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Nonconvex Optimization for High-Dim Problems
Fixed Point Power Iteration

1 Power Iteration is Everywhere

“Premature optimization is the root of all evil.”
– Donald Knuth, The Art of Computer Programming
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Power Iteration is Everywhere

Negative Curvature and Newton Descent

Consider a nonconvex program:

min
x
f(x).

Negative curvature descent: compute ek satisfying
Aek = λmax(A)ek with A

.
= I − L−1

1 ∇2f(xk) ≻ 0 by power iteration:

λ̂i+1 =
⟨Ax,x⟩
⟨x,x⟩

, x = Aib, i = 1, 2, . . . (1)

Newton descent: compute descent sk from

sk = argmin
s

f(xk) + ⟨∇f(xk), s⟩+
1

2
s∗∇2f(xk)s+

λ

2
∥s∥22 (2)

= −[∇2f(xk) + λI]−1∇f(xk). (3)
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Power Iteration is Everywhere

Negative Curvature and Newton Descent
Function class: f nonconvex and ∇f/∇2f Lips. continuous with L1/L2.

The oracle: gradient ∇f(x) and ∇2f(x) (to be approximated).

Hybrid gradient and negative curvature descent:

• if −λk(∇2f(x)) ≥ ϵH =
(
3L2

2ϵ
)1/3

, then xk+1 = xk +
2λk
L2

ek;

• else if ∥∇f(xk)∥2 ≥ ϵg = 38/3L
1/3
2 ϵ2/3/2, then xk+1 = xk + γksk.

Theorem

Assume {xk} are generated by the hybrid negative curvature and Newton
descent. Then in at most

k ≤ f(x0)− f(x⋆)

ϵ
(4)

iterations, xk will be an an approximate second-order stationary point such
that ∥∇f(xk)∥2 ≤ ϵg, λmin(∇2f(xk)) ≥ −ϵH .
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Power Iteration is Everywhere

Compute Negative Curvature: the Power Iteration

Need to compute negative curvature direction ek without Hessian:
H

.
= ∇2f(x):

He = λmin(H)e or Ae = λmax(A)e, with A
.
= I − L−1

1 H ≻ 0.

Power iteration:

λ̂i+1 =
⟨Ax,x⟩
⟨x,x⟩

, x = Aib, i = 1, 2, . . . ,

where Aib can be approximated for a small t > 0 with:

Ab =
[
I − L−1

1 H
]
b ≈ b− (tL1)

−1
(
∇f(x+ tb)−∇f(x)

)
.

Two gradient evaluations per power iteration.
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Power Iteration is Everywhere

Conjugate Gradient Descent

Need to compute sk without knowing H = ∇2f(x). Notice that, similar
to ek, to find sk we need solve: [H + λI]︸ ︷︷ ︸

A

sk = −∇f(xk)︸ ︷︷ ︸
y

.

A special case of the quadratic minimization problem: minx ∥y −Ax∥22.

Conjugate gradient descent:1 Initialize the residual ri and descent
direction di as: d0 = r0 = y −Ax0. Then for i = 0, 1, 2, . . .:

Conjugate Gradient:



αi =
r∗
i ri

d∗
iAdi

,

xi+1 = xi + αidi,
ri+1 = ri − αiAdi,

βi+1 =
r∗
i+1ri+1

r∗
i ri

,

di+1 = ri+1 + βi+1di.

1An introduction to the conjugate gradient method without the agonizing pain,
Jonathan Shewchuk, Technical report, Carnegie Mellon University, 1994.
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Power Iteration is Everywhere

Effect of Noisy Gradient around a Saddle Point

Consider a standard quadratic function:
f(x) = 1

2x
∗Hx for a constant H ∈ Rn×n,

with the smallest eigenvalue λmin < 0,
and the Lipschitz constant L1 = maxi |λi(H)|.

The Langevin dynamics is:

xk+1 = xk −
1

L1
∇f(xk) +

√
2λ/L1nk

= (I − L−1
1 H)︸ ︷︷ ︸

A

xk +
√

2λ/L1︸ ︷︷ ︸
b

nk. (5)

Since λmax(A) = 1− λmin(H)/L1 > 1, this is an unstable linear
dynamic system with random noise as the input:

xk+1 = Axk + bnk. (6)
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Power Iteration is Everywhere

Escaping Saddle Point
Therefore, the accumulated dynamics:

xk+1 = Ak+1x0 + b

k∑
i=0

Ak−ini. (7)

Ak+1x0 and Ak−ini are powers of the matrix A
applied to random vectors (assuming x0 random too).

Question: which direction survives in power iteration?

Proposition (Escaping Saddle Point via Noisy Gradient Descent)

Consider the noisy gradient descent via the Langevin dynamics (5) for the
function f(x) = 1

2x
∗Hx, starting from x0 ∼ N (0, σ2I). Then after

k ≥ logn−log(|λmin|/L1)
2 log(1+|λmin|/L1)

steps, we have

E[f(xk+1)− f(x0)] ≤ −λ. (8)
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Power Iteration is Everywhere

Power Iteration and Fixed-Point Style Algorithms

• PCA
• Optimization: max

w∈Sn−1
φ(w)

.
=

1

2
∥w∗Y ∥22

• Algorithm: wt+1 = PSn−1 [∇wφ(wt)] =
Y Y ∗wt

∥Y Y ∗wt∥2• ICA
• Optimization:

max
w∈Sn−1

ψ(w)
.
=

1

4
kurt[w∗y] =

1

4
E [w∗y]

4 − 3

4
∥w∥42

• Algorithm:

wt+1 = PSn−1 [∇wψ(wt)] =
E
[
y (y∗wt)

3]− 3 ∥wt∥22 wt∥∥E [
y (y∗wt)

3]− 3 ∥wt∥22 wt

∥∥
2

• DL
• Optimization:

max
W∈St(k,n;R)

ϕ(W )
.
=

1

4
∥W ∗Y ∥44

• Algorithm:
Wt+1 = PSt(k,n;R) [∇Wϕ(Wt)] = UtV

∗
t ,

where UtΣtV
∗
t = SVD[Y (Y ∗W )◦3].
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Power Iteration is Everywhere

Singular Vectors via Nonconvex Optimization

To compute singular vector, say u1, consider the optimization problem:

minφ(q) ≡ −1
2q

∗Γq s.t. ∥q∥22 = 1 (9)

with Γ
.
= Y Y ∗.

Consider the Lagrangian formulation:

L(q, λ) = φ(q) + λ(∥q∥22 − 1). (10)

From the optimality condition ∇qL(q, λ) = 0:

∇φ(q) = Γq = 2λq for some λ. (11)

The critical points are precisely the eigenvectors ±ui of Γ:

All ±ui are unstable critical points of φ over Sn−1 except ±u1!
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Power Iteration is Everywhere

Fixed Point Interpretation and Power Iteration
Any critical point, including the optimal solution, is a “fixed point” to the
following equation:

q = PSn−1(Γq) =
Γq

∥Γq∥2
, (12)

where PSn−1 means projection onto the sphere Sn−1. The map:

g(·) .= PSn−1 [Γ(·)] : Sn−1 → Sn−1

is actually a contracting map from Sn−1 to Sn−1:

d(g(q), g(p)) ≤ ρ · d(q,p)

for some 0 < ρ ≤ λ2/λ1 < 1 and d(·, ·) a natural distance on the sphere.
Hence power iteration:

qk+1 = g(qk) =
Γqk
∥Γqk∥2

∈ Sn−1. (13)
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Power Iteration is Everywhere

Contracting Map

Proposition

Let Γ ∈ Rn×n be a matrix with left eigenvalue-eigenvector pairs
(λ1,u1), . . . , (λn,un) such that λ1 > λ2 ≥ · · · ≥ λn. Then the power
iteration is contracting under the metric: d(x,y)

.
=

∥∥ x
⟨x,u1⟩ −

y
⟨y,u1⟩

∥∥
2
with

contraction constant λ2/λ1 for all x,y ⊥ u1: d(g(x), g(y)) ≤ λ2
λ2
d(x,y).

Proof. ∀x, we have ⟨Γx,u1⟩ = ⟨x,Γ∗u1⟩ = λ1⟨x,u1⟩. So we have:

d(g(x), g(y)) =
∥∥ Γx
⟨Γx,u1⟩ −

Γy
⟨Γy,u1⟩

∥∥
2

= 1
λ1

∥∥Γ( x
⟨x,u1⟩ −

y
⟨y,u1⟩

)∥∥
2

≤ λ2
λ1

∥∥ x
⟨x,u1⟩ −

y
⟨y,u1⟩

∥∥
2
= λ2

λ1
d(x,y).

The sequence qk converges linearly to a unique fixed point q⋆ = u1.
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Power Iteration is Everywhere

Complete Dictionary Learning

Given a data matrix Y = DoXo where Do is orthogonal and Xo is sparse,
try to solve the following optimization problem:

min
A

ψ(A) ≡ −1

4
∥AY ∥44, subject to A∗A = I. (14)

Consider the Lagrangian:

L(A,Λ)
.
= −1

4
∥AY ∥44 + ⟨Λ,A∗A− I⟩. (15)

This gives the necessary condition ∇AL(A,Λ) = 0:

−∇Aψ(A) = (AY )◦3Y ∗ = AS, (16)

for a symmetric matrix S = (Λ+Λ∗) (of Lagrange multipliers).
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Power Iteration is Everywhere

Fixed Point Interpretation

For an orthogonal A and symmetric S, we have:PO(n)[AS] = A. (Why?)

By projecting both sides of (16) onto the orthogonal group O(n):

A = PO(n)[(AY )◦3Y ∗]. (17)

Consider the map from O(n) to O(n):

g(·) .= PO(n)[((·)Y )◦3Y ∗] : O(n)→ O(n)

The optimal solutions A⋆ is a “fixed point” of the map g(·). This gives
the matching, stretching, and projection algorithm for dictionary learning:

Ak+1 = PO(n)[(AkY )◦3Y ∗]. (18)

The sequence Ak converges locally to A⋆ with a cubic rate.
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Power Iteration is Everywhere

Minimizing a Concave Function on a Stiefel Manifold

Consider a concave function f(X) over the Stiefel Manifold:

Vm(Rn)
.
= {X ∈ Rn×m |X∗X = Im×m}.

Then for the program:

min
X

f(X) subject to X∗X = I, (19)

we consider the Lagrangian:

L(X,Λ)
.
= f(X) + ⟨Λ,X∗X − I⟩. (20)

The necessary condition for optimality ∇XL(X,Λ) = 0 gives

−∇f(X) = XS, (21)

for a symmetric matrix S = (Λ+Λ∗).
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Power Iteration is Everywhere

Generalized Power Iteration

Since X∗X = I, this gives ∇f(X)∗∇f(X) = S∗X∗XS = S2 hence
S = [∇f(X)∗∇f(X)]1/2. When S is invertible, the necessary condition
(21) for optimality becomes:

X = −∇f(X)[∇f(X)∗∇f(X)]−1/2. (22)

This gives a mapping from Vm(Rn) to itself:

g(X)
.
= −∇f(X)[∇f(X)∗∇f(X)]−1/2 : Vm(Rn)→ Vm(Rn). (23)

The optimal fixed point solution can be computed with the iteration:

Xk+1 = g(Xk) = −∇f(Xk)[∇f(Xk)
∗∇f(Xk)]

−1/2. (24)

Xk converges to a critical point with a rate O(1/k).2

2Generalized power method for sparse principal component analysis, M. Journee, Y.
Nesterov, P. Richtarik, and R. Sepulchre, Journal of Machine Learning Research, 2010.
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Power Iteration is Everywhere

Fixed Point of a Contracting Mapping

letM be a compact smooth manifold with a distance metric d(·, ·).

Definition (Contraction Mapping)

A map g :M→M is called a contraction mapping onM if there exists
ρ ∈ (0, 1) such that d(g(x), g(y)) ≤ ρ · d(x,y) for all x,y ∈M.

Theorem (Banach-Caccioppoli Fixed Point)

Let (M, d) be a complete metric space with a contraction mapping:
g :M→M. Then g has a unique fixed point x⋆ ∈M: g(x⋆) = x⋆.

The unique fixed point x⋆ can be found through iteration:

xk+1 ← g(xk), k = 0, 1, . . .

with xk → x⋆ at least geometrically.
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Power Iteration is Everywhere

Back to the Origin

Newton’s Method: finding the zero x⋆
of a function f(x) such that f(x⋆) = 0
as a fixed point to the mapping:

g(x)
.
= x− f(x)

f ′(x)
. (25)

The Newton iteration is just:

xk+1 = g(xk) = xk −
f(xk)

f ′(xk)
. (26)

Applying to min f(x) or equivalently solving f ′(x) = 0 leads to
Newton descent!
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Power Iteration is Everywhere

Assignments

• Reading: Section 9.6 of Chapter 9.

• Written Homework #4.
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