Computational Principles for High-dim Data Analysis

(Lecture Eighteen)

Yi Ma

EECS Department, UC Berkeley
November 2, 2021

Rotational symmetry

Nonconvex Optimization for High-Dim Problems Fixed Point Power Iteration

(1) Power Iteration is Everywhere
"Premature optimization is the root of all evil."

- Donald Knuth, The Art of Computer Programming

Negative Curvature and Newton Descent

Consider a nonconvex program:

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

Negative curvature descent: compute \boldsymbol{e}_{k} satisfying
$\boldsymbol{A} \boldsymbol{e}_{k}=\lambda_{\max }(\boldsymbol{A}) \boldsymbol{e}_{k}$ with $\boldsymbol{A} \doteq \boldsymbol{I}-L_{1}^{-1} \nabla^{2} f\left(\boldsymbol{x}_{k}\right) \succ \mathbf{0}$ by power iteration:

$$
\begin{equation*}
\hat{\lambda}_{i+1}=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}, \quad \boldsymbol{x}=\boldsymbol{A}^{i} \boldsymbol{b}, \quad i=1,2, \ldots \tag{1}
\end{equation*}
$$

Newton descent: compute descent s_{k} from

$$
\begin{align*}
\boldsymbol{s}_{k} & =\underset{\boldsymbol{s}}{\arg \min } f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{s}\right\rangle+\frac{1}{2} \boldsymbol{s}^{*} \nabla^{2} f\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}+\frac{\lambda}{2}\|\boldsymbol{s}\|_{2}^{2} \tag{2}\\
& =-\left[\nabla^{2} f\left(\boldsymbol{x}_{k}\right)+\lambda \boldsymbol{I}\right]^{-1} \nabla f\left(\boldsymbol{x}_{k}\right) . \tag{3}
\end{align*}
$$

Negative Curvature and Newton Descent

Function class: f nonconvex and $\nabla f / \nabla^{2} f$ Lips. continuous with L_{1} / L_{2}.
The oracle: gradient $\nabla f(\boldsymbol{x})$ and $\nabla^{2} f(\boldsymbol{x})$ (to be approximated).
Hybrid gradient and negative curvature descent:

- if $-\lambda_{k}\left(\nabla^{2} f(\boldsymbol{x})\right) \geq \epsilon_{H}=\left(3 L_{2}^{2} \epsilon\right)^{1 / 3}$, then $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\frac{2 \lambda_{k}}{L_{2}} e_{k}$;
- else if $\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2} \geq \epsilon_{g}=3^{8 / 3} L_{2}^{1 / 3} \epsilon^{2 / 3} / 2$, then $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\gamma_{k} s_{k}$.

Theorem

Assume $\left\{\boldsymbol{x}_{k}\right\}$ are generated by the hybrid negative curvature and Newton descent. Then in at most

$$
\begin{equation*}
k \leq \frac{f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}_{\star}\right)}{\epsilon} \tag{4}
\end{equation*}
$$

iterations, \boldsymbol{x}_{k} will be an an approximate second-order stationary point such that $\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2} \leq \epsilon_{g}, \lambda_{\min }\left(\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\right) \geq-\epsilon_{H}$.

Compute Negative Curvature: the Power Iteration

Need to compute negative curvature direction e_{k} without Hessian: $\boldsymbol{H} \doteq \nabla^{2} f(\boldsymbol{x})$:

$$
\boldsymbol{H} \boldsymbol{e}=\lambda_{\min }(\boldsymbol{H}) \boldsymbol{e} \quad \text { or } \quad \boldsymbol{A} \boldsymbol{e}=\lambda_{\max }(\boldsymbol{A}) \boldsymbol{e}, \quad \text { with } \boldsymbol{A} \doteq \boldsymbol{I}-L_{1}^{-1} \boldsymbol{H} \succ \mathbf{0} .
$$

Power iteration:

$$
\hat{\lambda}_{i+1}=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}, \quad \boldsymbol{x}=\boldsymbol{A}^{i} \boldsymbol{b}, \quad i=1,2, \ldots,
$$

where $\boldsymbol{A}^{i} \boldsymbol{b}$ can be approximated for a small $t>0$ with:

$$
\boldsymbol{A} \boldsymbol{b}=\left[\boldsymbol{I}-L_{1}^{-1} \boldsymbol{H}\right] \boldsymbol{b} \approx \boldsymbol{b}-\left(t L_{1}\right)^{-1}(\nabla f(\boldsymbol{x}+t \boldsymbol{b})-\nabla f(\boldsymbol{x}))
$$

Two gradient evaluations per power iteration.

Conjugate Gradient Descent

Need to compute \boldsymbol{s}_{k} without knowing $\boldsymbol{H}=\nabla^{2} f(\boldsymbol{x})$. Notice that, similar to \boldsymbol{e}_{k}, to find s_{k} we need solve: $\underbrace{[\boldsymbol{H}+\lambda \boldsymbol{I}]}_{\boldsymbol{A}} s_{k}=\underbrace{-\nabla f\left(\boldsymbol{x}_{k}\right)}_{y}$.
A special case of the quadratic minimization problem: $\min _{\boldsymbol{x}}\|\boldsymbol{y}-\boldsymbol{A x}\|_{2}^{2}$.
Conjugate gradient descent: ${ }^{1}$ Initialize the residual \boldsymbol{r}_{i} and descent direction \boldsymbol{d}_{i} as: $\boldsymbol{d}_{0}=\boldsymbol{r}_{0}=\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}_{0}$. Then for $i=0,1,2, \ldots$:
Conjugate Gradient: $\left\{\begin{aligned} \alpha_{i} & =\frac{\boldsymbol{r}_{i}^{*} \boldsymbol{r}_{i}}{\boldsymbol{d}_{i}^{*} \boldsymbol{A} \boldsymbol{d}_{i}}, \\ \boldsymbol{x}_{i+1} & =\boldsymbol{x}_{i}+\alpha_{i} \boldsymbol{d}_{i}, \\ \boldsymbol{r}_{i+1} & =\boldsymbol{r}_{i}-\alpha_{i} \boldsymbol{A} \boldsymbol{d}_{i}, \\ \beta_{i+1} & =\frac{\boldsymbol{r}_{i+1}^{*} \boldsymbol{r}_{i+1}}{\boldsymbol{r}_{i}^{*} \boldsymbol{r}_{i}}, \\ \boldsymbol{d}_{i+1} & =\boldsymbol{r}_{i+1}+\beta_{i+1} \boldsymbol{d}_{i} .\end{aligned}\right.$

[^0]
Effect of Noisy Gradient around a Saddle Point

Consider a standard quadratic function: $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{*} \boldsymbol{H} \boldsymbol{x}$ for a constant $\boldsymbol{H} \in \mathbb{R}^{n \times n}$, with the smallest eigenvalue $\lambda_{\text {min }}<0$, and the Lipschitz constant $L_{1}=\max _{i}\left|\lambda_{i}(\boldsymbol{H})\right|$.

The Langevin dynamics is:

$$
\begin{align*}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}-\frac{1}{L_{1}} \nabla f\left(\boldsymbol{x}_{k}\right)+\sqrt{2 \lambda / L_{1}} \boldsymbol{n}_{k} \\
& =\underbrace{\left(\boldsymbol{I}-L_{1}^{-1} \boldsymbol{H}\right)}_{\boldsymbol{A}} \boldsymbol{x}_{k}+\underbrace{\sqrt{2 \lambda / L_{1}}}_{b} \boldsymbol{n}_{k} . \tag{5}
\end{align*}
$$

Since $\lambda_{\max }(\boldsymbol{A})=1-\lambda_{\min }(\boldsymbol{H}) / L_{1}>1$, this is an unstable linear dynamic system with random noise as the input:

$$
\begin{equation*}
\boldsymbol{x}_{k+1}=\boldsymbol{A} \boldsymbol{x}_{k}+b \boldsymbol{n}_{k} . \tag{6}
\end{equation*}
$$

Escaping Saddle Point

Therefore, the accumulated dynamics:

$$
\begin{equation*}
\boldsymbol{x}_{k+1}=\boldsymbol{A}^{k+1} \boldsymbol{x}_{0}+b \sum_{i=0}^{k} \boldsymbol{A}^{k-i} \boldsymbol{n}_{i} . \tag{7}
\end{equation*}
$$

$\boldsymbol{A}^{k+1} \boldsymbol{x}_{0}$ and $\boldsymbol{A}^{k-i} \boldsymbol{n}_{i}$ are powers of the matrix \boldsymbol{A} applied to random vectors (assuming \boldsymbol{x}_{0} random too).

Question: which direction survives in power iteration?

Proposition (Escaping Saddle Point via Noisy Gradient Descent)

Consider the noisy gradient descent via the Langevin dynamics (5) for the function $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{*} \boldsymbol{H} \boldsymbol{x}$, starting from $\boldsymbol{x}_{0} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$. Then after $k \geq \frac{\log n-\log \left(\left|\lambda_{\min }\right| / L_{1}\right)}{2 \log \left(1+\left|\lambda_{\text {min }}\right| / L_{1}\right)}$ steps, we have

$$
\begin{equation*}
\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1}\right)-f\left(\boldsymbol{x}_{0}\right)\right] \leq-\lambda \tag{8}
\end{equation*}
$$

Power Iteration and Fixed-Point Style Algorithms

- PCA
- Optimization:
- Algorithm:

$$
\begin{gathered}
\max _{w \in \mathbb{S}^{n-1}} \varphi(w) \doteq \frac{1}{2}\left\|\boldsymbol{w}^{*} \boldsymbol{Y}\right\|_{2}^{2} \\
\boldsymbol{w}_{t+1}=\mathcal{P}_{\mathbb{S}^{n-1}}\left[\nabla_{\boldsymbol{w}} \varphi\left(\boldsymbol{w}_{t}\right)\right]=\frac{\boldsymbol{Y} \boldsymbol{Y}^{*} \boldsymbol{w}_{t}}{\left\|\boldsymbol{Y} \boldsymbol{Y}^{*} \boldsymbol{w}_{t}\right\|_{2}}
\end{gathered}
$$

- ICA
- Optimization:

$$
\max _{\boldsymbol{w} \in \mathbb{S}^{n-1}} \psi(\boldsymbol{w}) \doteq \frac{1}{4} \operatorname{kurt}\left[\boldsymbol{w}^{*} \boldsymbol{y}\right]=\frac{1}{4} \mathbb{E}\left[\boldsymbol{w}^{*} \boldsymbol{y}\right]^{4}-\frac{3}{4}\|\boldsymbol{w}\|_{2}^{4}
$$

- Algorithm:

$$
\boldsymbol{w}_{t+1}=\mathcal{P}_{\mathbb{S}^{n-1}}\left[\nabla_{\boldsymbol{w}} \psi\left(\boldsymbol{w}_{t}\right)\right]=\frac{\mathbb{E}\left[\boldsymbol{y}\left(\boldsymbol{y}^{*} \boldsymbol{w}_{t}\right)^{3}\right]-3\left\|\boldsymbol{w}_{t}\right\|_{2}^{2} \boldsymbol{w}_{t}}{\left\|\mathbb{E}\left[\boldsymbol{y}\left(\boldsymbol{y}^{*} \boldsymbol{w}_{t}\right)^{3}\right]-3\right\| \boldsymbol{w}_{t}\left\|_{2}^{2} \boldsymbol{w}_{t}\right\|_{2}}
$$

- DL
- Optimization:
- Algorithm:

$$
\max _{\boldsymbol{W} \in \operatorname{St}(k, n ; \mathbb{R})} \phi(\boldsymbol{W}) \doteq \frac{1}{4}\left\|\boldsymbol{W}^{*} \boldsymbol{Y}\right\|_{4}^{4}
$$

where $\boldsymbol{U}_{t} \boldsymbol{\Sigma}_{t} \boldsymbol{V}_{t}^{*}=\operatorname{SVD}\left[\boldsymbol{Y}\left(\boldsymbol{Y}^{*} \boldsymbol{W}\right)^{\circ 3}\right]$.

Singular Vectors via Nonconvex Optimization

To compute singular vector, say \boldsymbol{u}_{1}, consider the optimization problem:

$$
\begin{equation*}
\min \varphi(\boldsymbol{q}) \equiv-\frac{1}{2} \boldsymbol{q}^{*} \boldsymbol{\Gamma} \boldsymbol{q} \quad \text { s.t. } \quad\|\boldsymbol{q}\|_{2}^{2}=1 \tag{9}
\end{equation*}
$$

with $\boldsymbol{\Gamma} \doteq \boldsymbol{Y} \boldsymbol{Y}^{*}$.
Consider the Lagrangian formulation:

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{q}, \lambda)=\varphi(\boldsymbol{q})+\lambda\left(\|\boldsymbol{q}\|_{2}^{2}-1\right) . \tag{10}
\end{equation*}
$$

From the optimality condition $\nabla_{\boldsymbol{q}} \mathcal{L}(\boldsymbol{q}, \lambda)=0$:

$$
\begin{equation*}
\nabla \varphi(\boldsymbol{q})=\boldsymbol{\Gamma} \boldsymbol{q}=2 \lambda \boldsymbol{q} \quad \text { for some } \lambda \tag{11}
\end{equation*}
$$

The critical points are precisely the eigenvectors $\pm \boldsymbol{u}_{i}$ of $\boldsymbol{\Gamma}$:

$$
\text { All } \pm \boldsymbol{u}_{i} \text { are unstable critical points of } \varphi \text { over } \mathbb{S}^{n-1} \text { except } \pm \boldsymbol{u}_{1}!
$$

Fixed Point Interpretation and Power Iteration

Any critical point, including the optimal solution, is a "fixed point" to the following equation:

$$
\begin{equation*}
\boldsymbol{q}=\mathcal{P}_{\mathbb{S}^{n-1}}(\boldsymbol{\Gamma} \boldsymbol{q})=\frac{\boldsymbol{\Gamma} \boldsymbol{q}}{\|\boldsymbol{\Gamma} \boldsymbol{q}\|_{2}} \tag{12}
\end{equation*}
$$

where $\mathcal{P}_{\mathbb{S}^{n-1}}$ means projection onto the sphere \mathbb{S}^{n-1}. The map:

$$
g(\cdot) \doteq \mathcal{P}_{\mathbb{S}^{n-1}}[\boldsymbol{\Gamma}(\cdot)]: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}
$$

is actually a contracting map from \mathbb{S}^{n-1} to \mathbb{S}^{n-1} :

$$
d(g(\boldsymbol{q}), g(\boldsymbol{p})) \leq \rho \cdot d(\boldsymbol{q}, \boldsymbol{p})
$$

for some $0<\rho \leq \lambda_{2} / \lambda_{1}<1$ and $d(\cdot, \cdot)$ a natural distance on the sphere. Hence power iteration:

$$
\begin{equation*}
\boldsymbol{q}_{k+1}=g\left(\boldsymbol{q}_{k}\right)=\frac{\boldsymbol{\Gamma} \boldsymbol{q}_{k}}{\left\|\boldsymbol{\Gamma} \boldsymbol{q}_{k}\right\|_{2}} \in \mathbb{S}^{n-1} \tag{13}
\end{equation*}
$$

Contracting Map

Proposition

Let $\boldsymbol{\Gamma} \in \mathbb{R}^{n \times n}$ be a matrix with left eigenvalue-eigenvector pairs $\left(\lambda_{1}, \boldsymbol{u}_{1}\right), \ldots,\left(\lambda_{n}, \boldsymbol{u}_{n}\right)$ such that $\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}$. Then the power iteration is contracting under the metric: $d(\boldsymbol{x}, \boldsymbol{y}) \doteq\left\|\frac{\boldsymbol{x}}{\left\langle\boldsymbol{x}, \boldsymbol{u}_{1}\right\rangle}-\frac{\boldsymbol{y}}{\left\langle\boldsymbol{y}, \boldsymbol{u}_{1}\right\rangle}\right\|_{2}$ with contraction constant $\lambda_{2} / \lambda_{1}$ for all $\boldsymbol{x}, \boldsymbol{y} \perp \boldsymbol{u}_{1}: d(g(\boldsymbol{x}), g(\boldsymbol{y})) \leq \frac{\lambda_{2}}{\lambda_{2}} d(\boldsymbol{x}, \boldsymbol{y})$.

Proof. $\forall \boldsymbol{x}$, we have $\left\langle\boldsymbol{\Gamma} \boldsymbol{x}, \boldsymbol{u}_{1}\right\rangle=\left\langle\boldsymbol{x}, \boldsymbol{\Gamma}^{*} \boldsymbol{u}_{1}\right\rangle=\lambda_{1}\left\langle\boldsymbol{x}, \boldsymbol{u}_{1}\right\rangle$. So we have:

$$
\begin{aligned}
d(g(\boldsymbol{x}), g(\boldsymbol{y})) & =\left\|\frac{\boldsymbol{\Gamma} \boldsymbol{x}}{\left\langle\boldsymbol{\Gamma}, \boldsymbol{u}_{1}\right\rangle}-\frac{\boldsymbol{\Gamma} \boldsymbol{y}}{\left\langle\boldsymbol{\Gamma}, \boldsymbol{u}_{1}\right\rangle}\right\|_{2} \\
& =\frac{1}{\lambda_{1}}\left\|\boldsymbol{\Gamma}\left(\frac{\boldsymbol{x}}{\left\langle\boldsymbol{x}, \boldsymbol{u}_{1}\right\rangle}-\frac{\boldsymbol{y}}{\left\langle\boldsymbol{y}, \boldsymbol{u}_{1}\right\rangle}\right)\right\|_{2} \\
& \leq \frac{\lambda_{2}}{\lambda_{1}}\left\|\frac{\boldsymbol{x}}{\left\langle\boldsymbol{x}, \boldsymbol{u}_{1}\right\rangle}-\frac{\boldsymbol{y}}{\left\langle\boldsymbol{y}, \boldsymbol{u}_{1}\right\rangle}\right\|_{2}=\frac{\lambda_{2}}{\lambda_{1}} d(\boldsymbol{x}, \boldsymbol{y}) .
\end{aligned}
$$

The sequence \boldsymbol{q}_{k} converges linearly to a unique fixed point $\boldsymbol{q}_{\star}=\boldsymbol{u}_{1}$.

Complete Dictionary Learning

Given a data matrix $\boldsymbol{Y}=\boldsymbol{D}_{o} \boldsymbol{X}_{o}$ where \boldsymbol{D}_{o} is orthogonal and \boldsymbol{X}_{o} is sparse, try to solve the following optimization problem:

$$
\begin{equation*}
\min _{\boldsymbol{A}} \psi(\boldsymbol{A}) \equiv-\frac{1}{4}\|\boldsymbol{A} \boldsymbol{Y}\|_{4}^{4}, \quad \text { subject to } \quad \boldsymbol{A}^{*} \boldsymbol{A}=\boldsymbol{I} \tag{14}
\end{equation*}
$$

Consider the Lagrangian:

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{A}, \boldsymbol{\Lambda}) \doteq-\frac{1}{4}\|\boldsymbol{A} \boldsymbol{Y}\|_{4}^{4}+\left\langle\boldsymbol{\Lambda}, \boldsymbol{A}^{*} \boldsymbol{A}-\boldsymbol{I}\right\rangle . \tag{15}
\end{equation*}
$$

This gives the necessary condition $\nabla_{\boldsymbol{A}} \mathcal{L}(\boldsymbol{A}, \boldsymbol{\Lambda})=\mathbf{0}$:

$$
\begin{equation*}
-\nabla_{\boldsymbol{A}} \psi(\boldsymbol{A})=(\boldsymbol{A} \boldsymbol{Y})^{\circ 3} \boldsymbol{Y}^{*}=\boldsymbol{A} \boldsymbol{S} \tag{16}
\end{equation*}
$$

for a symmetric matrix $\boldsymbol{S}=\left(\boldsymbol{\Lambda}+\boldsymbol{\Lambda}^{*}\right)$ (of Lagrange multipliers).

Fixed Point Interpretation

For an orthogonal \boldsymbol{A} and symmetric \boldsymbol{S}, we have: $\mathcal{P}_{\mathrm{O}(n)}[\boldsymbol{A} \boldsymbol{S}]=\boldsymbol{A}$. (Why?) By projecting both sides of (16) onto the orthogonal group $\mathrm{O}(n)$:

$$
\begin{equation*}
\boldsymbol{A}=\mathcal{P}_{\mathrm{O}(n)}\left[(\boldsymbol{A} \boldsymbol{Y})^{\circ 3} \boldsymbol{Y}^{*}\right] \tag{17}
\end{equation*}
$$

Consider the map from $\mathrm{O}(n)$ to $\mathrm{O}(n)$:

$$
g(\cdot) \doteq \mathcal{P}_{\mathrm{O}(n)}\left[((\cdot) \boldsymbol{Y})^{\circ 3} \boldsymbol{Y}^{*}\right]: \mathrm{O}(n) \rightarrow \mathrm{O}(n)
$$

The optimal solutions \boldsymbol{A}_{\star} is a "fixed point" of the map $g(\cdot)$. This gives the matching, stretching, and projection algorithm for dictionary learning:

$$
\begin{equation*}
\boldsymbol{A}_{k+1}=\mathcal{P}_{\mathrm{O}(n)}\left[\left(\boldsymbol{A}_{k} \boldsymbol{Y}\right)^{\circ 3} \boldsymbol{Y}^{*}\right] \tag{18}
\end{equation*}
$$

The sequence A_{k} converges locally to A_{\star} with a cubic rate.

Minimizing a Concave Function on a Stiefel Manifold

 Consider a concave function $f(\boldsymbol{X})$ over the Stiefel Manifold:$$
\vee_{m}\left(\mathbb{R}^{n}\right) \doteq\left\{\boldsymbol{X} \in \mathbb{R}^{n \times m} \mid \boldsymbol{X}^{*} \boldsymbol{X}=\boldsymbol{I}_{m \times m}\right\}
$$

Then for the program:

$$
\begin{equation*}
\min _{\boldsymbol{X}} f(\boldsymbol{X}) \text { subject to } \quad \boldsymbol{X}^{*} \boldsymbol{X}=\boldsymbol{I} \tag{19}
\end{equation*}
$$

we consider the Lagrangian:

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{X}, \boldsymbol{\Lambda}) \doteq f(\boldsymbol{X})+\left\langle\boldsymbol{\Lambda}, \boldsymbol{X}^{*} \boldsymbol{X}-\boldsymbol{I}\right\rangle \tag{20}
\end{equation*}
$$

The necessary condition for optimality $\nabla_{\boldsymbol{X}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{\Lambda})=\mathbf{0}$ gives

$$
\begin{equation*}
-\nabla f(\boldsymbol{X})=\boldsymbol{X} \boldsymbol{S} \tag{21}
\end{equation*}
$$

for a symmetric matrix $\boldsymbol{S}=\left(\boldsymbol{\Lambda}+\boldsymbol{\Lambda}^{*}\right)$.

Generalized Power Iteration

Since $\boldsymbol{X}^{*} \boldsymbol{X}=\boldsymbol{I}$, this gives $\nabla f(\boldsymbol{X})^{*} \nabla f(\boldsymbol{X})=\boldsymbol{S}^{*} \boldsymbol{X}^{*} \boldsymbol{X} \boldsymbol{S}=\boldsymbol{S}^{2}$ hence $\boldsymbol{S}=\left[\nabla f(\boldsymbol{X})^{*} \nabla f(\boldsymbol{X})\right]^{1 / 2}$. When \boldsymbol{S} is invertible, the necessary condition (21) for optimality becomes:

$$
\begin{equation*}
\boldsymbol{X}=-\nabla f(\boldsymbol{X})\left[\nabla f(\boldsymbol{X})^{*} \nabla f(\boldsymbol{X})\right]^{-1 / 2} \tag{22}
\end{equation*}
$$

This gives a mapping from $\mathrm{V}_{m}\left(\mathbb{R}^{n}\right)$ to itself:

$$
\begin{equation*}
g(\boldsymbol{X}) \doteq-\nabla f(\boldsymbol{X})\left[\nabla f(\boldsymbol{X})^{*} \nabla f(\boldsymbol{X})\right]^{-1 / 2}: \vee_{m}\left(\mathbb{R}^{n}\right) \rightarrow \bigvee_{m}\left(\mathbb{R}^{n}\right) \tag{23}
\end{equation*}
$$

The optimal fixed point solution can be computed with the iteration:

$$
\begin{equation*}
\boldsymbol{X}_{k+1}=g\left(\boldsymbol{X}_{k}\right)=-\nabla f\left(\boldsymbol{X}_{k}\right)\left[\nabla f\left(\boldsymbol{X}_{k}\right)^{*} \nabla f\left(\boldsymbol{X}_{k}\right)\right]^{-1 / 2} \tag{24}
\end{equation*}
$$

\boldsymbol{X}_{k} converges to a critical point with a rate $O(1 / k) .^{2}$

[^1]
Fixed Point of a Contracting Mapping

let \mathcal{M} be a compact smooth manifold with a distance metric $d(\cdot, \cdot)$.

Definition (Contraction Mapping)

A map $g: \mathcal{M} \rightarrow \mathcal{M}$ is called a contraction mapping on \mathcal{M} if there exists $\rho \in(0,1)$ such that $d(g(\boldsymbol{x}), g(\boldsymbol{y})) \leq \rho \cdot d(\boldsymbol{x}, \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{M}$.

Theorem (Banach-Caccioppoli Fixed Point)

Let (\mathcal{M}, d) be a complete metric space with a contraction mapping: $g: \mathcal{M} \rightarrow \mathcal{M}$. Then g has a unique fixed point $\boldsymbol{x}_{\star} \in \mathcal{M}: g\left(\boldsymbol{x}_{\star}\right)=\boldsymbol{x}_{\star}$.

The unique fixed point \boldsymbol{x}_{\star} can be found through iteration:

$$
\boldsymbol{x}_{k+1} \leftarrow g\left(\boldsymbol{x}_{k}\right), \quad k=0,1, \ldots
$$

with $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}_{\star}$ at least geometrically.

Back to the Origin

Newton's Method: finding the zero x_{\star} of a function $f(x)$ such that $f\left(x_{\star}\right)=0$ as a fixed point to the mapping:

$$
\begin{equation*}
g(x) \doteq x-\frac{f(x)}{f^{\prime}(x)} \tag{25}
\end{equation*}
$$

The Newton iteration is just:

$$
\begin{equation*}
x_{k+1}=g\left(x_{k}\right)=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} . \tag{26}
\end{equation*}
$$

Applying to $\min f(x)$ or equivalently solving $f^{\prime}(x)=0$ leads to Newton descent!

Assignments

- Reading: Section 9.6 of Chapter 9.
- Written Homework \#4.

[^0]: ${ }^{1}$ An introduction to the conjugate gradient method without the agonizing pain, Jonathan Shewchuk, Technical report, Carnegie Mellon University, 1994.

[^1]: ${ }^{2}$ Generalized power method for sparse principal component analysis, M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre, Journal of Machine Learning Research, 2010,

