |ai*| + |bz*| S m?x|a7| + IIlZaX ‘b1| = ||a||oo + ”b”oo .
(0.4)



Problem 2 (Rank-Nullity Theorem)

Given a matrix A € R™*", prove the following statements, and suppose bilinear form of the orthogonal
complement L is defined via Euclidean inner product (Suppose V C R™ is a linear subspace and V+ is the

orthogonal complement of V in R”, then we have (v,v) =>"" | v;v;" = 0,Vv € V,v+ € V*). Prove that:

1. null(A)* = range(AT)
2. null(AT) =null(AAT)
3. dim(row(A)) + dim(null(A)) = n

Solutions

1.z € null(A) = Az =0 = =z € row(A)l. Thus we know that null(A) = range(A"),. Since
S = (S1)* holds when S is a subspace of R", hence we know that null(A)* = range(A).

2. Ve e null(A*), A*z =0 = AA*x =0 = =z € null(AA*). On the other hand, V& € null(AA*) —
AA'z =0 — zAAz=0 — |A*z|°=0 = A*z =0 — x < null(A*). Thus, we know that
null(A*) = null(AA*).

3. Let us prove a slightly more general version of the last problem: Let A : X — Y be a linear operator with
dim(X) = n. Prove that dim(N(A)) + dim(R(A)) = n, i.e., the sum of the dimension of the null space of
A and the dimension of the range of A equals the dimension of X.

Let {z1,...,2zx} € X be abasis of N(A). By basis expansion theorem, we can complete this basis in X as
{z1,.. ., %k, Tp+1,- .., Tn}. Any vector x € X can be uniquely represented as
n k n
xr = Zaixi = Zaixi + Z QG-
i=1 i=1 i=k+1

After we apply the linear operator A on z, we find out that { A(x;11), ..., A(x,)} spans the range R(A)
inY. Since zg41,. .., Z, are linearly independent from N(A), (A(zk+1), ..., A(z,)) should be linearly
independent in Y (Please show this yourself by contradiction).

Hence, dim(R(A)) = n — k, which implies dim(X) = n = dim(N(A)) 4+ dim(R(A)).

Problem 3 (Eigenvalues and Eigenvectors)

Exercise 1.6 of High-Dim Data Analysis with Low-Dim Models.

Solutions

According to equation (1.2.20), the first principal component of a random vector y is arg max,, Var(u'y).
Notice that )
Var(uTy) =F [uTy - E(uTy)} = uT]E[ny]u - (uTy)2 = uTEyu, (0.5)

hence,
arg max Var(u ' y) = arg max uTEyu (0.6)
u u

is finding the maximum singular value/vector of 3,,.
Proof of Theorem A.29 Since A is symmetric, we can write A as

A=) Nvv/, 0.7)
=1



where \; are the eigenvalues (actually singular values because A is symmetric). Suppose A\; > Ay > --- > A,.
Hence, we have

Hmfgmx z Az = ‘H‘IZ;X x! Z )\i'uiv;r:r <)\ Z (x, vi>2 ) (0.8)
zllz=1 l=llz=1 55 i=1
From the definition of SVD, we know that {vq, v, ..., v,} are an orthonormal basis of R™. Since |||, = 1, we
have .
/\12@0,%)2 = /\1. (09)
i=1

Hence, we conclude that max,2_; xAzx" = \;. Similarly, we can conclude that min 2, zAzxz" = )\,. By
repeating the argument in equation (0.8), we can also conclude that A, is the optimal value for

max x' Az, subject tox L vi,...,vp_1. (0.10)
l=ll3=1

Problem 4 (Ridge Regression)
Exercise 1.8 of High-Dim Data Analysis with Low-Dim Models.

Solutions

1. Since the objective function is convex, we can consider the critical point of the objective function:
Ve (Ily — Az|]} + A ||a;||§) —=2AT Az —2A Ty + 2\x, (0.11)
by setting the gradient to 0, yields
2ATAz — 24Ty +22 2z =0 — o =(ATA+ ) 'ATy (0.12)
2. ATA+ M is always positive definite for all A > 0, because Vx € R" such that  # 0, we have
' (ATA+ Dz =ax" AT Az + \||z|3 = | Az|> + ||| > 0, (0.13)

since all positive definite matrices are invertible, we know that AT A + \I is invertible.

Problem 5 (Implicit Bias of Gradient Descent)

Exercise 2.10 of High-Dim Data Analysis with Low-Dim Models.

Solutions

We can write the iterative formula of the gradient descent as follows:
Xpy1 = xp — 20A T (Azy, —y) = (I —20AT A)xy +20A Ty, (0.14)

Replacing the above equation with ¢ = 0, yields

k—1
x = 20 <Z(I - 2aATA)t> , (0.15)
t=0
and when k — oo, we have
Too = 200 ( (I - 2aATA)f> , (0.16)
t=0



Since the matrix A € R"*"™ has full row rank, we can write the matrix A as

-
A=UsV'=U,[E; 0 [“;ﬂ : (0.17)
2
Substituting the SVD into equation (0.16), yields
Ty =20V (Z(I - QaETE)t> Uy
t=0
- [(I-202T%)" o] [B]
I (I - 203, 1 |
o[V Vi) <Z[ 2 ID[O Uy (018)
o [(I-2227T%) =] 0
=2 ( 121) 2
aVi Vi (Z (7= 20 o) v,
since X is symmetric and positive definite, we have
Too = VIZ'U Ty (0.19)
Using the Lagrangian dual formulation, the optimal solution to the original optimization problem is
xz*=AT(AAT)ly = V2 Uy, (0.20)

which is exactly the same as ., also since A has full row rank, we have vu'=U"U=1,.



