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Decomposing Low-Rank and Sparse Matrices

(Principal Component Pursuit)

@ Problem and Motivating Example

@ Principal Component Pursuit

“The whole is greater than the sum of the parts.”
— Aristotle, Metaphysics
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Problem and Motivating Example

Problem Formulation: Mixture of Sparse and Low-Rank

Given a large data matrix Y € R™*"2 which is a superposition of two

unknown matrices:
Y = Lo + SOa (1)

where
o [, € R"*" s 3 low-rank matrix;

e S, c R™M*" s 3 sparse matrix.
Problem: Can we hope to efficiently recover both L, and S,?

Compare this with the classic model:
Y=L,+Z,, (2)

where Z, is dense but small, say Gaussian, noise?

PCA versus Robust PCA.
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Problem and Motivating Example

Complexity of Low-Rank Sparse Decomposition

Definition (Matrix Rigidity)

The rigidity of a matrix M (relative to rank r matrices) is defined to be:
Rpg(r) = min{||S||o : rank(M + S) < r}, (3)
the smallest # of entries modified in order to change M rank r.

Computing matrix rigidity is NP-Hard!, so is decomposition.

1On the complexity of matrix rank and rigidity. Meena Mahajan and Jayalal Sarma
M.N., 2007
Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 5, 2021 4/26



Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition

Example. A sequence of video frames can be modeled as a static
background (low-rank) and moving foreground (sparse).

(a) Original frames (b) Low-rank L (c) Sparse 8
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Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition

Example. A set of face images of the same person under different

lightings can be modeled as a low-dimensional, 3 ~ 9D (see Chapter 14)
subspace and sparse occlusions and corruptions (specularities).

(b) L () &
EECS208, Fall 2021
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Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition

Example. Finding communities in a large social networks. Each
community can be modeled as a clique of the social graph G, hence a

rank-1 block in the connectivity matrix M. Hence M is a low-rank matrix
and some sparse connections across communities.

[} = =
Ma (EECS Department, UC Berkeley) EECS208, Fall 2021



Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition
Example. Structured regular texture recovery (Chapter 15).

(a) Input image (b) Sparse + Low-rank

and many more...
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Principal Component Pursuit

Convex Relaxation: Principal Component Pursuit
Optimization problem:

minimize rank(L) + A||S]lo subjectto L+S=Y, (4)

which is intractable. Consider convex relaxation:
ISllo = #{Si; 0} — ISl =) _ S5 (¢'norm). (5)
ij
rank(L) = #{oi(L) #0} — | L|«= ZW(L) (nuclear norm) (6)

Principal Component Pursuit (PCP):

minimize ||L|« + A||S||1 subjectto L+ S=Y. (7)
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Alternating Directions Method of Multipliers (ADMM)

Augmented Lagrangian

L,(L,S,A) = ||L|lx + A|S|l1 + (A, L+ 8- Y) + gHL +S-Y|*

(8)

Instead of
(Lk+1, Sk41) = arg 1}4115{1 Lu(L,S, A), (9)

we realize
arg mslnﬁ“(L, S,A) =8y, (Y - L~ ptA) (10)
argmin £,,(L, S, A) =Dy, (Y — § — ptA) (11)
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Soft-thresholding operators

Recall
Sr(x) = sgn(x) max(|z| — 7,0) (12)

For matrix M = UX V™, we define the singular value thresholding
operator

D, (M) =US,(S)V*. (13)

Dominating computation is D/, can speed up using partial SVD.
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Principal Component Pursuit

Algorithm: Alternating Direction Minimization

1: initialize: Sp = Ag =0, > 0.

2: while not converged do

3: compute Ljqq =Dy, (Y — S — ' Ay)

4. compute Spy1 = S/ (Y — Liy1 — ' Ayg)

5 compute Ag11 = Ay + u(Lk+1 + Sk11 — Y).
6: end while
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Principal Component Pursuit

Algorithm: A Little Lesson from History

Comparison from chronological development of algorithms for solving the

PCP problem: the older the algorithm, the more efficient!
GOOD NEWS: Scalable first-order gradient-descent algorithms:

« Proximal Gradient [Osher, Mao, Dong, Yin ’09,Wright et. al’09, Cai et. al.'09].

* Accelerated Proximal Gradient [Nesterov ‘83, Beck and Teboulle ‘09]:
+ Augmented Lagrange Multiplier [Hestenes ‘69, Powell "69]:

« Alternating Direction Method of Multipliers [Gabay and Mercier ‘76].

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries
randomly corrupted: min ||Al[, + A

1 subj A+ L =D.

Algorithms Accuracy Rank |IE||_0 # iterations | time (sec)
IT 5.99e-006 | 50 101,268 8,550 119,370.3
DUAL 8.65e-006 | 50 100,024 822 1,855.4
APG 5.85e-006 | 50 100,347 134 1,468.9
APGp 5.91e-006 | 50 100,347 134 82.7
EALMp 2.07e-007 | 50 100,014 34 37.5
IALMp 3.83e-007 | 50 99,996 23 11.8
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Principal Component Pursuit

Empirical success rate

0 01 02 03 04 05

rank(L)/n
n = 400

Fig. credit: Candes, Li, Ma, Wright '11
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Principal Component Pursuit

When is decomposition possible?

Identifiability issue: a matrix might be simultaneously low-rank and sparse!

1 00 0 1 01 1
0 00 0 010 0
Vs.

000 ---0 100 --- 1

TV
sparse and low-rank sparse but not low-rank

Nonzero entries of sparse component need to be spread out

— This lecture: assume locations of the nonzero entries are random
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Principal Component Pursuit

When is decomposition possible?

Identifiability issue: a matrix might be simultaneously low-rank and sparse!

111 --- 1 1 1 1 1
111 --- 1 0 0 0 0
VS.

111 --- 1 000 ---0

low-rank and dense

TV
low-rank but sparse

The low-rank component needs to be incoherent
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Principal Component Pursuit

Low-rank component: incoherence

Incoherence parameter py of L, = UX V™ is the smallest quantity s.t.

i G

max||efU[3 < XL and  max||e} V|3 <
(A 1

€;

PU(ei)

U
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Principal Component Pursuit

Low-rank component: joint coherence

Definition (Joint coherence)

Joint coherence parameter pg of L, = UX V™ is the smallest quantity s.t.

10V lloo < /55

This prevents UV™* from being too peaky
® 1y < g < p?r, since

* * * T
OVl = el UV}| < llel Ul - [V ]l2 < B

par

v suppose [[V;'[3 = 27)

Jovee i _IVEIE _ pr (
n n n?
In the book we have set p1 = ps = v.
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Principal Component Pursuit

Theoretical guarantee

Theorem (Candes, Li, Ma, Wright '11)

e rank(L) <

n B
~ max{u1,u2}log®n’
® Nonzero entries of S are randomly located, and ||S||o < psn? for
some constant ps > 0 (e.g. ps = 0.2).

Then PCP with A = 1/+/n is exact with high prob.

rank(L) can be quite high (up to n/polylog(n))
Parameter free: A =1/y/n

Ability to correct gross error: ||S|o < n

2

® Sparse component S can have arbitrary magnitudes / signs!
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Principal Component Pursuit

Geometry

Fig. credit: Candes'14
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Principal Component Pursuit

Dense error correction

Theorem (Ganesh, Wright, Li, Candés, Ma '10, Chen, Jalali, Sanghavi,

Caramanis '13)

® rank(L) <

n .
~ max{pi,u2}log n’
® Nonzero entries of S are randomly located, have random sign, and
_ 2
1Sllo = psn®.

Then PCP with A = /=22 succeeds with high prob., provided that
Psn

1— ps > \/ max{ 1, p2 }rpolylog(n)
n
non-corruption rate

® When additive corruptions have random signs, PCP works even when
a dominant fraction of the entries are corrupted
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Principal Component Pursuit

Is joint coherence needed?

® Matrix completion: does not need s

® Robust PCA: so far we need us

Question: Can we recover L with rank up to ——2—— (rather than
papolylog(n)

max{p1,u2}polylog(n) /*

Answer: No
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Principal Component Pursuit

Planted clique problem

Setup: a graph G of n nodes generated as follows
1. connect each pair of nodes independently with prob. 0.5

2. pick ng nodes and make them a clique (fully connected)

Goal: find the hidden clique from G

Information theoretically, one can recover the clique if ng > 2log, n
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Principal Component Pursuit

Conjecture on computational barrier

Conjecture: V constant € > 0, if ng < n%°~¢, then no tractable
algorithm can find the clique from G with prob. 1 — o(1)

— often used as a hardness assumption

Lemma

If there is an algorithm that allows recovery of any L fromY with
rank(L) < Wlog(n), then the above conjecture is violated.
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Principal Component Pursuit

Proof of Lemma 6
Suppose L is the true adjacency matrix,

1, if 4,4 are both in the clique
Lij =
0, else

Let A be the adjacency matrix of G, and generate Y s.t.

A; j, with prob. 2/3
ij =

0, else

Therefore, one can write

Y=L+ Y-L

each entry is nonzero w.p. 1/3
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Principal Component Pursuit

Proof of Lemma 6

Note that
n n?
pr=-— —and  pp=—
If there is an algorithm that can recover any L of rank Wlog(n) from
M, then
rank(L) =1 < " = no > polylog(n)
papolylog(n)

But this contradicts the conjecture (which claims computational
infeasibility to recover L unless ng > n0->=°(1))
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Assignments

® Reading: Section 5.1 - 5.3 of Chapter 5.
® Written Homework #3.
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