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Convex Methods for Sparse Signal Recovery

(Phase Transition in Sparse Recovery)

@ Phase Transition: Phenomena and Conjecture
@ Phase Transition via Coefficient-Space Geometry
© Phase Transition via Observation-Space Geometry

@ Phase Transition in Support Recovery

"Algebra is but written geometry; geometry is but drawn algebra.”
— Sophie Germain
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Phase Transition: Phenomena and Conjecture

Phase Transition Phenomenon
Success probability of the ¢! minimization:

min ||x||; subjectto y= Awx.
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Phase Transition: Phenomena and Conjecture

Phase Transition Phenomenon

Conjecture: measurement ratio J exceeds a certain function () of the
sparsity ratio 7. That is, the precise number of measurements needed for
success of /! minimization:

m* > (k/n)n.

When do we expect this to happen? (compared to RIP)
e From a deterministic to a random matrix A ~;;q N'(0, %)

® From recovery of all sparse to a fixed sparse x,.
A More Rigorous (and Weaker) Statement: For a given, fixed x,,

with high probability in the random matrix A, ¢! minimization recovers
that particular x, from the measurements y = Ax,.
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Geometric Intuition
In the Coefficient Space = € R™:

Descent cone D

Necessary and Sufficient Condition: x, is the only intersection between

the affine subspace:
S: {x|x€x,+null(A)} (1)

of feasible solutions and the scaled ¢! ball:

o]y - B = {2 | ]|, < [[@oll,}- (2)
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

null(A)

Descent cone D

Lemma

Suppose that y = Ax,. Then x, is the unique optimal solution to the ¢
minimization problem if and only if D Nnull(A) = {0}, where D is the (!
descent cone:

D={v]| ||lzo +tv|; < |xo|; for somet > 0}. (3)
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Example of Two Random Subspaces
When does a randomly chosen subspace S intersect another subspace S'?

Example (Intersection of Two Linear Subspaces)

Let S’ be any linear subspace of R", and let S be a uniform random
subspace. Then

P[SNS ={0}] = 0, dim(S)+ dim(S) > n; (4)
P[SNnS ={0}] = 1, dim(S)+dim(S) < n. (5)

intersection

§'NS=line intersection

§'nS=o0
S
S
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Example of Two Random Cones
When does a cone C; intersect another randomly chosen cone Cy?

Example (Two Cones in R?)

Notice that if we have two convex cones C; and Cy in R?, with angle o
and [ respectively. Let C; be fixed and we rotate Cs by a rotation R
uniformly chosen from S'. Then we have

P[Ci N R(Cp) # {0}] = min {1, (a + §)/27} . (6)

How to generalize these special
cases to general convex cones?
the notion of dimension or size of angle...
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Geometric & Statistical Dimension
Consider a Gaussian vector, g ~ N (0, I), projected onto the subspace S:

Pslg] = argmin [z — g|;. (7)
xEeS
Then, an equivalent definition of dimension of S:

d=dim(S) = Ey ||Pslgll] - (8)

Small convex cone Cy

Large convex cone C;

Pe,|#

n

0 E=[|Pe,[2]]13 > E=[Pc, [2]13 0
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

Definition (Statistical Dimension)

Given C is a closed convex cone in R"”, then its statistical dimension,
denoted as §(C), is given by:

6(C) = By [IPclgll3], with g ~ N (0, ). (9)

Fact: if S is a random subspace of R", and C a closed convex cone, then
we have:

3(S)+46(C)>n = SNC# {0} with high probability;
(S)+46(C)<xn = SNC={0} with high probability.

For a more precise statement see Chapter 6 or a proof.?

Y iving on the edge: Phase transitions in convex programs with random data. D.
Amelunxen, M. Lotz, M. McCoy, and J. Tropp, Information-and Inference, 2014
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

Proposition (Phase Transition for /! Minimization — Qualitative)

Suppose that y = Az, with x, sparse. Let D denote the descent cone of
the (* norm || - ||y at x,. Then

N2
}P’[El recovers x,] < Cexp (—cM) , m<4d(D);

, m>4(D).

_ 2
P[¢! recovers x,] > 1— Cexp <_Cw>

Methods and results can be generalized to:

e Any other atomic norms || - ||p (e.g. nuclear norm for matrices).
® Intersections between two general convex cones (e.g. RPCA).
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

Proposition (Phase Transition for ¢ Minimization — Quantitative)

Let D be the descent cone of the {* norm at any x, € R" satisfying
|zollg = k. Then

ny (i) —4y/n/k < §(D) < map <S) , (10)
where

() = min {n(l R | e-trew (—2) ds} e

Phase transition for /' minimization
takes place at:

m* = <7’2> n. (12)

Ma (EECS Department, UC Berkeley)

P
E

Zo
So
°
g0

&

P

5 04 05 06 07
Undersampling 8= m/ n

EECS208, Fall 2021 September 23, 2021 12/18



Phase Transition via Observation-Space Geometry

Phase Transition: Observation Space

The unit ¢* ball

Coefficient space R™ ¢' ball By
Br = {z | [lzf|, <1} .

and its projection into R™,

P - A(Bl) — {Aw | ||‘,1:“1 S 1}‘ Linear embedding A C
El mlnlmlzatlon Observation space R™ —1 Fl’)i]};:(()gl(;
uniquely recovers any x with
support | and signs o if and only if

F = conv({o;a; | i€ 1}) (13) y— Az,

observation

forms a face of the polytope P.
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Phase Transition via Observation-Space Geometry

Phase Transition: Observation Space

Internal angle and external angle of a face F on a polytope G.

; F
F .

ARG 1p .S — 1/ N(F.G)

Fact?: for an m x n Gaussian matrix A,

Ealfr(AP)] = fs(P) =2 > > Y. B(F.6(G,P).

L=m+1,m+3,... FEF,(P) GEF,(P)

A=Expected number of faces lost

When A is substantially smaller than one, w.h.p., we have

fr(A(P)) = fi(P).

2Counting faces of randomly projected polytopes when the projection radically lowers
dimension, D. Donoho and J. Tanner, 2009.
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Phase Transition in Support Recovery

Phase Transition for Recovering Support

Recall

face identification problem: From
noisy observations y = Az, + z,
estimate the signed support:

o, = sign(x,), (14)

by solving the Lasso problem:
. . 2
& = argmingern 3 ||y — Azll; + Az, .
Two scenarios:

¢ Partial support recovery: supp(z) C supp(x,). The estimator
exhibits no “false positives”.

¢ Signed support recovery: sign(&) = o,. The estimator correctly
determines all nonzero entries of x, and their signs — difficult!.
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Phase Transition in Support Recovery

Phase Transition for Recovering Support

Theorem (Phase Transition in Partial Support Recovery)
Suppose that A € R™*™ with entries iid N (0, %) random variables, and
let y = Az, + z, with x, a k-sparse vector and z ~iq N (0, %) If

0.2

m > <1+)\2k

+ e) 2klog(n — k), (15)

then with probability at least 1 — Cn™¢, any solution & to the Lasso
problem satisfies supp(&) C supp(x,). Conversely, if

2

o
m < <1 + ST e) 2k log(n — k), (16)

then the probability that there exists a solution & of the Lasso which

satisfies sign(x) = sign(x,) is at most Cn~¢.
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Conclusions (of Chapter 3)

Conditions when ¢! minimization find the correct k-sparse solution:
min ||x||; subjectto y= Awx.
® Mutual Coherence:
m = O(k?).

® Restricted Isometry:

e Phase Transition:

Recovery is also stable w.r.t. to noise and approximate sparsity.
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Assignments

® Reading: Section 3.6 and 3.7 of Chapter 3.
® Advanced Reading: Section 6.2 of Chapter 6.
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