
Computational Principles for High-dim Data Analysis

(Lecture Ten)

Yi Ma and Jiantao Jiao

EECS Department, UC Berkeley

September 30, 2021

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 30, 2021 1 / 18



Convex Methods for Low-Rank Matrix Recovery
(Matrix Completion)

1 Motivating Example

2 Nuclear Norm Minimization

3 Algorithm: Augmented Lagrange Multiplier

4 Conditions for Success

5 Stable Matrix Completion

“Mathematics is the art of giving the same name to different things.”
– Henri Poincaré
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Motivating Example

Example of Low-rank Matrix Completion

Recommendation Systems (how internet companies make money):

We observe:

Y
Observed ratings

= PΩ

[
X

Complete ratings

]
,

where Ω
.
=
{

(i, j) | user i has rated product j
}
.
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Nuclear Norm Minimization

Nuclear Norm Minimization

Problem (Matrix Completion)

Let Xo ∈ Rn×n be a low-rank matrix. Suppose we are given Y = PΩ[Xo],
where Ω ⊆ [n]× [n]. Fill in the missing entries of Xo.

Notice: If (i, j) /∈ Ω, PΩ[Eij ] = 0. So PΩ has matrices of rank one in its
null space! So, PΩ cannot be rank-RIP for any rank r > 0 with δ < 1.

Question: can we still find Xo by solving the nuclear norm minimization:

min ‖X‖∗ subject to PΩ[X] = Y ? (1)

Simulations lead the way of investigation – need an algorithm...
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Algorithm: Augmented Lagrange Multiplier

Algorithm via Augmented Lagrange Multiplier

Nuclear norm minimization for matrix completion:

min ‖X‖∗︸ ︷︷ ︸
f(x)

subject to PΩ[X] = Y︸ ︷︷ ︸
g(x)=0

. (2)

The Lagrangian method:

L(X,Λ) = ‖X‖∗ + 〈Λ,Y − PΩ[X]〉. (3)

Optimality conditions:

∂L
∂X

= 0,
∂L
∂Λ

= 0. (4)

However, it only holds
at the point of the optimal solution x?.
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Algorithm: Augmented Lagrange Multiplier

Algorithm via Augmented Lagrange Multiplier

The augmented Lagrangian is to regularize the landscape around the
optimal solution x?:

Lµ(X,Λ) = ‖X‖∗ + 〈Λ,Y − PΩ[X]〉+ µ
2 ‖Y − PΩ[X]‖2F . (5)

Amenable for alternating optimization to converge to the optimal solution
x? more easily and efficiently:

Primal: Xk+1 ∈ arg min
X
Lµ(X,Λk), (6)

Dual: Λk+1 = Λk + µPΩ

[
Y −Xk+1

]
. (7)
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Algorithm: Augmented Lagrange Multiplier

Algorithm: Proximal Gradient Descent

How to minimize the augmented Lagrangian Lµ:

min
X

F (X)
.
= ‖X‖∗︸ ︷︷ ︸

g(X) convex

+ 〈Λ,Y − PΩ[X]〉+ µ
2 ‖Y − PΩ[X]‖2F︸ ︷︷ ︸

f(X) smooth, convex, µ-Lipschitz

. (8)

At each iterate Xk, construct a local (quadratic) upper bound for F :

F̂ (X,Xk) = g(X)+f(Xk)+〈∇f(Xk),X−Xk〉+
µ

2
‖X −Xk‖22 . (9)

Proximal gradient descent: the next iterate Xk+1 is computed as

Xk+1 = arg min
X

{
g(X) +

µ

2

∥∥∥X − (Xk − 1
µ∇f(Xk

)︸ ︷︷ ︸
M

∥∥∥2

F

}
(10)

= proxg/µ(M) (see details in Chapter 8). (11)
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Algorithm: Augmented Lagrange Multiplier

Algorithm: Proximal Operator for Nuclear Norm

For a matrix M with SVD M = UΣV ∗,
its singular value thresholding operator is:

Dτ [M ] = USτ [Σ]V ∗,

where Sτ [X] = sign(X) ◦ (|X| − τ)+ is
the entry-wise soft thresholding operator.

Theorem

The unique solution X? to the program:

min
X
{‖X‖∗ + µ

2 ‖X −M‖2F }, (12)

is given by
X? = Dµ−1 [M ]. (13)
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Algorithm: Augmented Lagrange Multiplier

Algorithm via Augmented Lagrange Multiplier
Outer Loop: Matrix Completion by ALM

1: initialize: X0 = Λ0 = 0, µ > 0.
2: while not converged do
3: compute Xk+1 ∈ arg minX Lµ

(
X,Λk

)
(say by PG);

4: compute Λk+1 = Λk + µ
(
Y − PΩ

[
Xk+1

])
.

5: end while

Inner Loop: Proximal Gradient

1: initialize: X0 starts with the Xk from the outer loop.
2: while not converged do
3: compute

X`+1 = proxg/µ
(
X` − µ−1∇f(X`)

)
= Dµ−1

[
PΩc [X`] + Y + µ−1PΩ[Λk]︸ ︷︷ ︸

exercise

]
.

4: end while
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Conditions for Success

Similar Phenomena of Success

Comparison: low-rank matrix recovery from random linear measurements
versus matrix completion from random sampled entries.

Figure: Left: phase transition for matrix recovery; Right: phase transition for
matrix completion.
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Conditions for Success

When Nuclear Norm Minimization Succeeds?

When it fails?

1 if Xo is itself sparse (as in the example of Eij)

2 if Ω is chosen adversarially (e.g., an entire row or column of Xo).

Notice for any rank-r orthogonal matrix U :∑
i

‖e∗iU‖22 = ‖U‖2F = r =⇒ max
i
‖e∗iU‖22 ≥ r/n.

Definition

We say that Xo = UΣV ∗ is ν-incoherent if the following hold:

∀ i ∈ [n], ‖e∗iU‖22 ≤ νr/n, (14)

∀ j ∈ [n], ‖e∗jV ‖22 ≤ νr/n. (15)
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Conditions for Success

When Nuclear Norm Minimization Succeeds?
Bernoulli Ber(p) sampling model: each entry (i, j) belongs to the
observed set Ω independently with probability p ∈ [0, 1]. Hence, the
expected number of observed entries is:

m = E
[
|Ω|
]

= pn2. (16)

Theorem (Matrix Completion via Nuclear Norm Minimization)

Let Xo ∈ Rn×n be a rank-r matrix with incoherence parameter ν.
Suppose that we observe Y = PΩ[Xo], with Ω sampled according to the
Bernoulli model with probability

p ≥ C1
νr log2(n)

n
. (17)

Then with probability at least 1− C2n
−c3 , Xo is the unique optimal

solution to

minimize ‖X‖∗ subject to PΩ[X] = Y . (18)
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Conditions for Success

When Nuclear Norm Minimization Succeeds?

Lemma (Subdifferential of nuclear norm)

Let X ∈ Rn×n have compact singular value decomposition X = UΣV ∗.
The subdifferential of the nuclear norm at X is given by

∂ ‖·‖∗ (X) =
{
Z | PT[Z] = UV ∗, ‖PT⊥ [Z]‖ ≤ 1

}
. (19)
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Conditions for Success

When Nuclear Norm Minimization Succeeds?
Key ideas for the Theorem:
For the program:

min ‖X‖∗ subject to PΩ[X] = PΩ[Xo]. (20)

Similar to the `1 case, find a dual certificate Λ that satisfies (the KKT
condition):

• (i) Λ is supported on Ω: PΩ[Λ] = Λ and

• (ii) Λ ∈ ∂ ‖·‖∗ (Xo) – i.e., PT[Λ] = UV ∗ and ‖PT⊥ [Λ]‖ ≤ 1,

Strategy: look for a matrix Λ of smallest 2-norm that satisfies the
equality constraints

PΩc [Λ] = 0, PT[Λ] = UV ∗, (21)

and then hope to check that it satisfies the inequality constraints

‖PT⊥ [Λ]‖ ≤ 1.
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Conditions for Success

When Nuclear Norm Minimization Succeeds?

Unfortunately, this straightforward strategy does not work out directly as
solution to the equalities is not so easy to analyze...

An alternative strategy: an set of (relaxed) conditions for optimality:

Proposition (KKT Conditions – Approximate Version)

The matrix Xo is the unique optimal solution to the nuclear minimization
problem (18) if the following set of conditions hold

1 The operator norm of the operator p−1PTPΩPT − PT is small:∥∥p−1PTPΩPT − PT
∥∥ ≤ 1

2 .

2 There exists a dual certificate Λ that satisfies PΩ[Λ] = Λ and
• (a) ‖PT⊥ [Λ]‖ ≤ 1

2 ;
• (b) ‖PT[Λ]−UV ∗‖F ≤

1
4n .
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Stable Matrix Completion

Matrix Completion with Noise
Problem: the observed entries are often corrupted with some noise:

Yij = [Xo]ij + Zij , (i, j) ∈ Ω; or PΩ[Y ] = PΩ[Xo] + PΩ[Z], (22)

where Zij can be some small noise, say ‖PΩ[Z]‖F < ε.

min ‖X‖∗ subject to ‖PΩ[X]− PΩ[Y ]‖F < ε. (23)

Theorem (Stable Matrix Completion)

Let Xo ∈ Rn×n be a rank-r, ν-incoherent matrix. Suppose that we
observe PΩ[Y ] = PΩ[Xo] + PΩ[Z], where Ω is uniformly sampled from
subsets of size

m ≥ C1νnr log2(n), (24)

then with high probability, the optimal solution X̂ to the convex program
(23) satisfies

‖X̂ −Xo‖F ≤ c
n
√
n log(n)√
m

ε ≤ c′ n√
r
ε, for some c > 0. (25)
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Stable Matrix Completion

Summary

Nuclear norm minimization can recover w.h.p. a low-rank matrix Xo from

1 m = O(nr) random linear measurements: y = A[X];

2 m = O(nr log2 n) randomly sampled entries: Y = PΩ[X];

3 the estimate X̂ is stable to small noise.
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Stable Matrix Completion

Assignments

• Reading: Section 4.4-4.6 of Chapter 4.

• Programming Homework # 2.
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