Computational Principles for High-dim Data Analysis (Lecture Fifteen)

Yi Ma

EECS Department, UC Berkeley

October 21, 2021

EECS208, Fall 2021

Nonconvex Methods for Low-Dimensional Models Dictionary Learning

- 1 Motivating Examples for Nonconvex Problems
- 2 Nonlinearality, Nonconvexity, and Symmetry
- 3 Rotational Symmetry (brief)
- 4 Discrete Symmetry: Dictionary Learning

"The mathematical sciences particularly exhibit order, symmetry, and limitations; and these are the greatest forms of the beautiful." - Aristotle, Metaphysica

(人間) とうきょうきょう

Example: Magnetic Resonance Imaging

Simplified linear measurement model for MRI:

$$y = \mathcal{F}[I](\boldsymbol{u}) = \int_{\boldsymbol{v}} I(\boldsymbol{v}) \exp(-\mathfrak{i} 2\pi \, \boldsymbol{u}^* \boldsymbol{v}) \, d\boldsymbol{v} \in \mathbb{C}.$$
(1)

Real physical measurements as modulus:

$$y = |\mathcal{F}[I](\boldsymbol{u})| \in \mathbb{R}_+.$$
 (2)

Fourier phase retrieval from multiple nonlinear real measurements:

$$\boldsymbol{y}_{\text{observation}} = \left| \mathcal{F} \begin{pmatrix} \boldsymbol{x} \\ \text{unknown signal} \end{pmatrix} \right| \in \mathbb{R}^m_+. \tag{3}$$

EECS208, Fall 2021

Example: Low-rank Matrix Completion

¹figure courtesy from the lecture by Prof. Yuxin Chen of Princeton = + < = + =

Example: Dictionary for Image Representation

Image processing (e.g. denoising or super-resolution) against a known sparsifying dictionary:

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y = A X.dictionary sparse
(5)

- Band-limited signals: A = F, the Fourier transform;
- Piecewise smooth signals: $oldsymbol{A} = oldsymbol{W}$, the wavelet transforms;
- Natural images A = ? (How to learn A from the data Y?)

イロト 不得 トイヨト イヨト 二日

Challenges of Nonconvex Optimization – Pessimistic Views

Consider the problem of minimizing a general nonlinear function:

$$\min_{\boldsymbol{z}} \varphi(\boldsymbol{z}), \quad \boldsymbol{z} \in \mathsf{C}.$$
 (6)

In the worst case, even finding a *local* minimizer can be NP-hard².

Hence typically people seek to

work with relatively benign functions with benign guarantees (Chapter 9):

- **()** convergence to some critical point \bar{z} such that $\nabla \varphi(\bar{z}) = 0$;
- **2** or convergence to some local minimizer $\nabla^2 \varphi(\bar{z}) \succeq \mathbf{0}$.

²Some NP-complete problems in quadratic and nonlinear programming, K.G Murty and S. N. Kabadi, 1987 $\langle \Box \rangle \langle \Box$

Opportunities – Optimistic Views

However, nonconvex problems that arise from natural physical, geometrical, or statistical origins typically have nice structures, in terms of symmetries!

The function φ is invariant under certain group action:

• for phase recovery, invariant under a continuous rotation:

$$\varphi(e^{i\theta}\boldsymbol{x}) = \varphi(\boldsymbol{x}), \quad \forall \theta \in [0, 2\pi) = \mathbb{S}^1,$$

• for dictionary learning, invariant under signed permulations:

$$\varphi((\boldsymbol{A},\boldsymbol{X}))=\varphi((\boldsymbol{A}\boldsymbol{\Pi},\boldsymbol{\Pi}^*\boldsymbol{X})),\quad\forall\boldsymbol{\Pi}\in\mathsf{SP}(n),$$

Optimization under Symmetry

Definition (Symmetric Function)

Let \mathbb{G} be a group acting on \mathbb{R}^n . A function $\varphi : \mathbb{R}^n \to \mathbb{R}^{n'}$ is \mathbb{G} -symmetric if for all $\boldsymbol{z} \in \mathbb{R}^n$, $\boldsymbol{\mathfrak{g}} \in \mathbb{G}$, $\varphi(\boldsymbol{\mathfrak{g}} \circ \boldsymbol{z}) = \varphi(\boldsymbol{z})$.

Most symmetric objective functions that arise in structure signal recovery do not have spurious local minimizers or flat saddles.

A D N A B N A B N A B N

Slogan 1: the (only!) local minimizers are symmetric versions of the ground truth.

Slogan 2: any local critical point has negative curvature in directions that break symmetry.

Taxonomy of Symmetric Nonconvex Problems

< □ > < 同 > < 回 > < 回 >

Taxonomy of Symmetric Nonconvex Problems

Ma (EECS Department, UC Berkeley)

EECS208, Fall 2021

Dictionary Learning: the Minimal Case

Dictionary Learning with one sparsity:

 $Y = A_o X_o.$ data orthogonal dictionary 1-sparse coefficients

Signed permutation symmetry:

$$Y = A_o X_o = A_o \Gamma \Gamma^* X_o, \quad \forall \Gamma \in \mathsf{SP}(n).$$

Search for an orthogonal A such that A^*Y is as sparse as possible:

min
$$h(\mathbf{A}^*\mathbf{Y})$$
 such that $\mathbf{A} \in \mathsf{O}(m)$, (8)

where $h(\boldsymbol{X}) = \sum_{ij} h(\boldsymbol{X}_{ij})$ is a function that promotes sparsity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

(7)

Find One Atom at a Time

Take h to be **the Huber function**:

$$h_{\lambda}(x) = \begin{cases} \lambda |x| - \lambda^2/2 & |x| > \lambda, \\ x^2/2 & |x| \le \lambda. \end{cases}$$

This can be viewed as a differentiable surrogate for the ℓ^1 norm.

For the dictionary $A = [a_1, \dots, a_m]$, find the columns a_i one at a time:

$$\min \ arphi(oldsymbol{a}) \doteq h_\lambda \left(oldsymbol{a}^*oldsymbol{Y}
ight) \quad ext{such that} \quad oldsymbol{a} \in \mathbb{S}^{m-1}.$$

Dictionary Learning: the Simplest Case WLOG, assume $A_o = I$, and $X_o = I$ (uniformly random sampling).

min $\varphi(a) \doteq h_{\lambda}(a)$ such that $a \in \mathbb{S}^{m-1}$. (11)

Figure: $h_{\lambda}(\boldsymbol{u})$ as a function on the sphere \mathbb{S}^2 .

EECS208, Fall 2021

First Order Characteristics of The Simplest Case

Critical Points of φ .

The gradient of φ :

$$\nabla \varphi(\boldsymbol{a}) = \lambda \operatorname{sign}(\boldsymbol{a}) \odot \mathbb{1}_{|\boldsymbol{a}| > \lambda} + \boldsymbol{a} \odot \mathbb{1}_{|\boldsymbol{a}| \leq \lambda},$$
(12)

where \odot denotes element-wise multiplication.

The Riemannian gradient is (tangent to the sphere \mathbb{S}^{m-1}):

$$\operatorname{grad}[\varphi](\boldsymbol{a}) = \boldsymbol{P}_{\boldsymbol{a}^{\perp}} \nabla \varphi(\boldsymbol{a}). \tag{13}$$

The Riemannian gradient vanishes iff $abla arphi(a) \propto a$, which occurs whenever

$$a \propto \operatorname{sign}(a).$$
 (14)

(人間) とうきょうきょう

Second Order Characteristics of the Simplest Case

Hessian at Critical Points of φ .

The Riemannian Hessian is given by³

$$\begin{split} \mathsf{Hess}[\varphi](\boldsymbol{a}) &= \boldsymbol{P}_{\boldsymbol{a}^{\perp}} \Big(\begin{array}{cc} \nabla^2 \varphi(\boldsymbol{a}) & - & \langle \nabla \varphi(\boldsymbol{a}), \boldsymbol{a} \rangle \boldsymbol{I} \\ & \text{curvature of } \varphi & \text{curvature of the sphere} \end{array} \Big) \boldsymbol{P}_{\boldsymbol{a}^{\perp}} \\ &= & \boldsymbol{P}_{\boldsymbol{a}_{\mathbf{l},\sigma}^{\perp}} \left(\boldsymbol{P}_{|\boldsymbol{a}_{\mathbf{l},\sigma}| \leq \lambda} - \lambda |\mathsf{I}| \boldsymbol{I} \right) \boldsymbol{P}_{\boldsymbol{a}_{\mathbf{l},\sigma}^{\perp}}. \end{split}$$

At critical points $a_{I,\sigma}$ the Hessian exhibits (|I| - 1) negative eigenvalues, and m - |I| positive eigenvalues.

³can be derived by calculating $\frac{d^2}{dt^2}\Big|_{t=0}\varphi\Big(a\cos t + \delta\sin t\Big)$, with any direction $\delta \in T_a \mathbb{S}^{m-1}$ and $\|\delta\| = 1$.

General Messages from the Simplest Case

Symmetric copies of the ground truth are minimizers. The objective function is strongly convex in the vicinity of local minimizers $a = \pm e_i$.

Negative curvature in symmetry breaking directions. Saddle points are balanced superpositions of target solutions: $a_{I,\sigma} = \frac{1}{\sqrt{|I|}} \sum_{i \in I} \sigma_i e_i$ with I and signs $\sigma_i \in \{\pm 1\}$. There is negative curvature in directions $\delta \in \text{span}(\{e_i \mid i \in I\})$ that break the balance between target solutions.

Cascade of saddle points. Downstream negative curvature directions are the image of upstream negative curvature directions under gradient flow. Worst case, such as the "octopus function" shown in the Figure⁴, never occurs!

⁴Gradient Descent Can Take Exponential Time to Escape Saddle Points, S. Du et. al, NeurIPS 2017.

A Fundamental Problems in Data Analysis:

Given an *n*-dimensional signal: $\boldsymbol{y} \in \mathbb{R}^n$, find a transformation $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^m$ or its "inverse" $\boldsymbol{D}: \mathbb{R}^m \to \mathbb{R}^n$, such that

$$oldsymbol{x} = \mathcal{T}[oldsymbol{y}], \hspace{1em} ext{or} \hspace{1em} oldsymbol{y} = oldsymbol{D}oldsymbol{x}$$

where x highly compressible or the sparsest possible.

Figure: Sparse Representation Left: a generic vector $y \in \mathbb{R}^n$, Right: a sparse representation $x = \mathcal{T}[y]$, after a proper transformation \mathcal{T} .

(4 何) トイヨト イヨト

Introduction: History of Finding Good Transform

Figure: Joseph Fourier, 1768 – 1830

- Fourier Transform D = F
- Wavelet Transform $oldsymbol{D} = oldsymbol{W}$

A (1) > A (2) > A

Dictionary Learning

Introduction: Fourier Transform

Assumption:

s(t)

The signal \boldsymbol{y} is **band-limited and sparse** in frequency domain: $y_k = \sum_{l=0}^{n-1} x_l \cdot e^{-\frac{i2\pi}{n}kl} (\boldsymbol{y} = \boldsymbol{F}\boldsymbol{x}.)$

S(w)

Figure: Fourier Transform

mage

(c) DCT-II compressed Lena image (PCNP=12 18/02) (e) DCT/DST-II compressed Lena image (PSNR=35.12dB)

10 3

(b) Zoomed original Lena image

(d) Zoomed DCT-II compressed Lena image

(f) Zoomed DCT/DST-II compressed Lena insase

Figure: Lena Compression using Discrete Cosine Transform (JPEG) [pip18]

- 4 回 ト 4 ヨ ト 4 ヨ ト

Introduction: History of Finding Good Transform

Figure: Alfred Haar, 1855 – 1933

- Fourier Transform $oldsymbol{D} = oldsymbol{F}$
- Wavelet Transform D = W

▲ 伊 → ▲ 三

Dictionary Learning

Introduction: Wavelet Transform

Assumption:

Signal y is piece-wise smooth, scaleinvariant, etc: y = Wx, $W^*W = I$.

Figure: Haar & Daubechies Wavelets

Figure: Lena Compression using Wavelet Transform (JPEG2000) [Jor06]

・ 同 ト ・ ヨ ト ・ ヨ

Why Dictionary Learning?

Limitations of Traditional "By Design" Methods

- A transform is not optimal for signals that do not satisfy the conditions under which the transform is designed (e.g. DCT not ideal for images).
- For different classes of signals, we need to design different transforms (e.g. all the x-lets), which may not even be possible if the properties are not clear.

Why Dictionary Learning?

Limitations of Traditional "By Design" Methods

- A transform is not optimal for signals that do not satisfy the conditions under which the transform is designed (e.g. DCT not ideal for images).
- For different classes of signals, we need to design different transforms (e.g. all the x-lets), which may not even be possible if the properties are not clear.

For a given class of signals, can we directly "learn" the corresponding optimal transform, from its samples?

< □ > < □ > < □ > < □ > < □ > < □ >

Given *n*-dimensional input data: $\{y_1, \ldots, y_p\}$, $\forall i \in [p], y_i \in \mathbb{R}^n$, find a dictionary $D \in \mathbb{R}^{n \times m}$ and its corresponding coefficients $\{x_1, \ldots, x_p\}$, $x_i \in \mathbb{R}^m$, such that

$$\boldsymbol{y}_i = \boldsymbol{D} \boldsymbol{x}_i, \quad \forall i \in [p],$$
 (15)

and x_i is sufficiently sparse. That is to factor the data matrix Y into two structured unknowns: a matrix D and a sparse matrix X:

Challenges

- Computational Complexity Optimizing a nonconvex bilinear problem is NP-hard.
- Sample Complexity

Combinatorial possible outcomes for k-sparse x.

• Signed Permutation Ambiguities $\forall P \in SP(m)$, ⁵ $(D_{\star}P, P^*X_{\star})$ and (D_{\star}, X_{\star}) are equally sparse.

Ma (EECS Department, UC Berkeley)

 $^{{}^{5}}SP(m)$ denote m dimensional signed permutation group, a group of orthogonal matrices whose entries contain only $0, \pm 1$.

Challenges

• Computational Complexity

Optimizing a nonconvex bilinear problem is NP-hard.

Sample Complexity

Combinatorial possible outcomes for k-sparse x.

• Signed Permutation Ambiguities $\forall P \in SP(m)$, ⁵ $(D_{\star}P, P^{*}X_{\star})$ and (D_{\star}, X_{\star}) are equally sparse.

Some heuristic algorithms

- K-SVD [AEB+06]
- Alternative Direction Methods [SQW17]

 $^{{}^{5}}SP(m)$ denote m dimensional signed permutation group, a group of orthogonal matrices whose entries contain only $0, \pm 1$.

Challenges

• Computational Complexity

Optimizing a nonconvex bilinear problem is NP-hard.

Sample Complexity

Combinatorial possible outcomes for k-sparse x.

• Signed Permutation Ambiguities $\forall P \in SP(m)$, ⁵ $(D_{\star}P, P^{*}X_{\star})$ and (D_{\star}, X_{\star}) are equally sparse.

Some heuristic algorithms

- K-SVD [AEB+06]
- Alternative Direction Methods [SQW17]

Learn the dictionary with tractable algorithms and sample size?

⁵SP(m) denote m dimensional signed permutation group, a group of orthogonal matrices whose entries contain only $0, \pm 1$.

A Random Model:

For complete dictionary learning, [SWW12] assumes data Y is generated by a complete⁶ dictionary D_o and sparse coefficients X_o :

$$\boldsymbol{Y} = \boldsymbol{D}_o \boldsymbol{X}_o,$$

where X_o follows a Bernoulli Gaussian model:

$$X_o = \mathbf{\Omega} \circ \mathbf{G}^7, \quad \Omega_{i,j} \sim_{iid} \mathsf{Ber}(\theta), G_{i,j} \sim_{iid} \mathcal{N}(0,1).$$

⁶square and invertible ⁷ \circ denote element-wise product: $\forall A, B \in \mathbb{R}^{n \times m}$, $\{A \circ B\}_{i,j} = a_{i,j}b_{i,j} = \cdots = \cdots > \infty$

Ma (EECS Department, UC Berkeley)

A Random Model:

For complete dictionary learning, [SWW12] assumes data Y is generated by a complete⁶ dictionary D_o and sparse coefficients X_o :

$$\boldsymbol{Y} = \boldsymbol{D}_o \boldsymbol{X}_o,$$

where X_o follows a Bernoulli Gaussian model:

$$X_o = \mathbf{\Omega} \circ \mathbf{G}^7, \quad \Omega_{i,j} \sim_{iid} \mathsf{Ber}(\theta), G_{i,j} \sim_{iid} \mathcal{N}(0,1).$$

Preconditioning:

[SQW17] shows that learning a complete dictionary is equivalent with learning an orthogonal one through preconditioning

$$ar{oldsymbol{Y}} \leftarrow ig(rac{1}{p heta}oldsymbol{Y}oldsymbol{Y}^*ig)^{-rac{1}{2}}oldsymbol{Y} = oldsymbol{D}_ooldsymbol{X}_o, \quad ext{with} \quad oldsymbol{D}_o\in \mathsf{O}(n).$$

⁶square and invertible

⁷° denote element-wise product: $\forall A, B \in \mathbb{R}^{n \times m}$, $\{A \circ B\}_{i,j} = a_{i,\overline{j}} b_{i,j}$ is solved.

Complete dictionary learning can be reduced to find the sparsest direction in a subspace:

- **2** Rows of X_o form a sparse basis of row(Y).
- **3** Find x_1 , the sparsest vector in the subspace row(Y).
- 4 Find x_i , the sparsest vector in $row(Y) \setminus \{x_1, \ldots, x_{i-1}\}$.
- **6** Recover D_o by: $D_o = Y X_o^* (X_o X_o^*)^{-1}$.

Finding the sparsest vector in $\operatorname{row}(\boldsymbol{Y})$ can be naïvely formulated as

$$\min_{\boldsymbol{q}} \| \boldsymbol{q}^* \boldsymbol{Y} \|_0, \quad ext{such that} \quad \boldsymbol{q} \neq \boldsymbol{0},$$

Figure: The sparsest direction in a subspace. Credit: Prof. Qing Qu.

Related Works in Finding the Sparsest Direction

• Linear Programming [SWW12]:

$$\min_{\boldsymbol{q}} \left\| \boldsymbol{q}^* \boldsymbol{Y} \right\|_1, \quad ext{such that} \quad \left\| \boldsymbol{q}^* \boldsymbol{Y} \right\|_\infty = 1.$$

• Nonconvex Optimization on a Sphere [SQW17, BJS18]:

$$\min_{\boldsymbol{q}} \left\| \boldsymbol{q}^* \boldsymbol{Y} \right\|_1, \quad \text{such that} \quad \left\| \boldsymbol{q} \right\|_2 = 1.$$

Related Works in Finding the Sparsest Direction

• Linear Programming [SWW12]:

$$\min_{oldsymbol{q}} \left\|oldsymbol{q}^*oldsymbol{Y}
ight\|_1, \hspace{1em} ext{such that} \hspace{1em} \left\|oldsymbol{q}^*oldsymbol{Y}
ight\|_\infty = 1.$$

• Nonconvex Optimization on a Sphere [SQW17, BJS18]:

$$\min_{\boldsymbol{q}} \| \boldsymbol{q}^* \boldsymbol{Y} \|_1 \,, \quad ext{such that} \quad \| \boldsymbol{q} \|_2 = 1.$$

Solving the same optimization n times (high computational cost)!

Assignments

- Reading: Section 7.1 7.3 of Chapter 7.
- Programming Homework #3.

э

- ∢ ⊒ →

References I

Michal Aharon, Michael Elad, Alfred Bruckstein, et al.

K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. *IEEE Transactions on signal processing*, 54(11):4311, 2006.

Yu Bai, Qijia Jiang, and Ju Sun.

Subgradient descent learns orthogonal dictionaries. arXiv preprint arXiv:1810.10702, 2018.

Palle Jorgensen.

http://homepage.divms.uiowa.edu/~jorgen/Haar.html, 2006.

pipo1995_2.

https://www.taringa.net/+info/como-una-foto-de-una-playboy-se-convirtio-en-el-formato-jpg_1ejzk6, 2018.

Ju Sun, Qing Qu, and John Wright.

Complete dictionary recovery over the sphere i: Overview and the geometric picture. *IEEE Transactions on Information Theory*, 63(2):853–884, 2017.

Daniel A Spielman, Huan Wang, and John Wright.

Exact recovery of sparsely-used dictionaries.

In Conference on Learning Theory, pages 37-1, 2012.