EECS208 Written HW1

Issued: Sep. 1. Due: Sep. 12, 11:59 PM via Gradescope

Reading: Chapters 1, 2, and Appendix A of High-Dim Data Analysis with Low-Dim Models.

Problem 1 (ℓ^p -norm)

Given $p \geq 0$, define the function $\|\cdot\|_p : \mathbb{R}^n \mapsto \mathbb{R}$ as

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p},$$

where we slightly abuse the notation by defining $\|x\|_0 = \sum_{i=1}^n |x_i|^0$ and $\|x\|_\infty = \max_{i \in [n]} |x_i|$. Prove that

- 1. $\forall p \in [0,1), \|\cdot\|_p$ is *not* a norm of \mathbb{R}^n ;
- 2. $\forall p \in \{1, 2, \infty\}, \|\cdot\|_p$ is a norm of \mathbb{R}^n .

Solutions

1. Prove by contradiction: pick $e_1 = [1, 0, \dots, 0]^\top$, $e_2 = [0, 1, \dots, 0]^\top$ from \mathbb{R}^n . Then when $p \in [0, 1)$, we have

$$\|e_1 + e_2\|_p = 2^{1/p} > 2 = \|e_1\|_p + \|e_2\|_p,$$
 (0.1)

which contradicts the subadditivity.

- 2. From definition, it is easy to show that $\forall p \in 1, 2, \infty, \|\cdot\|_p$ is positive definite and nonnegatively homogeneous, we will only show the subadditivity:
 - When p = 1, $\forall \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^n$, we have

$$\|\boldsymbol{a} + \boldsymbol{b}\|_{1} = \sum_{i=1}^{n} |a_{i} + b_{i}| \le \sum_{i=1}^{n} |a_{i}| + \sum_{i=1}^{n} |b_{i}| = \|\boldsymbol{a}\|_{1} + \|\boldsymbol{b}\|_{1}.$$
 (0.2)

• When p = 2, $\forall \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^n$, we have

$$\|\boldsymbol{a} + \boldsymbol{b}\|_{2}^{2} = \sum_{i=1}^{n} (a_{i} + b_{i})^{2} = \|\boldsymbol{a}\|_{2}^{2} + \|\boldsymbol{b}\|_{2}^{2} + 2\sum_{i=1}^{n} a_{i}b_{i} \le \|\boldsymbol{a}\|_{2}^{2} + \|\boldsymbol{b}\|_{2}^{2} + 2\|\boldsymbol{a}\|_{2}\|\boldsymbol{b}\|_{2}$$

$$= (\|\boldsymbol{a}\|_{2} + \|\boldsymbol{b}\|_{2})^{2}.$$
(0.3)

• When $p = \infty$, we have

$$\|\boldsymbol{a} + \boldsymbol{b}\|_{\infty} = \max_{i} |a_{i} + b_{i}| = |a_{i^{\star}} + b_{i^{\star}}| \le |a_{i^{\star}}| + |b_{i^{\star}}| \le \max_{i} |a_{i}| + \max_{i} |b_{i}| = \|\boldsymbol{a}\|_{\infty} + \|\boldsymbol{b}\|_{\infty}.$$
(0.4)

Problem 2 (Rank-Nullity Theorem)

Given a matrix $A \in \mathbb{R}^{m \times n}$, prove the following statements, and suppose bilinear form of the orthogonal complement \bot is defined via Euclidean inner product (Suppose $\mathbb{V} \subseteq \mathbb{R}^n$ is a linear subspace and \mathbb{V}^\bot is the orthogonal complement of \mathbb{V} in \mathbb{R}^n , then we have $\langle v, v^\bot \rangle \doteq \sum_{i=1}^n v_i v_i^\bot = 0, \forall v \in \mathbb{V}, v^\bot \in \mathbb{V}^\bot$). Prove that:

- 1. $\mathsf{null}(\boldsymbol{A})^{\perp} = \mathsf{range}(\boldsymbol{A}^{\top})$
- 2. $\operatorname{null}(\boldsymbol{A}^{\top}) = \operatorname{null}(\boldsymbol{A}\boldsymbol{A}^{\top})$
- 3. $\dim(\text{row}(\mathbf{A})) + \dim(\text{null}(\mathbf{A})) = n$

Solutions

- 1. $x \in \text{null}(A) \implies Ax = 0 \implies x \in \text{row}(A)^{\perp}$. Thus we know that $\text{null}(A) = \text{range}(A^{\top})^{\perp}$. Since $S = (S^{\perp})^{\perp}$ holds when S is a subspace of \mathbb{R}^n , hence we know that $\text{null}(A)^{\perp} = \text{range}(A)$.
- 2. $\forall x \in \mathsf{null}(A^*), A^*x = 0 \implies AA^*x = 0 \implies x \in \mathsf{null}(AA^*).$ On the other hand, $\forall x \in \mathsf{null}(AA^*) \implies AA^*x = 0 \implies xAA^*x = 0 \implies \|A^*x\|^2 = 0 \implies A^*x = 0 \implies x \in \mathsf{null}(A^*).$ Thus, we know that $\mathsf{null}(A^*) = \mathsf{null}(AA^*).$
- 3. Let us prove a slightly more general version of the last problem: Let $A: X \to Y$ be a linear operator with $\dim(X) = n$. Prove that $\dim(N(A)) + \dim(R(A)) = n$, i.e., the sum of the dimension of the null space of A and the dimension of the range of A equals the dimension of X.

Let $\{x_1, \ldots, x_k\} \in X$ be a basis of $N(\mathbf{A})$. By basis expansion theorem, we can complete this basis in X as $\{x_1, \ldots, x_k, x_{k+1}, \ldots, x_n\}$. Any vector $x \in X$ can be uniquely represented as

$$x = \sum_{i=1}^{n} \alpha_i x_i = \sum_{i=1}^{k} \alpha_i x_i + \sum_{i=k+1}^{n} \alpha_i x_i.$$

After we apply the linear operator A on x, we find out that $\{A(x_{k+1}),...,A(x_n)\}$ spans the range R(A) in Y. Since $x_{k+1},...,x_n$ are linearly independent from N(A), $(A(x_{k+1}),...,A(x_n))$ should be linearly independent in Y (Please show this yourself by contradiction).

Hence, $\dim(R(\mathbf{A})) = n - k$, which implies $\dim(X) = n = \dim(N(\mathbf{A})) + \dim(R(\mathbf{A}))$.

Problem 3 (Eigenvalues and Eigenvectors)

Exercise 1.6 of High-Dim Data Analysis with Low-Dim Models.

Solutions

According to equation (1.2.20), the first principal component of a random vector \mathbf{y} is $\arg\max_{\mathbf{u}} \mathsf{Var}(\mathbf{u}^{\top}\mathbf{y})$. Notice that

$$\mathsf{Var}(\boldsymbol{u}^{\top}\boldsymbol{y}) = \mathbb{E}\left[\boldsymbol{u}^{\top}\boldsymbol{y} - \mathbb{E}(\boldsymbol{u}^{\top}\boldsymbol{y})\right]^{2} = \boldsymbol{u}^{\top}\mathbb{E}[\boldsymbol{y}\boldsymbol{y}^{\top}]\boldsymbol{u} - (\boldsymbol{u}^{\top}\boldsymbol{y})^{2} = \boldsymbol{u}^{\top}\boldsymbol{\Sigma}_{\boldsymbol{y}}\boldsymbol{u},\tag{0.5}$$

hence,

$$\arg\max_{\boldsymbol{u}} \operatorname{Var}(\boldsymbol{u}^{\top} \boldsymbol{y}) = \arg\max_{\boldsymbol{u}} \boldsymbol{u}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{y}} \boldsymbol{u}$$
 (0.6)

is finding the maximum singular value/vector of Σ_y .

Proof of Theorem A.29 Since A is symmetric, we can write A as

$$\boldsymbol{A} = \sum_{i=1}^{n} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\top}, \tag{0.7}$$

where λ_i are the eigenvalues (actually singular values because \mathbf{A} is symmetric). Suppose $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Hence, we have

$$\max_{\|\boldsymbol{x}\|_2^2=1} \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x} = \max_{\|\boldsymbol{x}\|_2^2=1} \boldsymbol{x}^\top \sum_{i=1}^n \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^\top \boldsymbol{x} \le \lambda_1 \sum_{i=1}^n \langle \boldsymbol{x}, \boldsymbol{v}_i \rangle^2.$$
 (0.8)

From the definition of SVD, we know that $\{v_1, v_2, \dots, v_n\}$ are an orthonormal basis of \mathbb{R}^n . Since $\|x\|_2 = 1$, we have

$$\lambda_1 \sum_{i=1}^n \langle \boldsymbol{x}, \boldsymbol{v}_i \rangle^2 = \lambda_1. \tag{0.9}$$

Hence, we conclude that $\max_{\|\boldsymbol{x}\|_2^2=1} \boldsymbol{x} \boldsymbol{A} \boldsymbol{x}^\top = \lambda_1$. Similarly, we can conclude that $\min_{\|\boldsymbol{x}\|_2^2=1} \boldsymbol{x} \boldsymbol{A} \boldsymbol{x}^\top = \lambda_n$. By repeating the argument in equation (0.8), we can also conclude that λ_k is the optimal value for

$$\max_{\|\boldsymbol{x}\|_2^2=1} \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}, \text{ subject to } \boldsymbol{x} \perp \boldsymbol{v}_1, \dots, \boldsymbol{v}_{k-1}. \tag{0.10}$$

Problem 4 (Ridge Regression)

Exercise 1.8 of High-Dim Data Analysis with Low-Dim Models.

Solutions

1. Since the objective function is convex, we can consider the critical point of the objective function:

$$\nabla_{\boldsymbol{x}} \left(\|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{2}^{2} \right) = 2\boldsymbol{A}^{\top} \boldsymbol{A}\boldsymbol{x} - 2\boldsymbol{A}^{\top} \boldsymbol{y} + 2\lambda \boldsymbol{x}, \tag{0.11}$$

by setting the gradient to 0, yields

$$2\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2\mathbf{A}^{\top} \mathbf{y} + 2\lambda \mathbf{x} = \mathbf{0} \implies \mathbf{x} = (\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^{\top} \mathbf{y}$$
(0.12)

2. $A^{\top}A + \lambda I$ is always positive definite for all $\lambda > 0$, because $\forall x \in \mathbb{R}^n$ such that $x \neq 0$, we have

$$x^{\top} (A^{\top} A + \lambda I) x = x^{\top} A^{\top} A x + \lambda \|x\|_{2}^{2} = \|Ax\|_{2}^{2} + \lambda \|x\|_{2}^{2} > 0,$$
 (0.13)

since all positive definite matrices are invertible, we know that $A^{T}A + \lambda I$ is invertible.

Problem 5 (Implicit Bias of Gradient Descent)

Exercise 2.10 of High-Dim Data Analysis with Low-Dim Models.

Solutions

We can write the iterative formula of the gradient descent as follows:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - 2\alpha \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{x}_k - \boldsymbol{y}) = (\boldsymbol{I} - 2\alpha \boldsymbol{A}^{\top} \boldsymbol{A}) \boldsymbol{x}_k + 2\alpha \boldsymbol{A}^{\top} \boldsymbol{y}. \tag{0.14}$$

Replacing the above equation with $x_0 = 0$, yields

$$\boldsymbol{x}_k = 2\alpha \left(\sum_{t=0}^{k-1} (\boldsymbol{I} - 2\alpha \boldsymbol{A}^{\top} \boldsymbol{A})^t \right), \tag{0.15}$$

and when $k \to \infty$, we have

$$\boldsymbol{x}_{\infty} = 2\alpha \left(\sum_{t=0}^{\infty} (\boldsymbol{I} - 2\alpha \boldsymbol{A}^{\top} \boldsymbol{A})^{t} \right), \tag{0.16}$$

Since the matrix $A \in \mathbb{R}^{m \times n}$ has full row rank, we can write the matrix A as

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\top} = \boldsymbol{U}_{1} \begin{bmatrix} \boldsymbol{\Sigma}_{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{1}^{\top} \\ \boldsymbol{V}_{2}^{\top} \end{bmatrix}. \tag{0.17}$$

Substituting the SVD into equation (0.16), yields

$$x_{\infty} = 2\alpha V \left(\sum_{t=0}^{\infty} (I - 2\alpha \Sigma^{\top} \Sigma)^{t} \right) \Sigma^{\top} U^{\top} y$$

$$= 2\alpha \left[V_{1} \quad V_{2} \right] \left(\sum_{t=0}^{\infty} \begin{bmatrix} (I - 2\alpha \Sigma_{1}^{\top} \Sigma_{1})^{t} & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix} \right) \begin{bmatrix} \Sigma_{1}^{\top} \\ \mathbf{0} \end{bmatrix} U y$$

$$= 2\alpha \left[V_{1} \quad V_{2} \right] \left(\sum_{t=0}^{\infty} \begin{bmatrix} (I - 2\alpha \Sigma_{1}^{\top} \Sigma_{1})^{t} \Sigma_{1}^{\top} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \right) U y,$$

$$(0.18)$$

since Σ_1 is symmetric and positive definite, we have

$$\boldsymbol{x}_{\infty} = \boldsymbol{V}_{1} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{U}^{\top} \boldsymbol{y}. \tag{0.19}$$

Using the Lagrangian dual formulation, the optimal solution to the original optimization problem is

$$\boldsymbol{x}^{\star} = \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{A}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{V}_{1} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{U} \boldsymbol{y}, \tag{0.20}$$

which is exactly the same as x_{∞} , also since A has full row rank, we have $UU^{\top} = U^{\top}U = I_n$.