Computational Principles for High-dim Data Analysis (Lecture Eight)

Yi Ma

EECS Department, UC Berkeley

September 23, 2021

EECS208, Fall 2021

Convex Methods for Sparse Signal Recovery (Phase Transition in Sparse Recovery)

- 1 Phase Transition: Phenomena and Conjecture
- **2** Phase Transition via Coefficient-Space Geometry
- **3** Phase Transition via Observation-Space Geometry
- **4** Phase Transition in Support Recovery

"Algebra is but written geometry; geometry is but drawn algebra." – Sophie Germain

< □ > < 同 > < 三 > < 三 >

Phase Transition Phenomenon Success probability of the ℓ^1 minimization:

 $\min \|\boldsymbol{x}\|_1$ subject to $\boldsymbol{y} = \boldsymbol{A} \boldsymbol{x}$.

Ma (EECS Department, UC Berkeley)

EECS208, Fall 2021

э

Phase Transition Phenomenon

Conjecture: measurement ratio δ exceeds a certain function $\psi(\eta)$ of the sparsity ratio η . That is, the precise number of measurements needed for success of ℓ^1 minimization:

$$m^{\star} \geq \psi(k/n)n.$$

When do we expect this to happen? (compared to RIP)

- From a deterministic to a random matrix $A \sim_{iid} \mathcal{N}(0, \frac{1}{m})$.
- From recovery of all sparse to a *fixed* sparse x_o .

A More Rigorous (and Weaker) Statement: For a given, fixed x_o , with high probability in the random matrix A, ℓ^1 minimization recovers that particular x_o from the measurements $y = Ax_o$.

イロト 不得 トイヨト イヨト 二日

Phase Transition: Geometric Intuition In the Coefficient Space $x \in \mathbb{R}^n$:

Necessary and Sufficient Condition: x_o is the only intersection between the affine subspace:

$$\mathsf{S}: \{ \boldsymbol{x} \mid \boldsymbol{x} \in \boldsymbol{x}_o + \operatorname{null}(\boldsymbol{A}) \}$$
(1)

of feasible solutions and the scaled ℓ^1 ball:

$$\|\boldsymbol{x}_o\|_1 \cdot \mathsf{B}_1 = \{\boldsymbol{x} \mid \|\boldsymbol{x}\|_1 \le \|\boldsymbol{x}_o\|_1\}.$$
 (2)

Lemma

Suppose that $y = Ax_o$. Then x_o is the unique optimal solution to the ℓ^1 minimization problem if and only if $D \cap null(A) = \{0\}$, where D is the ℓ^1 descent cone:

$$\mathsf{D} = \{ \boldsymbol{v} \mid \| \boldsymbol{x}_o + t \boldsymbol{v} \|_1 \le \| \boldsymbol{x}_o \|_1 \text{ for some } t > 0 \}.$$
(3)

Phase Transition: Example of Two Random Subspaces

When does a randomly chosen subspace S intersect another subspace S'?

Example (Intersection of Two Linear Subspaces)

Let S' be any linear subspace of $\mathbb{R}^n,$ and let S be a uniform random subspace. Then

$$\mathbb{P}\left[\mathsf{S} \cap \mathsf{S}' = \{\mathbf{0}\}\right] = 0, \quad \dim(\mathsf{S}) + \dim(\mathsf{S}') > n; \tag{4}$$
$$\mathbb{P}\left[\mathsf{S} \cap \mathsf{S}' = \{\mathbf{0}\}\right] = 1, \quad \dim(\mathsf{S}) + \dim(\mathsf{S}') \le n. \tag{5}$$

Phase Transition: Example of Two Random Cones When does a cone C_1 intersect another randomly chosen cone C_2 ?

Example (Two Cones in \mathbb{R}^2)

Notice that if we have two convex cones C_1 and C_2 in \mathbb{R}^2 , with angle α and β respectively. Let C_1 be fixed and we rotate C_2 by a rotation \mathbf{R} uniformly chosen from \mathbb{S}^1 . Then we have

$$\mathbb{P}[\mathsf{C}_1 \cap \boldsymbol{R}(\mathsf{C}_2) \neq \{\mathbf{0}\}] = \min\{1, (\alpha + \beta)/2\pi\}.$$
(6)

How to generalize these special cases to general convex cones? the notion of dimension or size of angle...

Phase Transition: Geometric & Statistical Dimension

Consider a Gaussian vector, $m{g} \sim \mathcal{N}(\mathbf{0}, m{I})$, projected onto the subspace S:

$$\mathcal{P}_{\mathsf{S}}[\boldsymbol{g}] \doteq \arg\min_{\boldsymbol{x}\in\mathsf{S}} \|\boldsymbol{x}-\boldsymbol{g}\|_2^2.$$
(7)

Then, an equivalent definition of dimension of S:

$$d = \dim(\mathsf{S}) = \mathbb{E}_{\boldsymbol{g}} \left[\| \mathcal{P}_{\mathsf{S}}[\boldsymbol{g}] \|_{2}^{2} \right].$$
(8)

Definition (Statistical Dimension)

Given C is a closed convex cone in $\mathbb{R}^n,$ then its statistical dimension, denoted as $\delta(\mathsf{C}),$ is given by:

$$\delta(\mathsf{C}) \doteq \mathbb{E}_{\boldsymbol{g}}\left[\|\mathcal{P}_{\mathsf{C}}[\boldsymbol{g}]\|_{2}^{2} \right], \quad \text{with } \boldsymbol{g} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}).$$
(9)

Fact: if S is a random subspace of \mathbb{R}^n , and C a closed convex cone, then we have:

 $\delta(\mathsf{S}) + \delta(\mathsf{C}) \gg n \implies \mathsf{S} \cap \mathsf{C} \neq \{\mathbf{0}\}$ with high probability; $\delta(\mathsf{S}) + \delta(\mathsf{C}) \ll n \implies \mathsf{S} \cap \mathsf{C} = \{\mathbf{0}\}$ with high probability.

For a more precise statement see Chapter 6 or a proof.¹

¹Living on the edge: Phase transitions in convex programs with random data. D. Amelunxen, M. Lotz, M. McCoy, and J. Tropp, Information and Inference, 2014 E and a second

EECS208, Fall 2021

Proposition (Phase Transition for ℓ^1 Minimization – Qualitative)

Suppose that $y = Ax_o$ with x_o sparse. Let D denote the descent cone of the ℓ^1 norm $\|\cdot\|_1$ at x_o . Then

$$\begin{split} \mathbb{P}[\ell^1 \; \textit{recovers} \; \boldsymbol{x}_o] \; \leq \; C \exp\left(-c \frac{(\delta(\mathsf{D}) - m)^2}{n}\right), \quad m \leq \delta(\mathsf{D}); \\ \mathbb{P}[\ell^1 \; \textit{recovers} \; \boldsymbol{x}_o] \; \geq \; 1 - C \exp\left(-c \frac{(m - \delta(\mathsf{D}))^2}{n}\right), \quad m \geq \delta(\mathsf{D}). \end{split}$$

Methods and results can be generalized to:

- Any other atomic norms $\|\cdot\|_{\mathcal{D}}$ (e.g. nuclear norm for matrices).
- Intersections between two general convex cones (e.g. RPCA).

イロト 不得下 イヨト イヨト 二日

Proposition (Phase Transition for ℓ^1 Minimization – Quantitative)

Let D be the descent cone of the ℓ^1 norm at any $x_o \in \mathbb{R}^n$ satisfying $\|x_o\|_0 = k$. Then

$$n\psi\left(\frac{k}{n}\right) - 4\sqrt{n/k} \le \delta(\mathsf{D}) \le n\psi\left(\frac{k}{n}\right),$$
 (10)

(12)

where

$$\psi(\eta) = \min_{t \ge 0} \left\{ \eta(1+t^2) + (1-\eta)\sqrt{\frac{2}{\pi}} \int_t^\infty (s-t)^2 \exp\left(-\frac{s^2}{2}\right) ds \right\}.$$
(11)

Phase transition for ℓ^1 minimization takes place at:

$$m^{\star} = \psi\left(\frac{k}{n}\right)n.$$

Phase Transition: Observation Space

The unit ℓ^1 ball

 $\mathsf{B}_1 \doteq \{ \boldsymbol{x} \mid \| \boldsymbol{x} \|_1 \le 1 \}$

and its projection into \mathbb{R}^m ,

$$\mathsf{P} \doteq \boldsymbol{A}(\mathsf{B}_1) = \{\boldsymbol{A}\boldsymbol{x} \mid \|\boldsymbol{x}\|_1 \le 1\}.$$

 ℓ^1 minimization uniquely recovers any x with support I and signs σ if and only if

 $\mathsf{F} \doteq \operatorname{conv}(\{\sigma_i \boldsymbol{a}_i \mid i \in \mathsf{I}\})$ (13)

forms a face of the polytope P.

< □ > < □ > < □ > < □ > < □ > < □ >

Phase Transition: Observation Space

Internal angle and external angle of a face F on a polytope G.

Fact²: for an $m \times n$ Gaussian matrix A,

$$\mathbb{E}_{\mathbf{A}}[f_k(\mathbf{A}\mathsf{P})] = f_k(\mathsf{P}) - 2 \underbrace{\sum_{\ell=m+1,m+3,\dots} \sum_{\mathsf{F}\in\mathsf{F}_k(\mathsf{P})} \sum_{\mathsf{G}\in\mathsf{F}_\ell(\mathsf{P})} \beta(\mathsf{F},\mathsf{G})\gamma(\mathsf{G},\mathsf{P})}_{\Delta=\mathsf{Expected number of faces lost}} \beta(\mathsf{F},\mathsf{G})\gamma(\mathsf{G},\mathsf{P}).$$

When Δ is substantially smaller than one, w.h.p., we have

$$f_k(\boldsymbol{A}(\mathsf{P})) = f_k(\mathsf{P}).$$

²Counting faces of randomly projected polytopes when the projection radically lowers dimension, D. Donoho and J. Tanner, 2009.

Phase Transition for Recovering Support

Recall

face identification problem: From noisy observations $\boldsymbol{y} = \boldsymbol{A} \boldsymbol{x}_o + \boldsymbol{z},$ estimate the signed support:

$$\boldsymbol{\sigma}_o = \operatorname{sign}(\boldsymbol{x}_o), \qquad (14)$$

by solving the Lasso problem:

$$\hat{oldsymbol{x}} = \mathop{\mathsf{arg\,min}}_{oldsymbol{x} \in \mathbb{R}^n} rac{1}{2} \left\| oldsymbol{y} - oldsymbol{A} oldsymbol{x}
ight\|_2^2 + \lambda \left\| oldsymbol{x}
ight\|_1.$$

Two scenarios:

- Partial support recovery: supp(x̂) ⊆ supp(x₀). The estimator exhibits no "false positives".
- Signed support recovery: $sign(\hat{x}) = \sigma_o$. The estimator correctly determines all nonzero entries of x_o and their signs difficult!.

4 1 1 4 1 1 1

Phase Transition for Recovering Support

Theorem (Phase Transition in Partial Support Recovery)

Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$ with entries iid $\mathcal{N}(0, \frac{1}{m})$ random variables, and let $\mathbf{y} = \mathbf{A}\mathbf{x}_o + \mathbf{z}$, with \mathbf{x}_o a k-sparse vector and $\mathbf{z} \sim_{\text{iid}} \mathcal{N}\left(0, \frac{\sigma^2}{m}\right)$. If $m \ge \left(1 + \frac{\sigma^2}{\lambda^2 k} + \epsilon\right) 2k \log(n-k),$ (15)

then with probability at least $1 - Cn^{-\epsilon}$, any solution \hat{x} to the Lasso problem satisfies $\operatorname{supp}(\hat{x}) \subseteq \operatorname{supp}(x_o)$. Conversely, if

$$m < \left(1 + \frac{\sigma^2}{\lambda^2 k} - \epsilon\right) \ 2k \log(n-k),$$
 (16)

then the probability that there exists a solution \hat{x} of the Lasso which satisfies $\operatorname{sign}(\hat{x}) = \operatorname{sign}(x_o)$ is at most $Cn^{-\epsilon}$.

イロト イポト イヨト イヨト 二日

Conclusions (of Chapter 3)

Conditions when ℓ^1 minimization find the correct k-sparse solution:

 $\min \|x\|_1$ subject to y = Ax.

• Mutual Coherence:

$$m = O(k^2).$$

• Restricted Isometry:

$$m = O(k \log(n/k)).$$

• Phase Transition:

$$m^{\star} = \psi\left(\frac{k}{n}\right)n.$$

Recovery is also stable w.r.t. to noise and approximate sparsity.

< □ > < 同 > < 三 > < 三 >

Assignments

- Reading: Section 3.6 and 3.7 of Chapter 3.
- Advanced Reading: Section 6.2 of Chapter 6.

э

∃ ► < ∃ ►</p>

< 47 ▶