Computational Principles for High-dim Data Analysis (Lecture Ten)

Yi Ma and Jiantao Jiao

EECS Department, UC Berkeley

September 30, 2021

EECS208, Fall 2021

Convex Methods for Low-Rank Matrix Recovery (Matrix Completion)

- 1 Motivating Example
- 2 Nuclear Norm Minimization
- **3** Algorithm: Augmented Lagrange Multiplier
- **4** Conditions for Success
- 5 Stable Matrix Completion

"Mathematics is the art of giving the same name to different things." – Henri Poincaré

E 6 4 E 6

Example of Low-rank Matrix Completion

Recommendation Systems (how internet companies make money):

Items Observed (Incomplete) Ratings \boldsymbol{Y}

We observe:

$$oldsymbol{Y}_{ ext{Observed ratings}} = \mathcal{P}_{\Omega} \begin{bmatrix} oldsymbol{X} \\ ext{Complete ratings} \end{bmatrix},$$

where $\Omega \doteq \{(i, j) \mid \text{user } i \text{ has rated product } j\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Nuclear Norm Minimization

Problem (Matrix Completion)

Let $X_o \in \mathbb{R}^{n \times n}$ be a low-rank matrix. Suppose we are given $Y = \mathcal{P}_{\Omega}[X_o]$, where $\Omega \subseteq [n] \times [n]$. Fill in the missing entries of X_o .

Notice: If $(i, j) \notin \Omega$, $\mathcal{P}_{\Omega}[\mathbf{E}_{ij}] = \mathbf{0}$. So \mathcal{P}_{Ω} has matrices of rank one in its null space! So, \mathcal{P}_{Ω} cannot be rank-RIP for any rank r > 0 with $\delta < 1$.

Question: can we still find X_o by solving the nuclear norm minimization:

$$\min \|\boldsymbol{X}\|_* \quad \text{subject to} \quad \mathcal{P}_{\Omega}[\boldsymbol{X}] = \boldsymbol{Y}? \tag{1}$$

Simulations lead the way of investigation – need an algorithm...

イロト 不得下 イヨト イヨト 二日

Algorithm via Augmented Lagrange Multiplier

Nuclear norm minimization for matrix completion:

$$\min \underbrace{\|\boldsymbol{X}\|_{*}}_{f(\boldsymbol{x})} \quad \text{subject to} \quad \underbrace{\mathcal{P}_{\Omega}[\boldsymbol{X}] = \boldsymbol{Y}}_{g(\boldsymbol{x}) = 0}.$$
(2)

The Lagrangian method:

$$\mathcal{L}(\boldsymbol{X}, \boldsymbol{\Lambda}) = \|\boldsymbol{X}\|_* + \langle \boldsymbol{\Lambda}, \boldsymbol{Y} - \mathcal{P}_{\boldsymbol{\Omega}}[\boldsymbol{X}] \rangle.$$
(3)

Optimality conditions:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{\Lambda}} = 0.$$
 (4)

However, it only holds at the point of the optimal solution x^{\star} .

Algorithm via Augmented Lagrange Multiplier

The *augmented* Lagrangian is to regularize the landscape around the optimal solution x^* :

$$\mathcal{L}_{\mu}(\boldsymbol{X}, \boldsymbol{\Lambda}) = \|\boldsymbol{X}\|_{*} + \langle \boldsymbol{\Lambda}, \boldsymbol{Y} - \mathcal{P}_{\Omega}[\boldsymbol{X}] \rangle + rac{\mu}{2} \|\boldsymbol{Y} - \mathcal{P}_{\Omega}[\boldsymbol{X}]\|_{F}^{2}.$$
 (5)

Amenable for alternating optimization to converge to the optimal solution x^{\star} more easily and efficiently:

Primal:
$$X_{k+1} \in \arg\min_{X} \mathcal{L}_{\mu}(X, \Lambda_k),$$
 (6)

Dual:
$$\Lambda_{k+1} = \Lambda_k + \mu \mathcal{P}_{\Omega} [\boldsymbol{Y} - \boldsymbol{X}_{k+1}].$$
 (7)

(4) (日本)

Algorithm: Proximal Gradient Descent

How to minimize the augmented Lagrangian \mathcal{L}_{μ} :

$$\min_{\mathbf{X}} F(\mathbf{X}) \doteq \underbrace{\|\mathbf{X}\|_{*}}_{g(\mathbf{X}) \text{ convex}} + \underbrace{\langle \mathbf{\Lambda}, \mathbf{Y} - \mathcal{P}_{\Omega}[\mathbf{X}] \rangle + \frac{\mu}{2} \|\mathbf{Y} - \mathcal{P}_{\Omega}[\mathbf{X}]\|_{F}^{2}}_{f(\mathbf{X}) \text{ smooth, convex, } \mu\text{-Lipschitz}}.$$
 (8)

At each iterate X_k , construct a local (quadratic) upper bound for F:

$$\hat{F}(\boldsymbol{X}, \boldsymbol{X}_k) = g(\boldsymbol{X}) + f(\boldsymbol{X}_k) + \langle \nabla f(\boldsymbol{X}_k), \boldsymbol{X} - \boldsymbol{X}_k \rangle + \frac{\mu}{2} \|\boldsymbol{X} - \boldsymbol{X}_k\|_2^2.$$
(9)

Proximal gradient descent: the next iterate X_{k+1} is computed as

$$\begin{aligned} \boldsymbol{X}_{k+1} &= \arg\min_{\boldsymbol{X}} \left\{ g(\boldsymbol{X}) + \frac{\mu}{2} \middle\| \boldsymbol{X} - \underbrace{\left(\boldsymbol{X}_k - \frac{1}{\mu} \nabla f(\boldsymbol{X}_k) \right)}_{\boldsymbol{M}} \middle\|_F^2 \right\} \quad (10) \\ &= \operatorname{prox}_{g/\mu}(\boldsymbol{M}) \quad (\text{see details in Chapter 8}). \end{aligned}$$

Algorithm: Proximal Operator for Nuclear Norm

For a matrix M with SVD $M = U\Sigma V^*$, its singular value thresholding operator is:

$$\mathcal{D}_{\tau}[\boldsymbol{M}] = \boldsymbol{U}\mathcal{S}_{\tau}\left[\boldsymbol{\Sigma}\right]\boldsymbol{V}^{*},$$

where $S_{\tau}[X] = \operatorname{sign}(X) \circ (|X| - \tau)_{+}$ is the entry-wise soft thresholding operator.

Theorem

The unique solution X_{\star} to the program:

$$\min_{\mathbf{X}} \{ \|\mathbf{X}\|_* + \frac{\mu}{2} \|\mathbf{X} - \mathbf{M}\|_F^2 \},$$
(12)

is given by

$$\boldsymbol{X}_{\star} = \mathcal{D}_{\mu^{-1}}[\boldsymbol{M}]. \tag{13}$$

A D N A B N A B N A B N

3

Algorithm via Augmented Lagrange Multiplier Outer Loop: Matrix Completion by ALM

1: initialize:
$$X_0 = \Lambda_0 = 0, \mu > 0.$$

- 2: while not converged do
- 3: compute $oldsymbol{X}_{k+1}\in rgmin_{oldsymbol{X}}\mathcal{L}_{\mu}oldsymbol{\left(X,\Lambda_k
 ight)}$ (say by PG);
- 4: compute $\mathbf{\Lambda}_{k+1} = \mathbf{\Lambda}_k + \mu (\mathbf{Y} \mathcal{P}_{\Omega}[\mathbf{X}_{k+1}]).$
- 5: end while

Inner Loop: Proximal Gradient

- 1: initialize: X_0 starts with the X_k from the outer loop.
- 2: while not converged do
- 3: compute

$$\begin{aligned} \mathbf{X}_{\ell+1} &= \operatorname{prox}_{g/\mu} \left(\mathbf{X}_{\ell} - \mu^{-1} \nabla f(\mathbf{X}_{\ell}) \right) \\ &= \mathcal{D}_{\mu^{-1}} \left[\underbrace{\mathcal{P}_{\Omega^c}[\mathbf{X}_{\ell}] + \mathbf{Y} + \mu^{-1} \mathcal{P}_{\Omega}[\mathbf{\Lambda}_k]}_{\text{exercise}} \right] \end{aligned}$$

4: end while

イロト 不得 トイヨト イヨト 二日

Similar Phenomena of Success

Comparison: low-rank matrix recovery from random linear measurements versus matrix completion from random sampled entries.

Figure: Left: phase transition for matrix recovery; Right: phase transition for matrix completion.

When it fails?

- 1) if X_o is itself *sparse* (as in the example of E_{ij})
- 2) if Ω is chosen adversarially (e.g., an entire row or column of X_o). Notice for any rank-r orthogonal matrix U:

$$\sum_i \|\boldsymbol{e}_i^*\boldsymbol{U}\|_2^2 = \|\boldsymbol{U}\|_F^2 = r \implies \max_i \|\boldsymbol{e}_i^*\boldsymbol{U}\|_2^2 \ge r/n.$$

Definition

We say that $X_o = U\Sigma V^*$ is ν -incoherent if the following hold:

$$\forall i \in [n], \quad \|\boldsymbol{e}_i^* \boldsymbol{U}\|_2^2 \leq \nu r/n, \tag{14}$$

$$\forall j \in [n], \quad \|\boldsymbol{e}_j^* \boldsymbol{V}\|_2^2 \leq \nu r/n.$$
(15)

< □ > < □ > < □ > < □ > < □ > < □ >

Bernoulli Ber(p) sampling model: each entry (i, j) belongs to the observed set Ω independently with probability $p \in [0, 1]$. Hence, the expected number of observed entries is:

$$m = \mathbb{E}\big[\left|\Omega\right|\big] = pn^2.$$
(16)

Theorem (Matrix Completion via Nuclear Norm Minimization)

Let $X_o \in \mathbb{R}^{n \times n}$ be a rank-r matrix with incoherence parameter ν . Suppose that we observe $Y = \mathcal{P}_{\Omega}[X_o]$, with Ω sampled according to the Bernoulli model with probability

$$p \ge C_1 \frac{\nu r \log^2(n)}{n}.$$
(17)

Then with probability at least $1 - C_2 n^{-c_3}$, X_o is the unique optimal solution to

minimize $\|X\|_*$ subject to $\mathcal{P}_{\Omega}[X] = Y$. (18)

Lemma (Subdifferential of nuclear norm)

Let $X \in \mathbb{R}^{n \times n}$ have compact singular value decomposition $X = U\Sigma V^*$. The subdifferential of the nuclear norm at X is given by

$$\partial \left\| \cdot \right\|_* (\boldsymbol{X}) = \left\{ \boldsymbol{Z} \mid \mathcal{P}_{\mathsf{T}}[\boldsymbol{Z}] = \boldsymbol{U}\boldsymbol{V}^*, \ \|\mathcal{P}_{\mathsf{T}^{\perp}}[\boldsymbol{Z}]\| \le 1 \right\}.$$
(19)

- 4 回 ト - 4 回 ト

Key ideas for the Theorem:

For the program:

$$\min \|\boldsymbol{X}\|_* \quad \text{subject to} \quad \mathcal{P}_{\Omega}[\boldsymbol{X}] = \mathcal{P}_{\Omega}[\boldsymbol{X}_o]. \tag{20}$$

Similar to the ℓ^1 case, find a dual certificate Λ that satisfies (the KKT condition):

- (i) Λ is supported on Ω : $\mathcal{P}_{\Omega}[\Lambda] = \Lambda$ and
- (ii) $\mathbf{\Lambda} \in \partial \left\|\cdot\right\|_* (\mathbf{X}_o)$ i.e., $\mathcal{P}_{\mathsf{T}}[\mathbf{\Lambda}] = \mathbf{U}\mathbf{V}^*$ and $\left\|\mathcal{P}_{\mathsf{T}^{\perp}}[\mathbf{\Lambda}]\right\| \leq 1$,

 $\mbox{Strategy:}$ look for a matrix Λ of smallest 2-norm that satisfies the equality constraints

$$\mathcal{P}_{\Omega^c}[\mathbf{\Lambda}] = \mathbf{0}, \quad \mathcal{P}_{\mathsf{T}}[\mathbf{\Lambda}] = UV^*,$$
 (21)

and then hope to check that it satisfies the inequality constraints

$$\|\mathcal{P}_{\mathsf{T}^{\perp}}[\mathbf{\Lambda}]\| \leq 1.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unfortunately, this straightforward strategy does not work out directly as solution to the equalities is not so easy to analyze...

An alternative strategy: an set of (relaxed) conditions for optimality:

Proposition (KKT Conditions – Approximate Version)

The matrix X_o is the unique optimal solution to the nuclear minimization problem (18) if the following set of conditions hold

1 The operator norm of the operator $p^{-1}\mathcal{P}_T\mathcal{P}_\Omega\mathcal{P}_T - \mathcal{P}_T$ is small:

$$\left\| p^{-1} \mathcal{P}_{\mathsf{T}} \mathcal{P}_{\Omega} \mathcal{P}_{\mathsf{T}} - \mathcal{P}_{\mathsf{T}} \right\| \leq \frac{1}{2}.$$

2 There exists a dual certificate $oldsymbol{\Lambda}$ that satisfies $\mathcal{P}_{\Omega}[oldsymbol{\Lambda}] = oldsymbol{\Lambda}$ and

(a)
$$\|\mathcal{P}_{\mathsf{T}^{\perp}}[\mathbf{\Lambda}]\| \leq \frac{1}{2};$$

• (b)
$$\left\|\mathcal{P}_{\mathsf{T}}[\mathbf{\Lambda}] - \boldsymbol{U} \boldsymbol{V}^*\right\|_F \leq rac{1}{4n}$$

イロト イポト イヨト イヨト 二日

Matrix Completion with Noise

Problem: the observed entries are often corrupted with some noise:

 $Y_{ij} = [\boldsymbol{X}_o]_{ij} + Z_{ij}, \ (i,j) \in \Omega; \quad \text{or} \quad \mathcal{P}_{\Omega}[\boldsymbol{Y}] = \mathcal{P}_{\Omega}[\boldsymbol{X}_o] + \mathcal{P}_{\Omega}[\boldsymbol{Z}], \quad (22)$

where Z_{ij} can be some small noise, say $\|\mathcal{P}_{\Omega}[\mathbf{Z}]\|_{F} < \epsilon$.

$$\min \|\boldsymbol{X}\|_*$$
 subject to $\|\mathcal{P}_{\Omega}[\boldsymbol{X}] - \mathcal{P}_{\Omega}[\boldsymbol{Y}]\|_F < \epsilon.$ (23)

Theorem (Stable Matrix Completion)

Let $X_o \in \mathbb{R}^{n \times n}$ be a rank-r, ν -incoherent matrix. Suppose that we observe $\mathcal{P}_{\Omega}[Y] = \mathcal{P}_{\Omega}[X_o] + \mathcal{P}_{\Omega}[Z]$, where Ω is uniformly sampled from subsets of size $m \ge C_1 \nu nr \log^2(n),$ (24)

then with high probability, the optimal solution \hat{X} to the convex program (23) satisfies

$$\|\hat{\boldsymbol{X}} - \boldsymbol{X}_o\|_F \le c \frac{n\sqrt{n}\log(n)}{\sqrt{m}} \epsilon \le c' \frac{n}{\sqrt{r}} \epsilon, \quad \text{for some } c > 0.$$
 (25)

Summary

Nuclear norm minimization can recover w.h.p. a low-rank matrix X_o from

- 1 m = O(nr) random linear measurements: $y = \mathcal{A}[X]$;
- 2 $m = O(nr \log^2 n)$ randomly sampled entries: $Y = \mathcal{P}_{\Omega}[X]$;
- ${f 3}$ the estimate \hat{X} is stable to small noise.

A B A A B A

Assignments

- Reading: Section 4.4-4.6 of Chapter 4.
- Programming Homework # 2.

э

ヨト イヨト

< □ > < 同 >