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“Since the fabric of the universe is most perfect and the work of
a most wise Creator, nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

– Leonhard Euler
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Constrained Optimization

Optimization Challenges for Structured Data Recovery

min
x∈Rn

F (x)
.
= f(x)︸︷︷︸

smooth convex

+ g(x).︸ ︷︷ ︸
nonsmooth convex

(1)

• Challenge of Scale: scale algorithms to when n is very large.

Second order methods =⇒ First order methods... (2)

• Nonsmoothness: first order methods are slow for nonsmooth.

O(1/
√
k) =⇒ O(1/k) =⇒ O(1/k2)... (3)

• Equality Constraints: augmented Lagrange multiplier (ALM).

• Separable Structures: alternating direction of multipliers method
(ADMM).
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Augmented Lagrangian Multipliers

Linear Equality Constrained Optimization

Problem:
min
x

g(x) subject to Ax = y, (4)

where

• g : Rn → R is a (probably nonsmooth) convex function,

• A ∈ Rm×n and y ∈ range(A) (so that the problem is feasible).

A Natural Attempt: solve the unconstrained by penalizing the constraint:

x̂(µ) = arg min
x

g(x) + µ
2 ‖Ax− y‖

2
2 for a large µ. (5)

• Pros: As µ→ +∞, x̂(µ)→ x? (the “continuation method”).

• Cons: The rate of convergence depends on L = µ‖A‖22.
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Augmented Lagrangian Multipliers

Lagrange Multiplier Method
A More Principled Approach:

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (4):

L(x,λ)
.
= g(x) + 〈λ,Ax− y〉, (6)

where λ ∈ Rm is a vector of Lagrange multipliers. This gives a dual
function:

d(λ)
.
= inf

x
g(x) + 〈λ,Ax− y〉. (7)

Fact (credited to Lagrange): ∃λ? such that the optimal solution (x?,λ?)
is a saddle point of the Lagrangian:

sup
λ

inf
x
L(x,λ) = sup

λ
inf
x

g(x) + 〈λ,Ax− y〉 = sup
λ
d(λ). (8)
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Augmented Lagrangian Multipliers

Dual Ascent Algorithm for the Lagrangian

Fact: If
x′(λ) = arg min

x
g(x) + 〈λ,Ax− y〉,

then Ax′(λ)− y is a supergradient ∂d(λ) of the concave dual d(λ) at λ.

(Why? Actually this is true for the dual function of general constraints
h(x) = 0: d(λ) = minx g(x) + λTh(x).)

A Natural Attempt to find the saddle point (x?,λ?) is via dual ascent:

xk+1 = arg min
x
L(x,λk), (9)

λk+1 = λk + tk+1(Axk+1 − y). (10)

• For certain problem classes, this converges to the optimal (x?,λ?).

• However, unfortunately it fails for problems in our settings.
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Augmented Lagrangian Multipliers

An Example of Failure

Consider the basis pursuit problem:

min
x
‖x‖1 subject to Ax = y. (11)

We can show that

inf
x
‖x‖1 + 〈λ,Ax− y〉 =

{
−∞ ‖A∗λ‖∞ > 1,

−〈λ,y〉 ‖A∗λ‖∞ ≤ 1.
(12)

Whenever the dual ascent step (10) happens to produce a λ such that
‖A∗λ‖∞ > 1, the algorithm will break down.

The reason is g(x) is not “strongly” convex enough.
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Augmented Lagrangian Multipliers

Augmented Lagrange Multiplier

One way out: combining (5) and (4), consider the Augmented
Lagrangian [Hestenes’69, Powell’69]:

Lµ(x,λ)
.
= g(x) + 〈λ,Ax− y〉+

µ

2
‖Ax− y‖22 . (13)

Can be regarded as the Lagrangian for the penalized constrained problem

min
x
g(x) +

µ

2
‖Ax− y‖22 subject to Ax = y, (14)

which has the same optimal solution as the un-penalized problem.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 14, 2021 8 / 24



Augmented Lagrangian Multipliers

Augmented Lagrange Multiplier

Apply dual ascent to Lµ(x,λ) with a particular step size tk+1 = µ,

xk+1 ∈ arg min
x
Lµ(x,λk), (15)

λk+1 = λk + µ (Axk+1 − y). (16)

Fact: xk+1 always minimizes the unaugmented Lagrangian L(x,λk+1) at
λ = λk+1, because:

0 ∈ ∂Lµ(xk+1,λk),

= ∂g(xk+1) +A∗λk + µA∗(Axk+1 − y),

= ∂g(xk+1) +A∗λk+1,

= ∂L(xk+1,λk+1).

λk+1 is always feasible, no bad behaviors!

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 14, 2021 9 / 24



Augmented Lagrangian Multipliers

Augmented Lagrange Multiplier

Augmented Lagrange Multipler (ALM)

Problem Class: minx g(x) subject to Ax = y.
with g : Rn → R convex and coercive, y ∈ range(A).

Basic Iteration: set

Lµ(x,λ) = g(x) + 〈λ,Ax− y〉+ µ
2 ‖Ax− y‖

2
2 .

Repeat:
xk+1 ∈ arg min

x
Lµ(x,λk),

λk+1 = λk + µ (Axk+1 − y).

Convergence Guarantee:

{xk} converges to an optimal solution at a rate O(1/k).
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Augmented Lagrangian Multipliers

ALM for Basis Pursuit

Augmented Lagrange Multipler (ALM) for BP

1: Problem: minx ‖x‖1 subject to y = Ax,
given y ∈ Rm and A ∈ Rm×n.

2: Input: x0 ∈ Rn, λ0 ∈ Rm, and β > 1.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: xk+1 ← arg minLµk(x,λk) using APG.
5: λk+1 ← λk + µk(Axk+1 − y).
6: µk+1 ← min{βµk, µmax}.
7: end for
8: Output: x? ← xK .
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Augmented Lagrangian Multipliers

ALM for Principal Component Pursuit

Augmented Lagrange Multipler (ALM) for PCP

1: Problem: minL,S ‖L‖∗ + λ‖S‖1 subject to L+ S = Y ,
given Y and λ > 0.

2: Input: L0,S0,Λ0 ∈ Rm×n and β > 1.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: {Lk+1,Sk+1} ← arg minLµk(L,S,Λk) using APG.
5: Λk+1 ← Λk + µk(Lk+1 + Sk+1 − Y ).
6: µk+1 ← min{βµk, µmax}.
7: end for
8: Output: L? ← LK ,S? ← SK .
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Alternating Direction Method of Multipliers

Optimization with Separable Structures

Example: Principal Component Pursuit

min
L,S
‖L‖∗ + λ ‖S‖1 subject to L+ S = Y . (17)

A general two-term separable optimization program:

min
x,z

g(x) + h(z) subject to Ax+Bz = y, (18)

where g and h are convex functions, and y ∈ range([A | B]).

The Lagrangian L(x, z,λ) is:

L(x, z,λ) = g(x) + h(z) + 〈λ,Ax+Bz − y〉. (19)
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Alternating Direction Method of Multipliers

Optimization with Separable Structures

The augmented Lagrangian Lµ(x, z,λ) is:

Lµ(x, z,λ) = g(x) + h(z) + 〈λ,Ax+Bz − y〉+
µ

2
‖Ax+Bz − y‖22 .

(20)
The alternating directions method of multipliers (ADMM) conducts a
simple, alternating iteration:

zk+1 ∈ arg min
z
Lµ(xk, z,λk), (21)

xk+1 ∈ arg min
x
Lµ(x, zk+1,λk), (22)

λk+1 = λk + µ (Axk+1 +Bzk+1 − y) . (23)

This is also known as the Gauss-Seidel iteration.

ADMM converges at a rate of O(1/k).
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Alternating Direction Method of Multipliers

ADMM for Principal Component Pursuit

PCP: min
L,S
‖L‖∗ + λ ‖S‖1 subject to L+ S = Y . (24)

The augmented Lagrangian is

Lµ(L,S,Λ) = ‖L‖∗+λ ‖S‖1 + 〈Λ,L+S−Y 〉+ µ

2
‖L+S−Y ‖2F . (25)

Lk+1 = arg min
L
Lµ(L,Sk,Λk)

= arg min
L
‖L‖∗ +

µ

2

∥∥L+ Sk − Y + µ−1Λk

∥∥2

F
+ ϕ(Sk,Λk)

= proxµ−1‖·‖∗

[
Y − Sk − µ−1Λk

]
. (26)

Sk+1 = arg min
S
Lµ(Lk+1,S,Λk)

= arg min
S
λ ‖S‖1 +

µ

2

∥∥S +Lk+1 − Y + µ−1Λk

∥∥2

F
+ ϕ(Lk+1,Λk)

= proxλµ−1‖·‖1

[
Y −Lk+1 − µ−1Λk

]
. (27)
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Alternating Direction Method of Multipliers

ADMM Algorithm for PCP
1: Problem: minL,S Lµ(L,S,Λ), given Y , λ, µ > 0.
2: Input: L0,S0,Λ0 ∈ Rm×n.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: Lk+1 ← proxµ−1‖·‖∗

[
Y − Sk − µ−1Λk

]
.

5: Sk+1 ← proxλµ−1‖·‖1

[
Y −Lk+1 − µ−1Λk

]
.

6: Λk+1 ← Λk + µ(Lk+1 + Sk+1 − Y ).
7: end for
8: Output: L? ← LK ;S? ← SK .
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Alternating Direction Method of Multipliers

Multiple Separable Terms and Consensus Optimization
Machine Learning: Minimizing loss

∑
i L(yi,x) over samples y1, . . . ,yp.

We can partition the data to N batches, each on a machine:

min
x

N∑
j=1

fj(x) with fj(x) =
∑
i∈Ij

L(yi,x). (28)

Convert to a consensus problem with separable variables:

min
{xj}

N∑
j=1

fj(xj) subject to xj = z, j = 1, . . . , N. (29)

Augmented Lagrangian:

Lµ(x, z,λ) =

N∑
j=1

fj(xj) + 〈λj ,xj − z〉+
µ

2
‖xj − z‖22. (30)
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Alternating Direction Method of Multipliers

Multiple Separable Terms and Consensus Optimization

Apply ADMM to the augmented Lagrangian Lµ(x, z,λ):

xj,k+1 = arg min
xj

{
fj(xj) +

µ

2

∥∥xj−zk+
1

µ
λj,k

∥∥2

2

}
, (parallel) (31)

zk+1 =
1

N

N∑
j=1

(
xj,k+1 +

1

µ
λj,k

)
, (aggregate) (32)

λj,k+1 = λj,k + µ
(
xj,k+1 − zk+1

)
. (broadcast) (33)

ADMM for ALM is well suited for distributed implementation!

Note: there are many other variants to further improve efficiency and
scalability: accelerated, asynchronous, stochastic... but convergence
guarantee is not a picnic.
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More Scalable Algorithms

Frank-Wolfe Algorithm
Optimizing a smooth, convex function over a compact convex set:

min
x
f(x), subject to x ∈ C (34)

which has a finite diameter:

diam(C)
.
= max{

∥∥x− x′∥∥
2
| x,x′ ∈ C}. (35)

Two examples:

• Sparse vector recovery:

min
x

1
2 ‖Ax− y‖

2
2 , subject to ‖x‖1 ≤ τ. (36)

• Low-rank matrix completion:

min
X

1
2 ‖PΩ[X]− Y ‖2F , subject to ‖X‖∗ ≤ τ. (37)
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More Scalable Algorithms

Franke-Wolfe Algorithm
Find a point vk by solving a constrained optimization:

vk ∈ arg min
v∈C
〈v,∇f(xk)〉. (38)

We then set

xk+1 = xk + γk(vk − xk) = (1− γk)xk + γkvk ∈ C, (39)

where γk ∈ (0, 1) is a specially chosen step size.

Theorem (Convergence of Frank-Wolfe)

Let x0,x1, . . . denote the sequence of iterates generated by the
Frank-Wolfe method, with step size γk = 2

k+2 . Then

f(xk)− f(x?) ≤
2Ldiam2(C)

k + 2
. (40)
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More Scalable Algorithms

Frank-Wolfe for Matrix Completion

Fact: given a matrix G with SVD G = UΣV ∗ =
∑n1

i=1 uiσivi, we have

V? = −τu1v
∗
1 = arg min

V
〈V ,G〉 subject to ‖V ‖∗ ≤ τ. (41)

Frank-Wolfe for Matrix Completion:

1: Problem: given Y = PΩ[Xo +Z] ∈ Rn1×n2 and Ω ⊆ [n1]× [n2],

min
X

1
2 ‖PΩ[X]− Y ‖2F subject to ‖X‖∗ ≤ τ.

2: Input: X0 ∈ Rn1×n2 satisfying ‖X0‖∗ ≤ τ .
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: (u1, σ1,v1)← LeadSV (PΩ [Xk − Y ]) (power iteration).
5: Vk ← −τu1v

∗
1.

6: Xk+1 ← k
k+2Xk + 2

k+2Vk.
7: end for
8: Output: X? ←XK .
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More Scalable Algorithms

Franke-Wolfe for Noisy Sparse Recovery
1: Problem: given y = Axo + z ∈ Rm, A ∈ Rm×n,

min
x

1
2 ‖Ax− y‖

2
2 subject to ‖x‖1 ≤ τ.

2: Input: x0 ∈ Rn satisfying ‖x0‖1 ≤ τ .
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: rk ← Axk − y.
5: ik ← arg maxi |a∗i rk| (matching pursuit).
6: σ ← sign

(
a∗ikrk

)
.

7: vk ← −τσeik .
8: xk+1 ← k

k+2xk + 2
k+2vk.

9: end for
10: Output: x? ← xK .

Note: Many greedy variants of the Franke-Wolfe algorithm: Macthing
Pursuit (MP), Orthogonal Matching Pursuit (OMP), Compressed
Sampling Matching Pursuit (COSAMP), BLITZ, CELER etc.
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More Scalable Algorithms

Other Ideas for Better Scalability

Typical optimization problem: minx f(x) = 1
m

∑m
i=1 hi(x), x ∈ Rn.

Complexity = per iteration cost×# of iterations.

• Block Coordinate Descent reduces dependency on the dimension n:

O(n)→ O(n1/2).

• Stochastic Gradient Descent (with variance reduction) reduces
dependency on sample size m:

O(m)→ O(m1/2).

• Acceleration Schemes reduce the number of iterations k:

O(ε−2)→ O(ε−1/2).
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More Scalable Algorithms

Assignments

• Reading: Section 8.4 - 8.6 of Chapter 8.

• Programming Homework #3.
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