Computational Principles for High-dim Data Analysis (Lecture Ten)

Yi Ma and Jiantao Jiao

EECS Department, UC Berkeley

September 30, 2021

Convex Methods for Low-Rank Matrix Recovery (Matrix Completion)

- **1** [Motivating Example](#page-2-0)
- 2 [Nuclear Norm Minimization](#page-3-0)
- 3 [Algorithm: Augmented Lagrange Multiplier](#page-4-0)
- 4 [Conditions for Success](#page-9-0)
- **5** [Stable Matrix Completion](#page-15-0)

"Mathematics is the art of giving the same name to different things." – Henri Poincaré

 Ω

Barat Bar

4 D F

Example of Low-rank Matrix Completion

Recommendation Systems (how internet companies make money):

Items Observed (Incomplete) Ratings Y

We observe:

$$
\mathbf{Y}_{\text{Observed ratings}} = \mathcal{P}_{\Omega} \begin{bmatrix} \mathbf{X} \\ \mathbf{Complete ratings} \end{bmatrix},
$$

where $\Omega \doteq \big\{ (i,j) \mid \text{user i has rated product j} \big\}.$

 Ω

Nuclear Norm Minimization

Problem (Matrix Completion)

Let $\bm{X}_o \in \mathbb{R}^{n \times n}$ be a low-rank matrix. Suppose we are given $\bm{Y} = \mathcal{P}_{\Omega} [\bm{X}_o],$ where $\Omega \subseteq [n] \times [n]$. Fill in the missing entries of X_o .

Notice: If $(i, j) \notin \Omega$, $\mathcal{P}_{\Omega}[E_{ij}] = 0$. So \mathcal{P}_{Ω} has matrices of rank one in its null space! So, P_{Ω} cannot be rank-RIP for any rank $r > 0$ with $\delta < 1$.

Question: can we still find X_0 by solving the nuclear norm minimization:

$$
\min \|X\|_* \quad \text{subject to} \quad \mathcal{P}_{\Omega}[X] = Y? \tag{1}
$$

Simulations lead the way of investigation – need an algorithm...

 Ω

Algorithm via Augmented Lagrange Multiplier

Nuclear norm minimization for matrix completion:

$$
\min \underbrace{\|\mathbf{X}\|_{*}}_{f(\mathbf{x})} \quad \text{subject to} \quad \underbrace{\mathcal{P}_{\Omega}[\mathbf{X}] = \mathbf{Y}}_{g(\mathbf{x}) = 0}.\tag{2}
$$

The Lagrangian method:

$$
\mathcal{L}(\boldsymbol{X},\boldsymbol{\Lambda})=\|\boldsymbol{X}\|_{*}+\langle\boldsymbol{\Lambda},\boldsymbol{Y}-\mathcal{P}_{\Omega}[\boldsymbol{X}]\rangle.
$$
 (3)

Optimality conditions:

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{A}} = 0. \quad (4)
$$

However, it only holds at the point of the optimal solution x^* .

Algorithm via Augmented Lagrange Multiplier

The augmented Lagrangian is to regularize the landscape around the optimal solution x^* :

$$
\mathcal{L}_{\mu}(\boldsymbol{X},\boldsymbol{\Lambda})=\|\boldsymbol{X}\|_{*}+\langle\boldsymbol{\Lambda},\boldsymbol{Y}-\mathcal{P}_{\Omega}[\boldsymbol{X}]\rangle+\frac{\mu}{2}\|\boldsymbol{Y}-\mathcal{P}_{\Omega}[\boldsymbol{X}]\|_{F}^{2}.\qquad(5)
$$

Amenable for alternating optimization to converge to the optimal solution x^{\star} more easily and efficiently:

$$
\text{Primal:} \quad \mathbf{X}_{k+1} \quad \in \quad \arg\min_{\mathbf{X}} \ \mathcal{L}_{\mu}(\mathbf{X}, \mathbf{\Lambda}_k), \tag{6}
$$

$$
\text{Dual:} \quad \Lambda_{k+1} \quad = \quad \Lambda_k + \mu \mathcal{P}_{\Omega} \big[\boldsymbol{Y} - \boldsymbol{X}_{k+1} \big]. \tag{7}
$$

 Ω

イロト イ押ト イヨト イヨト

Algorithm: Proximal Gradient Descent

How to minimize the augmented Lagrangian \mathcal{L}_{μ} :

$$
\min_{\mathbf{X}} F(\mathbf{X}) \doteq \underbrace{\|\mathbf{X}\|_{*}}_{g(\mathbf{X}) \text{ convex}} + \underbrace{\langle \mathbf{\Lambda}, \mathbf{Y} - \mathcal{P}_{\Omega}[\mathbf{X}] \rangle + \frac{\mu}{2} \|\mathbf{Y} - \mathcal{P}_{\Omega}[\mathbf{X}] \|_{F}^{2}}_{f(\mathbf{X}) \text{ smooth, convex, } \mu\text{-Lipschitz}}.
$$
 (8)

At each iterate X_k , construct a local (quadratic) upper bound for F:

$$
\hat{F}(\boldsymbol{X}, \boldsymbol{X}_k) = g(\boldsymbol{X}) + f(\boldsymbol{X}_k) + \langle \nabla f(\boldsymbol{X}_k), \boldsymbol{X} - \boldsymbol{X}_k \rangle + \frac{\mu}{2} ||\boldsymbol{X} - \boldsymbol{X}_k||_2^2.
$$
 (9)

Proximal gradient descent: the next iterate X_{k+1} is computed as

$$
X_{k+1} = \arg\min_{\mathbf{X}} \left\{ g(\mathbf{X}) + \frac{\mu}{2} \left\| \mathbf{X} - \underbrace{(\mathbf{X}_k - \frac{1}{\mu} \nabla f(\mathbf{X}_k))}_{\mathbf{M}} \right\|_F^2 \right\} (10)
$$

= $\text{prox}_{g/\mu}(\mathbf{M})$ (see details in Chapter 8). (11)

mark of the

∢ □ ▶ ◀ [□] ▶ ◀

Algorithm: Proximal Operator for Nuclear Norm

For a matrix \boldsymbol{M} with SVD $\boldsymbol{M} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$, its singular value thresholding operator is:

$$
\mathcal{D}_{\tau}[M] = U \mathcal{S}_{\tau}\left[\boldsymbol{\Sigma}\right] \boldsymbol{V}^*,
$$

where $S_{\tau}X = \text{sign}(X) \circ (|X| - \tau)_{+}$ is the entry-wise soft thresholding operator.

Theorem

The unique solution X_{+} to the program:

$$
\min_{\mathbf{X}} \{ \| \mathbf{X} \|_{*} + \frac{\mu}{2} \left\| \mathbf{X} - \mathbf{M} \right\|_{F}^{2} \},\tag{12}
$$

is given by

$$
X_{\star} = \mathcal{D}_{\mu^{-1}}[M]. \tag{13}
$$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

目

 QQQ

Algorithm via Augmented Lagrange Multiplier

Outer Loop: Matrix Completion by ALM

1: **initialize:**
$$
\mathbf{X}_0 = \mathbf{\Lambda}_0 = 0, \mu > 0.
$$

- 2: while not converged do
- 3: compute $\boldsymbol{X}_{k+1}\in\argmin_{\boldsymbol{X}}\mathcal{L}_{\mu}\big(\boldsymbol{X},\boldsymbol{\Lambda}_{k}\big)$ (say by PG);
- 4: compute $\mathbf{\Lambda}_{k+1} = \mathbf{\Lambda}_k + \mu\big(\boldsymbol{Y} \mathcal{P}_{\Omega} \big[\boldsymbol{X}_{k+1} \big] \big).$
- 5: end while

Inner Loop: Proximal Gradient

- 1: **initialize:** X_0 starts with the X_k from the outer loop.
- 2: while not converged do
- 3: compute

$$
\begin{array}{rcl} \boldsymbol{X}_{\ell+1} & = & \mathrm{prox}_{g/\mu}\big(\boldsymbol{X}_{\ell} - \mu^{-1}\nabla f(\boldsymbol{X}_{\ell})\big) \\ \\ & = & \mathcal{D}_{\mu^{-1}}\Big[\underbrace{\mathcal{P}_{\Omega^{c}}[\boldsymbol{X}_{\ell}] + \boldsymbol{Y} + \mu^{-1}\mathcal{P}_{\Omega}[\boldsymbol{\Lambda}_{k}]}_{\text{exercise}}\Big]. \end{array}
$$

4: end while

 Ω

Similar Phenomena of Success

Comparison: low-rank matrix recovery from random linear measurements versus matrix completion from random sampled entries.

Figure: Left: phase transition for matrix recovery; Right: phase transition for matrix completion.

4 0 8

When it fails?

- **1** if X_0 is itself sparse (as in the example of E_{ij})
- **2** if Ω is chosen adversarially (e.g., an entire row or column of X_o). Notice for any rank-r orthogonal matrix U :

$$
\sum_{i} \|e_i^* \mathbf{U}\|_2^2 = \|\mathbf{U}\|_F^2 = r \quad \Longrightarrow \quad \max_{i} \, \|e_i^* \mathbf{U}\|_2^2 \, \geq \, r/n.
$$

Definition

We say that $\boldsymbol{X_o} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V^*}$ is ν -incoherent if the following hold:

$$
\forall i \in [n], \quad \|e_i^* \mathbf{U}\|_2^2 \leq \nu r/n,
$$
 (14)

$$
\forall j \in [n], \quad \|e_j^* \mathbf{V}\|_2^2 \leq \nu r/n. \tag{15}
$$

G.

 Ω

→ 何 ▶ → ヨ ▶ → ヨ ▶

Bernoulli $\text{Ber}(p)$ sampling model: each entry (i, j) belongs to the observed set Ω independently with probability $p \in [0, 1]$. Hence, the expected number of observed entries is:

$$
m = \mathbb{E}\big[\,|\Omega|\,\big] = pn^2.\tag{16}
$$

Theorem (Matrix Completion via Nuclear Norm Minimization)

Let $\boldsymbol{X}_o \in \mathbb{R}^{n \times n}$ be a rank- r matrix with incoherence parameter ν . Suppose that we observe $Y = \mathcal{P}_{\Omega}[X_o]$, with Ω sampled according to the Bernoulli model with probability

$$
p \ge C_1 \frac{\nu r \log^2(n)}{n}.\tag{17}
$$

Then with probability at least $1 - C_2 n^{-c_3}$, \mathbf{X}_o is the unique optimal solution to

minimize $||X||_*$ subject to $\mathcal{P}_{\Omega}[X] = Y$. (18)

Lemma (Subdifferential of nuclear norm)

Let $X \in \mathbb{R}^{n \times n}$ have compact singular value decomposition $X = U \Sigma V^*$. The subdifferential of the nuclear norm at X is given by

$$
\partial \|\cdot\|_{*}(X) = \left\{ Z \mid \mathcal{P}_{\mathsf{T}}[Z] = UV^{*}, \ \|\mathcal{P}_{\mathsf{T}^{\perp}}[Z]\| \leq 1 \right\}.
$$
 (19)

 QQ

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

4 0 F

Key ideas for the Theorem:

For the program:

$$
\min \|X\|_* \quad \text{subject to} \quad \mathcal{P}_{\Omega}[X] = \mathcal{P}_{\Omega}[X_o]. \tag{20}
$$

Similar to the ℓ^1 case, find a dual certificate $\bm{\Lambda}$ that satisfies (the KKT condition):

- (i) Λ is supported on Ω : $\mathcal{P}_{\Omega}[\Lambda] = \Lambda$ and
- \bullet (ii) $\Lambda\in \partial\left\|\cdot\right\|_{*}(\boldsymbol{X}_{o})$ i.e., $\mathcal{P}_{\sf T}[\Lambda]=\boldsymbol{U}\boldsymbol{V}^{*}$ and $\left\|\mathcal{P}_{\sf T^{\perp}}[\Lambda]\right\|\leq 1$,

Strategy: look for a matrix Λ of smallest 2-norm that satisfies the equality constraints

$$
\mathcal{P}_{\Omega^c}[\Lambda] = 0, \quad \mathcal{P}_T[\Lambda] = UV^*, \tag{21}
$$

and then hope to check that it satisfies the inequality constraints

$$
\|\mathcal{P}_{\mathsf{T}^{\perp}}[\mathbf{\Lambda}]\| \leq 1.
$$

KED KARD KED KED E VOOR

Unfortunately, this straightforward strategy does not work out directly as solution to the equalities is not so easy to analyze...

An alternative strategy: an set of (relaxed) conditions for optimality:

Proposition (KKT Conditions – Approximate Version)

The matrix X_{α} is the unique optimal solution to the nuclear minimization problem [\(18\)](#page-11-0) if the following set of conditions hold

 \textbf{D} The operator norm of the operator $p^{-1}\mathcal{P}_{\sf T}\mathcal{P}_{\Omega}\mathcal{P}_{\sf T}-\mathcal{P}_{\sf T}$ is small:

$$
||p^{-1}\mathcal{P}_T\mathcal{P}_{\Omega}\mathcal{P}_T-\mathcal{P}_T|| \leq \frac{1}{2}.
$$

2 There exists a dual certificate Λ that satisfies $\mathcal{P}_{\Omega}[\Lambda] = \Lambda$ and

$$
\bullet \ \ (a) \ \|\mathcal{P}_{\mathsf{T}^{\perp}}[\mathbf{\Lambda}]\| \leq \tfrac{1}{2},
$$

• (b)
$$
\|\mathcal{P}_{\mathsf{T}}[\mathbf{\Lambda}]-\mathbf{U}\tilde{\mathbf{V}}^*\|_F\leq \frac{1}{4n}.
$$

イロト イ押 トイヨト イヨト ニヨー

 QQ

Matrix Completion with Noise

Problem: the observed entries are often corrupted with some noise:

 $Y_{ij} = [\mathbf{X}_o]_{ij} + Z_{ij}, (i, j) \in \Omega; \text{ or } \mathcal{P}_{\Omega}[\mathbf{Y}] = \mathcal{P}_{\Omega}[\mathbf{X}_o] + \mathcal{P}_{\Omega}[\mathbf{Z}],$ (22)

where Z_{ij} can be some small noise, say $\|\mathcal{P}_{\Omega}[\boldsymbol{Z}]\|_F < \epsilon$.

$$
\min \|X\|_* \quad \text{subject to} \quad \|\mathcal{P}_{\Omega}[X] - \mathcal{P}_{\Omega}[Y]\|_F < \epsilon. \tag{23}
$$

Theorem (Stable Matrix Completion)

Let $\boldsymbol{X}_o \in \mathbb{R}^{n \times n}$ be a rank- r , ν -incoherent matrix. Suppose that we observe $P_{\Omega}[\boldsymbol{Y}] = P_{\Omega}[\boldsymbol{X}_o] + P_{\Omega}[\boldsymbol{Z}]$, where Ω is uniformly sampled from subsets of size $m > C_1 \nu n r \log^2(n)$, (24)

then with high probability, the optimal solution X to the convex program [\(23\)](#page-15-1) satisfies √

$$
\|\hat{\mathbf{X}} - \mathbf{X}_o\|_F \le c \frac{n\sqrt{n}\log(n)}{\sqrt{m}} \epsilon \le c' \frac{n}{\sqrt{r}} \epsilon, \quad \text{for some } c > 0. \tag{25}
$$

Summary

Nuclear norm minimization can recover w.h.p. a low-rank matrix X_0 from

- \bullet $m = O(nr)$ random linear measurements: $\mathbf{y} = \mathcal{A}[\mathbf{X}]$;
- **2** $m = O(nr \log^2 n)$ randomly sampled entries: $\boldsymbol{Y} = \mathcal{P}_{\Omega}[\boldsymbol{X}];$
- \bullet the estimate \hat{X} is stable to small noise.

- 30

 Ω

イロト イ押ト イヨト イヨト

Assignments

- Reading: Section 4.4-4.6 of Chapter 4.
- Programming Homework $# 2$.

G.

- 4 重 8 - 4 重 8

← ロ → → ← 何 →

 QQ