
EECS208 Written HW1
Issued: Sep. 1. Due: Sep. 12, 11:59 PM via Gradescope

Reading: Chapters 1, 2, and Appendix A of High-Dim Data Analysis with Low-Dim Models.

Problem 1 (`p-norm)
Given p ≥ 0, define the function ‖·‖p : Rn 7→ R as

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p ,

where we slightly abuse the notation by defining ‖x‖0 =
∑n

i=1 |xi|0 and ‖x‖∞ = maxi∈[n] |xi|. Prove that
1. ∀p ∈ [0, 1), ‖·‖p is not a norm of Rn;
2. ∀p ∈ {1, 2,∞}, ‖·‖p is a norm of Rn.

Solutions
1. Prove by contradiction: pick e1 = [1, 0, . . . , 0]>, e2 = [0, 1, . . . , 0]> from Rn. Then when p ∈ [0, 1), we

have
‖e1 + e2‖p = 21/p > 2 = ‖e1‖p + ‖e2‖p , (0.1)

which contradicts the subadditivity.
2. From definition, it is easy to show that ∀p ∈ 1, 2,∞, ‖·‖p is positive definite and nonnegatively homoge-

neous, we will only show the subadditivity:
• When p = 1, ∀a, b ∈ Rn, we have

‖a+ b‖1 =

n∑
i=1

|ai + bi| ≤
n∑

i=1

|ai|+
n∑

i=1

|bi| = ‖a‖1 + ‖b‖1 . (0.2)

• When p = 2, ∀a, b ∈ Rn, we have

‖a+ b‖22 =

n∑
i=1

(ai + bi)
2 = ‖a‖22 + ‖b‖

2
2 + 2

n∑
i=1

aibi ≤ ‖a‖22 + ‖b‖
2
2 + 2 ‖a‖2 ‖b‖2

= (‖a‖2 + ‖b‖2)
2
.

(0.3)

• When p =∞, we have

‖a+ b‖∞ = max
i
|ai + bi| = |ai? + bi? | ≤ |ai? |+ |bi? | ≤ max

i
|ai|+max

i
|bi| = ‖a‖∞ + ‖b‖∞ .

(0.4)
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Problem 2 (Rank-Nullity Theorem)
Given a matrix A ∈ Rm×n, prove the following statements, and suppose bilinear form of the orthogonal
complement ⊥ is defined via Euclidean inner product (Suppose V ⊆ Rn is a linear subspace and V⊥ is the
orthogonal complement of V in Rn, then we have 〈v, v⊥〉 .=∑n

i=1 viv
⊥
i = 0,∀v ∈ V, v⊥ ∈ V⊥). Prove that:

1. null(A)⊥ = range(A>)

2. null(A>) = null(AA>)

3. dim(row(A)) + dim(null(A)) = n

Solutions
1. x ∈ null(A) =⇒ Ax = 0 =⇒ x ∈ row(A)⊥. Thus we know that null(A) = range(A>)⊥. Since
S = (S⊥)⊥ holds when S is a subspace of Rn, hence we know that null(A)⊥ = range(A).

2. ∀x ∈ null(A∗), A∗x = 0 =⇒ AA∗x = 0 =⇒ x ∈ null(AA∗). On the other hand, ∀x ∈ null(AA∗) =⇒
AA∗x = 0 =⇒ xAA∗x = 0 =⇒ ‖A∗x‖2 = 0 =⇒ A∗x = 0 =⇒ x ∈ null(A∗). Thus, we know that
null(A∗) = null(AA∗).

3. Let us prove a slightly more general version of the last problem: LetA : X → Y be a linear operator with
dim(X) = n. Prove that dim(N(A)) + dim(R(A)) = n, i.e., the sum of the dimension of the null space of
A and the dimension of the range of A equals the dimension of X .
Let {x1, . . . , xk} ∈ X be a basis ofN(A). By basis expansion theorem, we can complete this basis inX as
{x1, . . . , xk, xk+1, . . . , xn}. Any vector x ∈ X can be uniquely represented as

x =

n∑
i=1

αixi =

k∑
i=1

αixi +

n∑
i=k+1

αixi.

After we apply the linear operatorA on x, we find out that {A(xk+1), ...,A(xn)} spans the range R(A)
in Y . Since xk+1, . . . , xn are linearly independent from N(A), (A(xk+1), ...,A(xn)) should be linearly
independent in Y (Please show this yourself by contradiction).
Hence, dim(R(A)) = n− k, which implies dim(X) = n = dim(N(A)) + dim(R(A)).

Problem 3 (Eigenvalues and Eigenvectors)
Exercise 1.6 of High-Dim Data Analysis with Low-Dim Models.

Solutions
According to equation (1.2.20), the first principal component of a random vector y is argmaxu Var(u>y).
Notice that

Var(u>y) = E
[
u>y − E(u>y)

]2
= u>E[yy>]u− (u>y)2 = u>Σyu, (0.5)

hence,
argmax

u
Var(u>y) = argmax

u
u>Σyu (0.6)

is finding the maximum singular value/vector of Σy .
Proof of Theorem A.29 Since A is symmetric, we can write A as

A =

n∑
i=1

λiviv
>
i , (0.7)
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where λi are the eigenvalues (actually singular values because A is symmetric). Suppose λ1 ≥ λ2 ≥ · · · ≥ λn.
Hence, we have

max
‖x‖22=1

x>Ax = max
‖x‖22=1

x>
n∑

i=1

λiviv
>
i x ≤ λ1

n∑
i=1

〈x,vi〉2 . (0.8)

From the definition of SVD, we know that {v1,v2, . . . ,vn} are an orthonormal basis of Rn. Since ‖x‖2 = 1, we
have

λ1

n∑
i=1

〈x,vi〉2 = λ1. (0.9)

Hence, we conclude thatmax‖x‖22=1 xAx> = λ1. Similarly, we can conclude thatmin‖x‖22=1 xAx> = λn. By
repeating the argument in equation (0.8), we can also conclude that λk is the optimal value for

max
‖x‖22=1

x>Ax, subject tox ⊥ v1, . . . ,vk−1. (0.10)

Problem 4 (Ridge Regression)
Exercise 1.8 of High-Dim Data Analysis with Low-Dim Models.

Solutions
1. Since the objective function is convex, we can consider the critical point of the objective function:

∇x

(
‖y −Ax‖22 + λ ‖x‖22

)
= 2A>Ax− 2A>y + 2λx, (0.11)

by setting the gradient to 0, yields

2A>Ax− 2A>y + 2λx = 0 =⇒ x = (A>A+ λI)−1A>y (0.12)

2. A>A+ λI is always positive definite for all λ > 0, because ∀x ∈ Rn such that x 6= 0, we have

x>(A>A+ λI)x = x>A>Ax+ λ ‖x‖22 = ‖Ax‖22 + λ ‖x‖22 > 0, (0.13)

since all positive definite matrices are invertible, we know that A>A+ λI is invertible.

Problem 5 (Implicit Bias of Gradient Descent)
Exercise 2.10 of High-Dim Data Analysis with Low-Dim Models.

Solutions
We can write the iterative formula of the gradient descent as follows:

xk+1 = xk − 2αA>(Axk − y) = (I − 2αA>A)xk + 2αA>y. (0.14)

Replacing the above equation with x0 = 0, yields

xk = 2α

(
k−1∑
t=0

(I − 2αA>A)t

)
, (0.15)

and when k →∞, we have
x∞ = 2α

( ∞∑
t=0

(I − 2αA>A)t

)
, (0.16)
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Since the matrixA ∈ Rm×n has full row rank, we can write the matrix A as

A = UΣV > = U1

[
Σ1 0

] [V >1
V >2

]
. (0.17)

Substituting the SVD into equation (0.16), yields

x∞ =2αV

( ∞∑
t=0

(I − 2αΣ>Σ)t

)
Σ>U>y

=2α
[
V1 V2

]( ∞∑
t=0

[(
I − 2αΣ>1 Σ1

)t
0

0 I

])[
Σ>1
0

]
Uy

=2α
[
V1 V2

]( ∞∑
t=0

[(
I − 2αΣ>1 Σ1

)t
Σ>1 0

0 0

])
Uy,

(0.18)

since Σ1 is symmetric and positive definite, we have

x∞ = V1Σ
−1
1 U>y. (0.19)

Using the Lagrangian dual formulation, the optimal solution to the original optimization problem is

x? = A>(AA>)−1y = V1Σ
−1
1 Uy, (0.20)

which is exactly the same as x∞, also since A has full row rank, we have UU> = U>U = In.
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