
EECS208 Written HW4
Issued: Nov. 4. Due: Nov. 14, 11:59 PM via Gradescope

Reading: Chapters 7 of High-Dim Data Analysis with Low-Dim Models.

Problem 1 (Complete Dictionary Learning via ℓ4 NormMaximization)
Exercise 7.2 of High-Dim Data Analysis with Low-DimModels. In this exercise, we derive and practice an algorithm
to solve ℓ4 norm maximization problem (7.3.14) for complete dictionary learning.

1. Derive the gradient φ(A) = ∥AY ∥44 with respect to A.

2. Derive a project gradient ascent for maximizing φ(A):

Ak+1 = PO(n)[Ak + γ · ∇φ(Ak)]. (0.1)

Hint: you may directly apply the following claim (without proof):

Claim 0.1 (Projection onto Orthogonal Group) ∀A ∈ Rn×n, the orthogonal matrix which has minimum
Frobenius norm with A is the following

PO(n;R)(A) = argmin
M∈O(n;R)

∥M −A∥2F = UV ⊤, (0.2)

where UΣV ⊤ = SVD(A).

If you can prove Claim 0.1, you will receive extra credits for this problem.

3. Let Y ∈ Rn×p and suppose each entry of Y is iid drawn from a standard Gaussian distribution N (0, 1)
with probability θ, and equals to 0 with probability 1− θ:

ȳi,j =

{
z ∼ N (0, 1) with probability θ,

0, otherwise.
(0.3)

and A0 is a randomly initialized orthogonal matrix. Conduct simulation of the algorithm and play with
different step size γ of the gradient ascent, what is the relationship between the step size γ and the
convergence speed? What happens if you make the step size to be infinite? That is,

Ak+1 = PO(n)[∇φ(Ak)]. (0.4)

Problem 2 (Low-rank Regularization via the log det(·) Function)
Exercise 7.4 of High-Dim Data Analysis with Low-Dim Models. When a matrix X ∈ Rn×n is symmetric and
positive semi-definite, the nuclear norm ∥X∥∗ is the same as its trace of the matrix. In this exercise, we try
to study the connection of the convex nuclear norm (or the trace norm) with another popular smooth but
nonconvex surrogate for minimizing rank(X) is to minimize the quantity

min
X∈C

f(X)
.
= log det(X + δI), (0.5)

where δ > 0 is a small regularization constant andX belongs to some constraint set C. To see how this objective
is related to the trace norm:
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1. First, show that ∇Xf(X) = (X + δI)−1.

2. Second, the first-order expansion of f(X) around a point Xk is given by:

f(X) ≈ f(Xk) + tr
(
(Xk + δI)−1(X −Xk)

)
+ o(∥X −Xk∥). (0.6)

Then to minimize f(X), we can use a greedy descent algorithm with the iteration

Xk+1 = arg min
X∈C

tr
(
(Xk + δI)−1X

)
. (0.7)

Argue that whenXk is initialized aroundXo = I , then the above iteration becomes minimizing the trace
norm Xk+1 = argminX∈C tr(X).
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