Computational Principles for High-dim Data Analysis

(Lecture Nineteen)

Yi Ma

EECS Department, UC Berkeley
November 4, 2021

Structured Nonlinear Low-Dimensional Models Sparsity in Convolution and Deconvolution

(1) Convolution for Image Modeling
(2) Convolution and Circulant Matrix
(3) The Blind Short-and-Sparse Deconvolution
"The mathematical sciences particularly exhibit order, symmetry, and limitations; and these are the greatest forms of the beautiful."

- Aristotle, Metaphysica

Importance of Mathematical Modeling

If you formulate a problem correctly, you are more than halfway solved it!

Sparsity in Appearance of Image Patches

Patch-level image modeling (e.g. denoising or super-resolution) with a sparsifying dictionary:

$$
I_{\text {patch }}=\underset{\text { dictionary }}{\boldsymbol{A}} \times \underset{\text { sparse }}{\boldsymbol{x}}+\underset{\text { noise }}{\boldsymbol{z}}
$$

Dictionary learning: the motifs or atoms of the dictionary are unknown:

$$
\begin{equation*}
\underset{\text { data }}{\boldsymbol{Y}}=\underset{\text { dictionary }}{\boldsymbol{A}} \underset{\text { sparse }}{\boldsymbol{X}} \tag{2}
\end{equation*}
$$

- Band-limited signals: $\boldsymbol{A}=\boldsymbol{F}$, the Fourier transform (JPEG);
- Piecewise smooth: $\boldsymbol{A}=\boldsymbol{W}$, the wavelet transforms (JPEG2000);
- For natural images \boldsymbol{A} can be learned from patch samples \boldsymbol{Y}.

Sparsity in Occurrence of Patch Motif(s)

The same motif $\boldsymbol{a} \in \boldsymbol{A}$ occurs at a sparse number of locations $\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)$ in space:

The overall observation \boldsymbol{y} can be modeled as a superposition of translated versions of the motif \boldsymbol{a}, one for each of locations $\left(i_{\ell}, j_{\ell}\right)$:

$$
\begin{equation*}
\underset{\text { data }}{\boldsymbol{y}(i, j, e)}=\sum_{\ell=1}^{k} \underset{\text { translated motif }}{\boldsymbol{a}\left(i-i_{\ell}, j-j_{\ell}, e\right)} \quad+\quad \underset{\text { noise }}{\boldsymbol{z}(i, j, e)} \tag{3}
\end{equation*}
$$

One could generalize this to multiple motifs.

Modeling Translational Occurrence by Convolution

Define a two-dimensional sparse signal $\boldsymbol{x} \in \mathbb{R}^{w \times h}$, which takes on value 1 at locations $\left(i_{\ell}, j_{\ell}\right)$ and zero elsewhere:

$$
\begin{equation*}
\boldsymbol{y}(\cdot, \cdot,, e)=\boldsymbol{a}(\cdot, \cdot, e) * \boldsymbol{x} \quad+\quad \boldsymbol{z}(\cdot, \cdot, e) \tag{4}
\end{equation*}
$$

Combining these equations for all energy levels e, the observed data \boldsymbol{y} is a convolution of the motif \boldsymbol{a} and a field \boldsymbol{x} of sparse spikes:

$$
\begin{equation*}
\underset{\text { data }}{\boldsymbol{y}}=\underset{\text { motif }}{\boldsymbol{a}} * \underset{\text { sparse spikes }}{\boldsymbol{x}}+\underset{\text { noise }}{\boldsymbol{z}} \tag{5}
\end{equation*}
$$

\boldsymbol{x} could also take different values other than 1 to model the intensity or weight of the motif at each location.

The sparse occurrence/convolution model does generalize to other transformation groups, such as rotation etc.

Modeling Translational Occurrence by Convolution

Examples: Neuron, Camera, and Microscopy

The sparse occurrence/convolution model does generalize to other transformation groups, such as rotation etc.

Background: Convolution and Circulant Matrix

Given a vector $\boldsymbol{a}=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]^{*} \in \mathbb{R}^{n}$, we may arrange all its circularly shifted versions in a circulant matrix form as

$$
\boldsymbol{A} \doteq \operatorname{circ}(\mathbf{a})=\left[\begin{array}{ccccc}
a_{0} & a_{n-1} & \ldots & a_{2} & a_{1} \tag{6}\\
a_{1} & a_{0} & a_{n-1} & \cdots & a_{2} \\
\vdots & a_{1} & a_{0} & \ddots & \vdots \\
a_{n-2} & \vdots & \ddots & \ddots & a_{n-1} \\
a_{n-1} & a_{n-2} & \ldots & a_{1} & a_{0}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

It is easy to see that the multiplication of such a circulant matrix \boldsymbol{A} with a vector \boldsymbol{x} gives a (circular) convolution $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{a} \circledast \boldsymbol{x}$ with:

$$
\begin{equation*}
(\boldsymbol{a} \circledast \boldsymbol{x})_{i}=\sum_{j=0}^{n-1} x_{j} a_{i+n-j \bmod n} . \tag{7}
\end{equation*}
$$

Fact: all circulant matrices share the same set of eigenvectors!

Background: Eigenvectors of Circulant Matrices

Let $\mathfrak{i}=\sqrt{-1}$ and $\omega_{n}:=\exp \left(-\frac{2 \pi \mathfrak{i}}{n}\right)$ and we define the matrix:

$$
\boldsymbol{F}_{n} \doteq \frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
\omega_{n}^{0} & \omega_{n}^{0} & \cdots & \omega_{n}^{0} & \omega_{n}^{0} \tag{8}\\
\omega_{n}^{0} & \omega_{n}^{1} & \cdots & \omega_{n}^{n-2} & \omega_{n}^{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\omega_{n}^{0} & \omega_{n}^{n-2} & \cdots & \omega_{n}^{(n-2)^{2}} & \omega_{n}^{(n-2)(n-1)} \\
\omega_{n}^{0} & \omega_{n}^{n-1} & \cdots & \omega_{n}^{(n-2)(n-1)} & \omega_{n}^{(n-1)^{2}}
\end{array}\right] \in \mathbb{C}^{n \times n} .
$$

\boldsymbol{F}_{n} is known as the discrete Fourier transform (DFT), with $\boldsymbol{F}_{n} \boldsymbol{F}_{n}^{*}=\boldsymbol{I}$.

Theorem (Eigenvectors of Circulant Matrix)

An $n \times n$ matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is a circulant matrix if and only if it is diagonalizable by the unitary matrix \boldsymbol{F}_{n} :

$$
\begin{equation*}
\boldsymbol{F}_{n}^{*} \boldsymbol{A} \boldsymbol{F}_{n}=\boldsymbol{D}_{\boldsymbol{a}} \quad \text { or } \quad \boldsymbol{A}=\boldsymbol{F}_{n} \boldsymbol{D}_{\boldsymbol{a}} \boldsymbol{F}_{n}^{*} \tag{9}
\end{equation*}
$$

where $\boldsymbol{D}_{\boldsymbol{a}}$ is a diagonal matrix of (possibly complex) eigenvalues.
Probably the reason why our brain computes in spectral domain.

The Blind Deconvolution Problem

Problem: how to recover both the motif \boldsymbol{a} and sparse spikes \boldsymbol{x} from the observed data \boldsymbol{y} :

$$
\begin{equation*}
\underset{\text { data }}{\boldsymbol{y}}=\underset{\text { motif }}{\boldsymbol{a}} * \underset{\text { sparse spikes }}{\boldsymbol{x}} \quad+\underset{\text { noise' }}{\boldsymbol{z}} \tag{10}
\end{equation*}
$$

This problem is underdetermined (Why?).
We need to leverage low-dimensional structure in both \boldsymbol{a} and \boldsymbol{x} by assuming a short-and-sparse model (studied in the 90's):
(1) \boldsymbol{a} is spatially localized, i.e., it is a short signal, whose spatial extent is small compared to that of \boldsymbol{y};
(2) \boldsymbol{x} is sparse, since it contains only one nonzero entry for each instance of the motif in \boldsymbol{y}. (Why not dense?)

Solution by Optimization

Simultaneously recover both \boldsymbol{a} and \boldsymbol{x} by the bilinear Lasso (BL):

$$
\begin{equation*}
\min _{\boldsymbol{a}, \boldsymbol{x}} \varphi_{\mathrm{BL}}(\boldsymbol{a}, \boldsymbol{x}) \doteq \frac{1}{2} \| \underset{\text { data fidelity }}{\|\boldsymbol{y}-\boldsymbol{a} * \boldsymbol{x}\|_{F}^{2}}+\underset{x \text { sparse }}{\lambda\|\boldsymbol{x}\|_{1}} \quad \text { such that } \quad \underset{a}{\boldsymbol{a} \in \mathcal{A} \text { short }} \tag{11}
\end{equation*}
$$

Ambiguity due to a scaling-shift symmetry:

Taxonomy of Symmetric Nonconvex Problems

Nonconvex Problems with Discrete Symmetries

Eigenvector Computation
Maximize a quadratic form over the sphere.

$\max _{x \in \mathbb{S}^{n-1}} \frac{1}{2} x^{*} A x$.
Symmetry: $\boldsymbol{x} \mapsto-\boldsymbol{x}$

$$
\mathbb{G}=\{ \pm 1\}
$$

Tensor Decomposition
Determine components a_{i} of an orthogonal decomposable tensor $T=\sum_{i} a_{i} \otimes a_{i} \otimes a_{i} \otimes a_{i}$

$\max _{X \in O(n)} \sum_{i} T\left(x_{i}, x_{i}, x_{i}, x_{i}\right)$.
Symmetry: $\boldsymbol{X} \mapsto \boldsymbol{X} \Gamma$

$$
\mathbb{G}=\mathrm{P}(n)
$$

Dictionary Learning

Approximate a given matrix \boldsymbol{Y} as $\boldsymbol{Y}=\boldsymbol{A X}$, with \boldsymbol{X} sparse

$$
\min _{\boldsymbol{A} \in \mathcal{A}, \boldsymbol{X}} \frac{1}{2}\|\boldsymbol{Y}-\boldsymbol{A} \boldsymbol{X}\|_{F}^{2}+\lambda\|\boldsymbol{X}\|_{1} .
$$

Symmetry: $(\boldsymbol{A}, \boldsymbol{X}) \mapsto\left(A \Gamma, X \Gamma^{*}\right)$

$$
\mathbb{G}=\operatorname{SP}(n)
$$

Short-and-Sparse Deconvolution
Recover a short \boldsymbol{a} and a sparse \boldsymbol{x}
from their convolution $\boldsymbol{y}=\boldsymbol{a} * \boldsymbol{x}$.

$$
\min _{a, x} \frac{1}{2}\|y-a \circledast x\|_{2}^{2}+\lambda\|x\|_{1} .
$$

Symmetry: $(\boldsymbol{a}, \boldsymbol{x}) \mapsto\left(\alpha s_{\tau}[\boldsymbol{a}], \alpha^{-1} s_{-\tau}[\boldsymbol{x}]\right)$
$\mathbb{G}=\mathbb{Z}_{n} \times \mathbb{R}_{*}$ or $\mathbb{G}=\mathbb{Z}_{n} \times\{ \pm 1\}$

Symmetry in Short-and-Sparse Deconvolution

Letting s_{τ} denote a shift by τ pixels, we have

$$
\begin{equation*}
\boldsymbol{y}=s_{\tau}[\boldsymbol{a}] * s_{-\tau}[\boldsymbol{x}]=\boldsymbol{a} * \boldsymbol{x}, \quad \text { with } \underbrace{\|\boldsymbol{a}\|_{F}=1}_{\text {normalization }} . \tag{12}
\end{equation*}
$$

If \boldsymbol{a} is shift incoherent:

$$
\underbrace{\mu_{s}=\max _{\tau \neq 0}\left|\left\langle\boldsymbol{a}, s_{\tau}[\boldsymbol{a}]\right\rangle\right| \approx 0}_{\text {incoherence }}, \quad \text { or } \quad \underbrace{\operatorname{circ}(\boldsymbol{a}) \approx \boldsymbol{I}}_{\text {isometry }} .
$$

the bilinear Lasso loss in (11) can be approximated as

$$
\begin{align*}
\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{a} * \boldsymbol{x}\|_{F}^{2} & =\frac{1}{2}\|\boldsymbol{y}\|_{F}^{2}+\frac{1}{2}\|\boldsymbol{a} * \boldsymbol{x}\|_{F}^{2}-\langle\boldsymbol{y}, \boldsymbol{a} * \boldsymbol{x}\rangle \\
& \approx \frac{1}{2}\|\boldsymbol{y}\|_{F}^{2}+\frac{1}{2}\|\boldsymbol{x}\|_{F}^{2}-\langle\boldsymbol{y}, \boldsymbol{a} * \boldsymbol{x}\rangle \tag{13}
\end{align*}
$$

This gives:

$$
\begin{equation*}
\varphi_{\mathrm{ABL}}(\boldsymbol{a}, \boldsymbol{x}) \doteq \frac{1}{2}\|\boldsymbol{y}\|_{F}^{2}+\frac{1}{2}\|\boldsymbol{x}\|_{F}^{2}-\langle\boldsymbol{y}, \boldsymbol{a} * \boldsymbol{x}\rangle+\lambda\|\boldsymbol{x}\|_{1}, \quad\|\boldsymbol{a}\|_{F}=1 \tag{14}
\end{equation*}
$$

Landscape of the Objective Function

Geometry of the approximate bilinear Lasso (ABL) objective:

$$
\begin{equation*}
\varphi_{\mathrm{ABL}}(\boldsymbol{a}, \boldsymbol{x}) \doteq \frac{1}{2}\|\boldsymbol{y}\|_{F}^{2}+\frac{1}{2}\|\boldsymbol{x}\|_{F}^{2}-\langle\boldsymbol{y}, \boldsymbol{a} * \boldsymbol{x}\rangle+\lambda\|\boldsymbol{x}\|_{1}, \quad \boldsymbol{a} \in \mathcal{A} \tag{15}
\end{equation*}
$$

(a) a single shift $s_{\ell_{1}}\left[\boldsymbol{a}_{0}\right]$

(b) two shifts $s_{\ell_{1}}\left[\boldsymbol{a}_{0}\right], s_{\ell_{2}}\left[\boldsymbol{a}_{0}\right]$

(c) multiple shifts

Notice: equivalent (symmetric) solutions are local minimizers, and there is negative curvature in symmetry breaking directions.

Sparsity and Shift-Coherence Tradeoff

Solving the sparse-and-short deconvolution (SaSD) from:

$$
\begin{equation*}
\min _{\boldsymbol{a}, \boldsymbol{x}} \varphi_{\mathrm{BL}}(\boldsymbol{a}, \boldsymbol{x}) \doteq \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{a} * \boldsymbol{x}\|_{F}^{2}+\lambda\|\boldsymbol{x}\|_{1} \quad \text { such that } \quad \boldsymbol{a} \in \mathcal{A} . \tag{16}
\end{equation*}
$$

A sparsity-coherence tradeoff: Smaller $\mu_{s}\left(\boldsymbol{a}_{0}\right)$ allows higher $\theta(\boldsymbol{x})$.

Figure: In order of increasing difficulty: (a) when \boldsymbol{a}_{0} is a Dirac delta function, $\mu_{s}\left(\boldsymbol{a}_{0}\right)=0$; (b) when \boldsymbol{a}_{0} is uniform on the sphere \mathbb{S}^{n-1}, its shift-coherence is roughly $\mu_{s}\left(\boldsymbol{a}_{0}\right) \approx n^{-1 / 2} ;($ c $)$ when \boldsymbol{a}_{0} is low-pass, $\mu_{s}\left(\boldsymbol{a}_{0}\right) \rightarrow$ const. as n grows.

Alternating Descent Algorithm for SaSD

Solving the sparse-and-short deconvolution (SaSD) from:

$$
\begin{equation*}
\min _{\boldsymbol{a}, \boldsymbol{x}} \varphi_{\mathrm{BL}}(\boldsymbol{a}, \boldsymbol{x}) \doteq \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{a} * \boldsymbol{x}\|_{F}^{2}+\lambda\|\boldsymbol{x}\|_{1} \quad \text { such that } \quad \boldsymbol{a} \in \mathcal{A} . \tag{17}
\end{equation*}
$$

Fix a and take a proximal gradient step on x.
Gradient w.r.t. $\boldsymbol{x}: \quad \nabla_{\boldsymbol{x}} \psi(\boldsymbol{a}, \boldsymbol{x})=\boldsymbol{\iota}_{\boldsymbol{x}}^{*} \check{\boldsymbol{a}} *(\boldsymbol{a} * \boldsymbol{x}-\boldsymbol{y})$.
Proximal gradient: $\quad \boldsymbol{x}_{k+1}=\operatorname{prox}_{t \lambda g}\left[\boldsymbol{x}_{k}-t \nabla_{\boldsymbol{x}} \psi\left(\boldsymbol{a}_{k}, \boldsymbol{x}_{k}\right)\right]$.
Fix \boldsymbol{x} and take a projected gradient step on $\boldsymbol{a} \in \mathcal{A}$ and $\|a\|_{2}=1$.
Gradient w.r.t. $\boldsymbol{a}: \quad \nabla_{\boldsymbol{a}} \psi(\boldsymbol{a}, \boldsymbol{x})=\boldsymbol{\iota}_{\boldsymbol{a}}^{*} \check{\boldsymbol{x}} *(\boldsymbol{a} * \boldsymbol{x}-\boldsymbol{y})$.
Proximal gradient: $\quad \boldsymbol{a}_{k+1}=\mathcal{P}_{\mathcal{A}}\left[\boldsymbol{a}_{k}-\tau_{k} \nabla_{\boldsymbol{a}} \psi\left(\boldsymbol{a}_{k}, \boldsymbol{x}_{k+1}\right)\right]$.

Additional Heuristics

In practice, the kernel \boldsymbol{a} might not be so shift incoherent.
Better Optimization Algorithm: Momentum Acceleration

$$
\begin{align*}
\boldsymbol{w}_{k} & =\boldsymbol{x}_{k}+\beta \cdot \underbrace{\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)}_{\text {inertial term }}, \tag{22}\\
\boldsymbol{x}_{k+1} & =\operatorname{prox}_{t_{k} g}\left[\boldsymbol{w}_{k}-t_{k} \nabla_{\boldsymbol{x}} \psi\left(\boldsymbol{a}_{k}, \boldsymbol{w}_{k}\right)\right] . \tag{23}
\end{align*}
$$

Better Optimization Strategy: Homotopy Continuation Gradually decreasing λ_{n} to produce the solution path $\left\{\left(\hat{\boldsymbol{a}}_{n}, \hat{\boldsymbol{x}}_{n} ; \lambda_{n}\right)\right\}$. By ensuring that \boldsymbol{x} remains sparse along the solution path.

Better Initialization: from the Data
Small pieces of \boldsymbol{y} are superpositions of a few shifted copies of \boldsymbol{a}_{0}. One could select a small window of \boldsymbol{y} and then normalizes it to initialize \boldsymbol{a}.

An Example of Scanning Tunneling Microscopy

Short and Sparse Deconvolution on Real NaFeAs Data ${ }^{1}$

This dataset \boldsymbol{y} consists of measurements across a $100 \times 100 \mathrm{~nm}^{2}$ area at $E=41$ different bias voltages.

${ }^{1}$ Dictionary learning in Fourier-transform scanning tunneling spectroscopy, Sky Cheung et. al., Nature Communications, 2020.

Assignments

- Reading: Section 7.3.3 and Chapter 12.
- Written Homework \#4.

