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“The mathematical sciences particularly exhibit order, symmetry, and
limitations; and these are the greatest forms of the beautiful.”

– Aristotle, Metaphysica
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Motivating Examples for Nonconvex Problems

Example: Magnetic Resonance Imaging

Simplified linear measurement model for MRI:

y = F [I](u) =

∫
v
I(v) exp(−i 2πu∗v) dv ∈ C. (1)

Real physical measurements as modulus:

y = |F [I](u)| ∈ R+. (2)

Fourier phase retrieval from multiple nonlinear real measurements:

y
observation

=

∣∣∣∣F ( x
unknown signal

)∣∣∣∣ ∈ Rm+ . (3)
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Motivating Examples for Nonconvex Problems

Example: Low-rank Matrix Completion

We observe:

Y
Observed ratings

= PΩ

[
X

Complete ratings

]
.

Matrix completion
via bilinear low-rank factorization1:

min
U ,V

f(U ,V ) =
∑

(i,j)∈Ω

[(UV ∗)i,j−Yi,j ]2+
λ

2
‖U‖2F +

λ

2
‖V ‖2F︸ ︷︷ ︸

reg(U ,V )

.

‖M‖∗ = min
M=UV ∗

λ
2‖U‖

2
F + λ

2‖V ‖
2
F

1figure courtesy from the lecture by Prof. Yuxin Chen of Princeton
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Motivating Examples for Nonconvex Problems

Example: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Inoisy = A
dictionary

× x
sparse

+ z.
noise

(4)

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y
data

= A
dictionary

X.
sparse

(5)

• Band-limited signals: A = F , the Fourier transform;

• Piecewise smooth signals: A = W , the wavelet transforms;

• Natural images A =? (How to learn A from the data Y ?)
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Nonlinearality, Nonconvexity, and Symmetry

Challenges of Nonconvex Optimization – Pessimistic Views

Consider the problem of minimizing
a general nonlinear function:

min
z
ϕ(z), z ∈ C. (6)

In the worst case, even finding
a local minimizer can be NP-hard2.

Hence typically people seek to
work with relatively benign functions with benign guarantees (Chapter 9):

1 convergence to some critical point z̄ such that ∇ϕ(z̄) = 0;

2 or convergence to some local minimizer ∇2ϕ(z̄) � 0.

2Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Nonlinearality, Nonconvexity, and Symmetry

Opportunities – Optimistic Views

However, nonconvex
problems that arise from
natural physical, geometrical,
or statistical origins typically
have nice structures,
in terms of symmetries!

The function ϕ is invariant
under certain group action:

• for phase recovery, invariant under a continuous rotation:

ϕ(eiθx) = ϕ(x), ∀θ ∈ [0, 2π) = S1,

• for dictionary learning, invariant under signed permulations:

ϕ((A,X)) = ϕ((AΠ,Π∗X)), ∀Π ∈ SP(n),
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Nonlinearality, Nonconvexity, and Symmetry

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on Rn. A function ϕ : Rn → Rn′ is G-symmetric
if for all z ∈ Rn, g ∈ G, ϕ(g ◦ z) = ϕ(z).

Most symmetric objective functions that
arise in structure signal recovery do not
have spurious local minimizers or flat
saddles.

Slogan 1: the (only!) local minimizers are symmetric versions of
the ground truth.
Slogan 2: any local critical point has negative curvature in direc-
tions that break symmetry.
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Rotational Symmetry (brief)

Taxonomy of Symmetric Nonconvex Problems
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Discrete Symmetry: Dictionary Learning

Taxonomy of Symmetric Nonconvex Problems
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Discrete Symmetry: Dictionary Learning

Dictionary Learning: the Minimal Case

Dictionary Learning with one sparsity:

Y0
data

= Ao
orthogonal dictionary

Xo.
1-sparse coefficients

(7)

Signed permutation symmetry:

Y = AoXo = AoΓΓ∗Xo, ∀Γ ∈ SP(n).

Search for an orthogonal A such that A∗Y is as sparse as possible:

min h(A∗Y ) such that A ∈ O(m), (8)

where h(X) =
∑

ij h(Xij) is a function that promotes sparsity.
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Discrete Symmetry: Dictionary Learning

Find One Atom at a Time

Take h to be the Huber function:

hλ(x) =

{
λ|x| − λ2/2 |x| > λ,

x2/2 |x| ≤ λ.
(9)

This can be viewed as a differentiable
surrogate for the `1 norm.

For the dictionary A = [a1, . . . ,am], find
the columns ai one at a time:

min ϕ(a)
.
= hλ (a∗Y ) such that a ∈ Sm−1. (10)
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Discrete Symmetry: Dictionary Learning

Dictionary Learning: the Simplest Case
WLOG, assume Ao = I, and Xo = I (uniformly random sampling).

min ϕ(a)
.
= hλ (a) such that a ∈ Sm−1. (11)

Figure: hλ(u) as a function on the sphere S2.
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Discrete Symmetry: Dictionary Learning

First Order Characteristics of The Simplest Case

Critical Points of ϕ.

The gradient of ϕ:

∇ϕ(a) = λ sign(a)� 1|a|>λ + a� 1|a|≤λ, (12)

where � denotes element-wise multiplication.

The Riemannian gradient is (tangent to the sphere Sm−1):

grad[ϕ](a) = Pa⊥∇ϕ(a). (13)

The Riemannian gradient vanishes iff ∇ϕ(a) ∝ a, which occurs whenever

a ∝ sign(a). (14)
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Discrete Symmetry: Dictionary Learning

Second Order Characteristics of the Simplest Case

Hessian at Critical Points of ϕ.

The Riemannian Hessian is given by3

Hess[ϕ](a) = Pa⊥

(
∇2ϕ(a)

curvature of ϕ
− 〈∇ϕ(a),a〉I

curvature of the sphere

)
Pa⊥

= Pa⊥I,σ

(
P|aI,σ |≤λ − λ|I|I

)
Pa⊥I,σ

.

At critical points aI,σ the Hessian exhibits (|I| − 1) negative eigenvalues,
and m− |I| positive eigenvalues.

3can be derived by calculating d2

dt2

∣∣∣
t=0

ϕ
(
a cos t+ δ sin t

)
, with any direction

δ ∈ TaSm−1 and ‖δ‖ = 1.
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Discrete Symmetry: Dictionary Learning

General Messages from the Simplest Case

Symmetric copies of the ground truth are minimizers. The objective
function is strongly convex in the vicinity of local minimizers a = ±ei.

Negative curvature in symmetry breaking directions. Saddle points
are balanced superpositions of target solutions: aI,σ = 1√

|I|

∑
i∈I σiei with

I and signs σi ∈ {±1}. There is negative curvature in directions
δ ∈ span({ei | i ∈ I}) that break the balance between target solutions.

Cascade of saddle points. Downstream
negative curvature directions are the image
of upstream negative curvature directions under
gradient flow. Worst case, such as the “octopus
function” shown in the Figure4, never occurs!

4Gradient Descent Can Take Exponential Time to Escape Saddle Points, S. Du et.
al, NeurIPS 2017.
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Discrete Symmetry: Dictionary Learning

Dictionary Learning: General Case
A Fundamental Problems in Data Analysis:
Given an n-dimensional signal: y ∈ Rn, find a transformation
T : Rn → Rm or its “inverse” D : Rm → Rn, such that

x = T [y], or y = Dx

where x highly compressible or the sparsest possible.
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Figure: Sparse Representation Left: a generic vector y ∈ Rn, Right: a sparse
representation x = T [y], after a proper transformation T .
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Discrete Symmetry: Dictionary Learning

Introduction: History of Finding Good Transform

Figure: Joseph Fourier, 1768− 1830

• Fourier Transform D = F

• Wavelet Transform D = W

• Dictionary Learning
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Discrete Symmetry: Dictionary Learning

Introduction: Fourier Transform

Assumption:
The signal y is band-limited and
sparse in frequency domain: yk =∑n−1

l=0 xl · e
− i2π

n
kl (y = Fx.)

Figure: Fourier Transform

Figure: Lena Compression using
Discrete Cosine Transform (JPEG)
[pip18]
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Discrete Symmetry: Dictionary Learning

Introduction: History of Finding Good Transform

Figure: Alfred Haar, 1855− 1933

• Fourier Transform D = F

• Wavelet Transform D = W

• Dictionary Learning
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Discrete Symmetry: Dictionary Learning

Introduction: Wavelet Transform

Assumption:
Signal y is piece-wise smooth, scale-
invariant, etc: y = Wx, W ∗W =
I.

Figure: Haar & Daubechies Wavelets

Figure: Lena Compression using
Wavelet Transform (JPEG2000)
[Jor06]
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Discrete Symmetry: Dictionary Learning

Why Dictionary Learning?

Limitations of Traditional “By Design” Methods

• A transform is not optimal for signals that do not satisfy the
conditions under which the transform is designed (e.g. DCT not ideal
for images).

• For different classes of signals, we need to design different transforms
(e.g. all the x-lets), which may not even be possible if the properties
are not clear.

For a given class of signals, can we directly “learn” the
corresponding optimal transform, from its samples?
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Discrete Symmetry: Dictionary Learning

Dictionary Learning: General Case

Given n-dimensional input data: {y1, . . . ,yp}, ∀i ∈ [p],yi ∈ Rn, find a
dictionary D ∈ Rn×m and its corresponding coefficients {x1, . . . ,xp},
xi ∈ Rm, such that

yi = Dxi, ∀i ∈ [p], (15)

and xi is sufficiently sparse. That is to factor the data matrix Y into two
structured unknowns: a matrix D and a sparse matrix X:

Y =

 | |
y1 . . . yp
| |


︸ ︷︷ ︸

Observations

=

d1,1 . . . d1,m
...

. . .
...

dn,1 . . . dn,m


︸ ︷︷ ︸

Dictionary D

 | |
x1 . . . xp
| |


︸ ︷︷ ︸
X is sparse, ‖xi‖0�m

= DX.
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Discrete Symmetry: Dictionary Learning

Dictionary Learning: General Case

Challenges

• Computational Complexity
Optimizing a nonconvex bilinear problem is NP-hard.

• Sample Complexity
Combinatorial possible outcomes for k−sparse x.

• Signed Permutation Ambiguities
∀P ∈ SP(m), 5 (D?P ,P

∗X?) and (D?,X?) are equally sparse.

Some heuristic algorithms

• K-SVD [AEB+06]

• Alternative Direction Methods [SQW17]

Learn the dictionary with tractable algorithms and sample size?

5SP(m) denote m dimensional signed permutation group, a group of orthogonal
matrices whose entries contain only 0,±1.
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Discrete Symmetry: Dictionary Learning

Complete Dictionary Learning – Prior Arts
A Random Model:
For complete dictionary learning, [SWW12] assumes data Y is generated
by a complete6 dictionary Do and sparse coefficients Xo:

Y = DoXo,

where Xo follows a Bernoulli Gaussian model:

Xo = Ω ◦G7, Ωi,j ∼iid Ber(θ), Gi,j ∼iid N (0, 1).

Preconditioning:
[SQW17] shows that learning a complete dictionary is equivalent with
learning an orthogonal one through preconditioning

Ȳ ←
( 1

pθ
Y Y ∗

)− 1
2Y = DoXo, with Do ∈ O(n).

6square and invertible
7◦ denote element-wise product: ∀A,B ∈ Rn×m, {A ◦B}i,j = ai,jbi,j
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Discrete Symmetry: Dictionary Learning

Complete Dictionary Learning – Prior Arts

Complete dictionary learning can be reduced to find the sparsest
direction in a subspace:

1 Do is complete =⇒ row(Y ) = row(Xo)

2 Rows of Xo form a sparse basis of row(Y ).

3 Find x1, the sparsest vector in the subspace row(Y ).

4 Find xi, the sparsest vector in row(Y )\{x1, , . . . ,xi−1}.
5 Recover Do by: Do = Y X∗o (XoX

∗
o )−1.
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Discrete Symmetry: Dictionary Learning

Complete Dictionary Learning – Prior Arts
Finding the sparsest vector in row(Y ) can be näıvely formulated as

min
q
‖q∗Y ‖0 , such that q 6= 0,

R
p

sparsest?

Figure: The sparsest direction in a subspace. Credit: Prof. Qing Qu.
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Discrete Symmetry: Dictionary Learning

Related Works in Finding the Sparsest Direction
• Linear Programming [SWW12]:

min
q
‖q∗Y ‖1 , such that ‖q∗Y ‖∞ = 1.

• Nonconvex Optimization on a Sphere [SQW17, BJS18]:

min
q
‖q∗Y ‖1 , such that ‖q‖2 = 1.

Solving the same optimization n times (high computational cost)!
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Discrete Symmetry: Dictionary Learning

Assignments

• Reading: Section 7.1 - 7.3 of Chapter 7.

• Programming Homework #3.
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Discrete Symmetry: Dictionary Learning
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