EECS208 Written HW2

Issued: Sep. 22. Due: Oct. 3, 11:59 PM via Gradescope

Reading: Chapters 3 and Appendix A.8 - A.9 of High-Dim Data Analysis with Low-Dim Models.

Problem 1 (Singular Values of Matrices)

Exercise 3.4 of High-Dim Data Analysis with Low-Dim Models.

Problem 2 (Singular Values, Spectral Norm, and Frobenius Norm)

Exercise 3.5 of High-Dim Data Analysis with Low-Dim Models.

Problem 3 (Incoherence and Singular Values, Exercise 3.6)

Given a matrix $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}$, whose column vectors have unit length $\|\mathbf{a}_i\|_2 = 1, \forall i \in [n]$. Let $\mu(\mathbf{A})$ denote the mutual the mutual coherence of \mathbf{A} and let krank(\mathbf{A}) denote the Kruskal rank of \mathbf{A} . $\forall k \leq \text{krank}(\mathbf{A})$, suppose we pick k column vectors $\mathbf{a}_{i_1}, \mathbf{a}_{i_2}, \dots, \mathbf{a}_{i_k}$ from $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, and let $\mathbf{A}_{\mathsf{I}} = [\mathbf{a}_{i_1}, \mathbf{a}_{i_2}, \dots, \mathbf{a}_{i_k}]$ be the submatrix formed by the selected column vectors. Show that

$$1 - k\mu(\mathbf{A}) \le \sigma_{\min}(\mathbf{A}_{\mathsf{I}}^{\top}\mathbf{A}_{\mathsf{I}}) \le \sigma_{\max}(\mathbf{A}_{\mathsf{I}}^{\top}\mathbf{A}_{\mathsf{I}}) \le 1 + k\mu(\mathbf{A}), \tag{0.1}$$

where we use $\sigma_{\min}(M)$, $\sigma_{\max}(M)$ to denote the minimum and maximum singular values of matrix M, respectively.

Problem 4 (Singular Values of the Inverse)

Exercise 3.16 of High-Dim Data Analysis with Low-Dim Models.

Problem 5 (RSC implies the nullspace property Exercise 3.12)

Prove the following lemma (Lemma 3.15):

Lemma 0.1 Suppose that A satisfies the restricted strong convexity condition of order k with constant $\alpha \ge 1$, for some $\mu > 0$. Then for any $\mathbf{y} = A\mathbf{x}_o$, with $\|\mathbf{x}_o\|_0 \le k$, \mathbf{x}_o is the unique optimal solution to the ℓ_1 problem:

$$\min \|\boldsymbol{x}\|_{1}, \quad \text{subject to } \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{0.2}$$