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Structured Nonlinear Low-Dimensional Models
Sparsity in Convolution and Deconvolution

1 Convolution for Image Modeling

2 Convolution and Circulant Matrix

3 The Blind Short-and-Sparse Deconvolution

“The mathematical sciences particularly exhibit order, symmetry, and
limitations; and these are the greatest forms of the beautiful.”

– Aristotle, Metaphysica
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Importance of Mathematical Modeling

If you formulate a problem correctly,
you are more than halfway solved it!
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Convolution for Image Modeling

Sparsity in Appearance of Image Patches

Patch-level image modeling
(e.g. denoising or super-resolution)
with a sparsifying dictionary:

Ipatch = A
dictionary

× x
sparse

+ z.
noise

(1)

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y
data

= A
dictionary

X.
sparse

(2)

• Band-limited signals: A = F , the Fourier transform (JPEG);

• Piecewise smooth: A = W , the wavelet transforms (JPEG2000);

• For natural images A can be learned from patch samples Y .
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Convolution for Image Modeling

Sparsity in Occurrence of Patch Motif(s)

The same motif a ∈ A occurs at a sparse number of locations
(i1, j1), . . . , (ik, jk) in space:

The overall observation y can be modeled as a superposition of translated
versions of the motif a, one for each of locations (iℓ, jℓ):

y(i, j, e)
data

=

k∑
ℓ=1

a(i− iℓ, j − jℓ, e)
translated motif

+ z(i, j, e)
noise

. (3)

One could generalize this to multiple motifs.
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Convolution for Image Modeling

Modeling Translational Occurrence by Convolution

Define a two-dimensional sparse signal x ∈ Rw×h, which takes on value 1
at locations (iℓ, jℓ) and zero elsewhere:

y(·, ·, e) = a(·, ·, e) ∗ x + z(·, ·, e). (4)

Combining these equations for all energy levels e, the observed data y is a
convolution of the motif a and a field x of sparse spikes:

y
data

= a
motif

∗ x
sparse spikes

+ z
noise

, (5)

x could also take different values other than 1 to model the intensity or
weight of the motif at each location.

The sparse occurrence/convolution model does generalize to other
transformation groups, such as rotation etc.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 November 4, 2021 6 / 19



Convolution for Image Modeling

Modeling Translational Occurrence by Convolution

Examples: Neuron, Camera, and Microscopy

The sparse occurrence/convolution model does generalize to other
transformation groups, such as rotation etc.
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Convolution and Circulant Matrix

Background: Convolution and Circulant Matrix

Given a vector a = [a0, a1, . . . , an−1]
∗ ∈ Rn, we may arrange all its

circularly shifted versions in a circulant matrix form as

A
.
= circ(a) =


a0 an−1 . . . a2 a1
a1 a0 an−1 · · · a2
... a1 a0

. . .
...

an−2
...

. . .
. . . an−1

an−1 an−2 . . . a1 a0

 ∈ Rn×n. (6)

It is easy to see that the multiplication of such a circulant matrix A with a
vector x gives a (circular) convolution Ax = a⊛ x with:

(a⊛ x)i =

n−1∑
j=0

xjai+n−jmodn. (7)

Fact: all circulant matrices share the same set of eigenvectors!
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Convolution and Circulant Matrix

Background: Eigenvectors of Circulant Matrices

Let i =
√
−1 and ωn := exp(−2πi

n ) and we define the matrix:

Fn
.
=

1√
n


ω0
n ω0

n ··· ω0
n ω0

n

ω0
n ω1

n ··· ωn−2
n ωn−1

n

...
...

. . .
...

...
ω0
n ωn−2

n ··· ω
(n−2)2

n ω
(n−2)(n−1)
n

ω0
n ωn−1

n ··· ω
(n−2)(n−1)
n ω

(n−1)2

n

 ∈ Cn×n. (8)

Fn is known as the discrete Fourier transform (DFT), with FnF
∗
n = I.

Theorem (Eigenvectors of Circulant Matrix)

An n× n matrix A ∈ Cn×n is a circulant matrix if and only if it is
diagonalizable by the unitary matrix Fn:

F ∗
nAFn = Da or A = FnDaF

∗
n , (9)

where Da is a diagonal matrix of (possibly complex) eigenvalues.

Probably the reason why our brain computes in spectral domain.
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The Blind Short-and-Sparse Deconvolution

The Blind Deconvolution Problem

Problem: how to recover both the motif a and sparse spikes x from the
observed data y:

y
data

= a
motif

∗ x
sparse spikes

+ z
noise

, (10)

This problem is underdetermined (Why?).

We need to leverage low-dimensional structure in both a and x by
assuming a short-and-sparse model (studied in the 90’s):

1 a is spatially localized, i.e., it is a short signal, whose spatial extent is
small compared to that of y;

2 x is sparse, since it contains only one nonzero entry for each instance
of the motif in y. (Why not dense?)
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The Blind Short-and-Sparse Deconvolution

Solution by Optimization

Simultaneously recover both a and x by the bilinear Lasso (BL):

min
a,x

φBL(a,x)
.
= 1

2 ∥y − a ∗ x∥2F
data fidelity

+ λ∥x∥1
x sparse

such that a ∈ A.
a short

(11)

Ambiguity due to a scaling-shift symmetry:
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The Blind Short-and-Sparse Deconvolution

Taxonomy of Symmetric Nonconvex Problems
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The Blind Short-and-Sparse Deconvolution

Symmetry in Short-and-Sparse Deconvolution
Letting sτ denote a shift by τ pixels, we have

y = sτ [a] ∗ s−τ [x] = a ∗ x, with ∥a∥F = 1︸ ︷︷ ︸
normalization

. (12)

If a is shift incoherent:

µs = max
τ ̸=0

|⟨a, sτ [a]⟩| ≈ 0︸ ︷︷ ︸
incoherence

, or circ(a) ≈ I︸ ︷︷ ︸
isometry

.

the bilinear Lasso loss in (11) can be approximated as

1
2 ∥y − a ∗ x∥2F = 1

2∥y∥
2
F + 1

2∥a ∗ x∥2F − ⟨y,a ∗ x⟩
≈ 1

2∥y∥
2
F + 1

2∥x∥
2
F − ⟨y,a ∗ x⟩ . (13)

This gives:

φABL(a,x)
.
= 1

2∥y∥
2
F + 1

2∥x∥
2
F −⟨y,a ∗ x⟩+λ∥x∥1, ∥a∥F = 1. (14)
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The Blind Short-and-Sparse Deconvolution

Landscape of the Objective Function

Geometry of the approximate bilinear Lasso (ABL) objective:

φABL(a,x)
.
= 1

2∥y∥
2
F + 1

2∥x∥
2
F − ⟨y,a ∗ x⟩+ λ∥x∥1, a ∈ A. (15)

Notice: equivalent (symmetric) solutions are local minimizers, and there
is negative curvature in symmetry breaking directions.
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The Blind Short-and-Sparse Deconvolution

Sparsity and Shift-Coherence Tradeoff
Solving the sparse-and-short deconvolution (SaSD) from:

min
a,x

φBL(a,x)
.
= 1

2 ∥y − a ∗ x∥2F + λ∥x∥1 such that a ∈ A. (16)

A sparsity-coherence tradeoff: Smaller µs(a0) allows higher θ(x).

Figure: In order of increasing difficulty: (a) when a0 is a Dirac delta function,
µs(a0) = 0; (b) when a0 is uniform on the sphere Sn−1, its shift-coherence is
roughly µs(a0) ≈ n−1/2; (c) when a0 is low-pass, µs(a0) → const. as n grows.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 November 4, 2021 15 / 19



The Blind Short-and-Sparse Deconvolution

Alternating Descent Algorithm for SaSD

Solving the sparse-and-short deconvolution (SaSD) from:

min
a,x

φBL(a,x)
.
= 1

2 ∥y − a ∗ x∥2F + λ∥x∥1 such that a ∈ A. (17)

Fix a and take a proximal gradient step on x.

Gradient w.r.t. x : ∇xψ(a,x) = ι∗x ǎ ∗ (a ∗ x− y). (18)

Proximal gradient: xk+1 = proxtλg [xk − t∇xψ(ak,xk)] . (19)

Fix x and take a projected gradient step on a ∈ A and ∥a∥2 = 1.

Gradient w.r.t. a : ∇aψ(a,x) = ι∗ax̌ ∗ (a ∗ x− y) . (20)

Proximal gradient: ak+1 = PA [ak − τk∇aψ (ak,xk+1)] . (21)
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The Blind Short-and-Sparse Deconvolution

Additional Heuristics

In practice, the kernel a might not be so shift incoherent.

Better Optimization Algorithm: Momentum Acceleration

wk = xk + β · (xk − xk−1)︸ ︷︷ ︸
inertial term

, (22)

xk+1 = prox tkg
[wk − tk∇xψ(ak,wk)] . (23)

Better Optimization Strategy: Homotopy Continuation
Gradually decreasing λn to produce the solution path

{
(ân, x̂n;λn)

}
. By

ensuring that x remains sparse along the solution path.

Better Initialization: from the Data
Small pieces of y are superpositions of a few shifted copies of a0. One
could select a small window of y and then normalizes it to initialize a.
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The Blind Short-and-Sparse Deconvolution

An Example of Scanning Tunneling Microscopy

Short and Sparse Deconvolution on Real NaFeAs Data1

This dataset y consists of measurements across a 100× 100nm2 area at
E = 41 different bias voltages.

1Dictionary learning in Fourier-transform scanning tunneling spectroscopy, Sky
Cheung et. al., Nature Communications, 2020.
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The Blind Short-and-Sparse Deconvolution

Assignments

• Reading: Section 7.3.3 and Chapter 12.

• Written Homework #4.
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