EECS208 Written HW1

Issued: Sep. 1. Due: Sep. 12, 11:59 PM via Gradescope

Reading: Chapters 1, 2, and Appendix A of High-Dim Data Analysis with Low-Dim Models.

Problem 1 (ℓ^p -norm)

Given $p \ge 0$, define the function $\|\cdot\|_p : \mathbb{R}^n \mapsto \mathbb{R}$ as

 $||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p})^{1/p},$

where we slightly abuse the notation by defining $||x||_0 = \sum_{i=1}^n |x_i|^0$ and $||x||_\infty = \max_{i \in [n]} |x_i|$. Prove that

- 1. $\forall p \in [0,1)$, $\|\cdot\|_p$ is *not* a norm of \mathbb{R}^n ;
- 2. $\forall p \in \{1, 2, \infty\}$, $\|\cdot\|_p$ is a norm of \mathbb{R}^n .

Problem 2 (Rank-Nullity Theorem)

Given a matrix $A \in \mathbb{R}^{m \times n}$, prove the following statements, and suppose bilinear form of the orthogonal complement \bot is defined via Euclidean inner product (Suppose $\mathbb{V} \subseteq \mathbb{R}^n$ is a linear subspace and \mathbb{V}^{\bot} is the orthogonal complement of \mathbb{V} in \mathbb{R}^n , then we have $\langle v, v^{\bot} \rangle \doteq \sum_{i=1}^n v_i v_i^{\bot} = 0, \forall v \in \mathbb{V}, v^{\bot} \in \mathbb{V}^{\bot}$). Prove that:

- 1. $\operatorname{null}(\boldsymbol{A})^{\perp} = \operatorname{range}(\boldsymbol{A}^{\top})$
- 2. $\operatorname{null}(\mathbf{A}^{\top}) = \operatorname{null}(\mathbf{A}\mathbf{A}^{\top})$
- 3. dim(row(A)) + dim(null(A)) = n

Problem 3 (Eigenvalues and Eigenvectors)

Exercise 1.6 of High-Dim Data Analysis with Low-Dim Models.

Problem 4 (Ridge Regression)

Exercise 1.8 of High-Dim Data Analysis with Low-Dim Models.

Problem 5 (Implicit Bias of Gradient Descent)

Exercise 2.10 of High-Dim Data Analysis with Low-Dim Models.