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Constrained Convex Optimization

for Structured Data Recovery

@ Constrained Optimization
@® Augmented Lagrangian Multipliers
© Alternating Direction Method of Multipliers

O More Scalable Algorithms

“Since the fabric of the universe is most perfect and the work of

a most wise Creator, nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

— Leonhard Euler

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 14, 2021 2/24



Constrained Optimization

Optimization Challenges for Structured Data Recovery

min F(@) = f@) + gla). (1)
z€ —~~ —~—

smooth convex  nonsmooth convex

Challenge of Scale: scale algorithms to when n is very large.
Second order methods == First order methods... (2)
® Nonsmoothness: first order methods are slow for nonsmooth.

O(1/Vk) = O(/k) = O1/k.. (3)

Equality Constraints: augmented Lagrange multiplier (ALM).

Separable Structures: alternating direction of multipliers method
(ADMM).
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Augmented Lagrangian Multipliers

Linear Equality Constrained Optimization

Problem:
min g(x) subjectto Ax =1y, (4)
€T
where

® g:R" — Ris a (probably nonsmooth) convex function,
e A cR™™ and y € range(A) (so that the problem is feasible).

A Natural Attempt: solve the unconstrained by penalizing the constraint:

&(p) = argmin g(x) + 5 ||Ax — y||3 for a large p. (5)
&

® Pros: As i1 — +00, &(u) — @4« (the “continuation method").
® Cons: The rate of convergence depends on L = || A||3.
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Augmented Lagrangian Multipliers

Lagrange Multiplier Method
A More Principled Approach:

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (4):

where A € R™ is a vector of Lagrange multipliers. This gives a dual
function:

d(A) = igf g(x) + (X, Az — y). (7)

Fact (credited to Lagrange): 3\, such that the optimal solution (&, A,)
is a saddle point of the Lagrangian:

supinf £(x, A) = supinf g(x) + (A, Ax — y) = supd(A). (8)
AT Az A
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Dual Ascent Algorithm for the Lagrangian

Fact: If
z'(X) = argmin g(z) + (X, Az — y),

then Az’(X\) — y is a supergradient 9d(\) of the concave dual d(\) at A.

(Why? Actually this is true for the dual function of general constraints
h(z) = 0: d(A) = ming g(x) + ATh(x).)

A Natural Attempt to find the saddle point (x,, A.) is via dual ascent:

Tpt1 = argmin L(x, Ag), 9)
r

A1 = N+t (Azpy —y). (10)

® For certain problem classes, this converges to the optimal (a,, A,).

® However, unfortunately it fails for problems in our settings.
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Augmented Lagrangian Multipliers

An Example of Failure

Consider the basis pursuit problem:

min ||x||; subjectto Az =1y. (11)
x

We can show that

—00 |A* Al > 1,

II:}Jf |’wH1+<>‘7Aw_y> = {_<)\ y> HA*)‘H <1
) oo — .

Whenever the dual ascent step (10) happens to produce a A such that
|A* Al > 1, the algorithm will break down.

The reason is g(x) is not “strongly” convex enough.
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Augmented Lagrange Multiplier

One way out: combining (5) and (4), consider the Augmented
Lagrangian [Hestenes'69, Powell'69]:

. H
Lule ) =g(e) + (N Az —y)+ 5 JAe —yl}. (13)
Can be regarded as the Lagrangian for the penalized constrained problem
min g(x) + g |Az — y||3 subjectto Az =1y, (14)
x

which has the same optimal solution as the un-penalized problem.
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Augmented Lagrange Multiplier

Apply dual ascent to £, (x, ) with a particular step size t41 = p,
Try1 € argmin L,(x, Ag), (15)
€
A1 = A+ p(Azpy —y). (16)

Fact: ;. always minimizes the unaugmented Lagrangian L(x, Ax11) at
A = Ap11, because:

0 € OLu(®ri1,Ap),
= 0g(xpi1) + A" + pA™ (A —y),
= 09(xTp11) + A" Ay,
= 8£($k+1,/\k+1).

Ak+1 is always feasible, no bad behaviors!
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Augmented Lagrange Multiplier

Augmented Lagrange Multipler (ALM)

Problem Class: min, g(x) subjectto Az =wy.
with g : R™ — R convex and coercive, y € range(A).

Basic Iteration: set
Lu(x ) = g(x) + (X, Az —y) + 4 | Az — y|3 .

Repeat:
Ty € argmin L,(x, Ag),
X

A1 = Ak + i (A — y).

Convergence Guarantee:

{x1} converges to an optimal solution at a rate O(1/k).
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ALM for Basis Pursuit

Augmented Lagrange Multipler (ALM) for BP

1. Problem: ming ||z||; subject to y = Az,
given y € R™ and A € R™*",
Input: xyp € R”, A\g € R™, and 8 > 1.
for (k=0,1,2,...,K —1) do
Zp41 < argmin L, (x, A;) using APG.
Akes1 & A + pp(Azpr — y).
HE+1 < min{ﬁ/"ka ,umax}-
end for
Output: =, + xg.

@ N kW
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ALM for Principal Component Pursuit

Augmented Lagrange Multipler (ALM) for PCP

1: Problem: ming, g ||L||« + A||S||1 subject to L+ S =Y,
given Y and A > 0.
Input: Lo, Sy, Ap € R™*™ and 5 > 1.
for (k=0,1,2,...,K —1) do
{Lys1,Sk41} < argmin £, (L, S, Aj) using APG.
Apg1 — A+ pp(Lgr + S = Y).
M1 < min{ﬁ/"kalf‘max}-
end for
Output: L, < Lk, S, + Sk.

@ N g bk wN
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Alternating Direction Method of Multipliers

Optimization with Separable Structures

Example: Principal Component Pursuit

1}£11§1||L||*-I-)\||S||1 subjectto L+ S =Y. (17)

A general two-term separable optimization program:

ming(x) + h(z) subjectto Ax+ Bz =y, (18)
T,z

)

where g and h are convex functions, and y € range([A | B]).
The Lagrangian L(x, z, A) is:

L(x,z,\) =g(x) + h(z) + (A, Az + Bz — y). (19)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 14, 2021 13 /24



Alternating Direction Method of Multipliers

Optimization with Separable Structures
The augmented Lagrangian £, (x, 2, A) is:

Lu(@.2 ) = g(@) + h(2) + (X, Az + Bz —y) + T || Az + Bz — y|}}.

(20)
The alternating directions method of multipliers (ADMM) conducts a
simple, alternating iteration:

zZpr1 € argmin L, (xg, 2, Ag), (21)
z

Tp € argmin L, (x, 211, Ak), (22)
xr

A1 = A+ p(Axpp + Bz —y) - (23)

This is also known as the Gauss-Seidel iteration.

ADMM converges at a rate of O(1/k).
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ADMM for Principal Component Pursuit

PCP: 1}411;1 |\L||, + X||S||; subjectto L+ S=Y. (24)
The augmented Lagrangian is

L(L, S, A) = | LIl + S|, + (A, L+S=Y) + £ |L+S-Y ;.. (25)

Lyt = argmin £, (L, Sy, Ay)

. _ 2
= argmin||L][, + % |+ Sk =Y + p " Ag| o+ o(Sk, Ak)
= pI‘OXM—1||,||* [Y - Sk — u_lAk] . (26)
Skr1 = argmsi,nﬁu(LkH,S,Ak)
_ . 1% -1 2
= al"gmsl,ﬂ/\ S]], + 5 |8+ Liy1 =Y + 17 Ag|| o+ o(Lis1, Ag)
= ProX,—1j.|, [Y —Lpyq — /L_lAk] . (27)
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ADMM Algorithm for PCP

: Problem: ming, g £,(L,S,A), given Y, A, 1 > 0.
 Input: Ly, Sy, Ag € R™*™,
: for (k=0,1,2,...,K —1) do
Ly PTOX), 1.1 [Y - S, — ,U,_lAk].
Sk+1 — ProxXy 1., [Y — Ly — ,u_lAk].
Apy1 +— Ay + N(Lk—i-l + Ski1 — Y)
end for
: Output: L, < Lg:; S, + Sk.

A
k - Residual Network Module
Linear operator

Lagrange
Multiplier ‘ Nonlinear thresholding |
Update
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Alternating Direction Method of Multipliers

Multiple Separable Terms and Consensus Optimization

Machine Learning: Minimizing loss >, L(y;, ) over samples y1, ..., Yp.
We can partition the data to N batches, each on a machine:

N
mmianj(:n) with f;(x ZL (yi, @ (28)
j=1

i€l

Convert to a consensus problem with separable variables:

1{1111;212 xj) subjectto x; =2, j=1,...,N. (29)
T

Augmented Lagrangian:

N
M
w(®@, 2, A) Z + Nz - 2) + Gl - 2[5 (30)
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Alternating Direction Method of Multipliers

Multiple Separable Terms and Consensus Optimization

Apply ADMM to the augmented Lagrangian L, (x, z, A):

Tjpr1 = arg mi_n {fj(w] HQZJ—Zk—I— Aj k” } (parallel) (31)

Zpi1 = — Z (:1:] kel + )\] k) (aggregate) (32)
] 1

)\j,k—i-l = )\j,k + ,u(xj,k-H — Zk+1). (broadcast) (33)

ADMM for ALM is well suited for distributed implementation!

Note: there are many other variants to further improve efficiency and
scalability: accelerated, asynchronous, stochastic... but convergence
guarantee is not a picnic.
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Frank-Wolfe Algorithm

Optimizing a smooth, convex function over a compact convex set:
mwin f(x), subjectto xe€C (34)
which has a finite diameter:
diam(C) = max{||z — :z:’”2 | z, 2’ € C}. (35)

Two examples:

® Sparse vector recovery:
min i ||Az —y|5, subjectto |z, <. (36)
T
® | ow-rank matrix completion:

ngi(n% |Pa[X] — Y5, subjectto [X|, <. (37)
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Franke-Wolfe Algorithm

Find a point vy by solving a constrained optimization:

v € argmin (v, Vf(xy)). (38)
veC
We then set
Ti1 =z + Ve(ve — xp) = (1 — y)xp + vvr € C, (39)

where v € (0,1) is a specially chosen step size.

Theorem (Convergence of Frank-Wolfe)

Let xg,x1,... denote the sequence of iterates generated by the
Frank-Wolfe method, with step size v = ,%2 Then
2Ldiam?(C)

far) = fl@s) < (40)

k+2
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Frank-Wolfe for Matrix Completion
Fact: given a matrix G with SVD G = UXV* = ", u;o;v;, we have

Vi, = —Ttujv] = argm&n(V,G) subject to ||V, < 7. (41)

Frank-Wolfe for Matrix Completion:
1. Problem: given Y = Pq[X, + Z] € R™*"2 and Q C [nq] X [n2g],
rr)lén% |Pa[X] - Y% subjectto |[X]|, <.

. Input: X € R"*"2 satisfying || Xo||, < 7.

. for (k=0,1,2,...,K — 1) do
(u1,01,v1) < LeadSV (Pq [ X — Y]) (power iteration).
Vk — —Tulvi‘.
Xky1 < ki_l’_QXk + k%QVk

end for

: Output: X, + Xg.

e R
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More Scalable Algorithms

Franke-Wolfe for Noisy Sparse Recovery
1: Problem: given y = Az, + z € R™, A € R™*"™,

min § | Az — y||; subject to |z, <.
T

2. Input: xy € R satisfying ||xo||; < 7.

3 for (k=0,1,2,...,K — 1) do

4 rp+ Axp —y.

i < arg max; |a;rg| (matching pursuit).
0 4 sign (a;‘krk).

Vg < —TO0€4, .

Now

k 2
8: Tpt1 < mxk + m’vk.
9: end for
10: Output: x, + xk.

Note: Many greedy variants of the Franke-Wolfe algorithm: Macthing
Pursuit (MP), Orthogonal Matching Pursuit (OMP), Compressed
Sampling Matching Pursuit (COSAMP), BLITZ, CELER etc.
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More Scalable Algorithms

Other Ideas for Better Scalability
Typical optimization problem: min, f(x) = L > hi(xz), x€R".
Complexity = per iteration cost x # of iterations.
® Block Coordinate Descent reduces dependency on the dimension n:

O(n) — O(n'/?).

¢ Stochastic Gradient Descent (with variance reduction) reduces
dependency on sample size m:

O(m) — O(m*/?).
® Acceleration Schemes reduce the number of iterations &:

O(e72) = O(e71/?).
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Assignments

® Reading: Section 8.4 - 8.6 of Chapter 8.
® Programming Homework #3.

Ma (EECS Department, UC Berkeley)

EECS208, Fall 2021



	Constrained Optimization
	Augmented Lagrangian Multipliers
	Alternating Direction Method of Multipliers
	More Scalable Algorithms

