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Convex Methods for Sparse Signal Recovery
(Noisy Observations or Approximated Sparsity)

1 Problem Formulation

2 Stable Recovery of Sparse Signals

3 Recovery of Inexact Sparse Signals

“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain
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Problem Formulation

Problem Formulation

The observation y is perturbed by a small amount of noise z:

y = Axo + z, ‖z‖2 ≤ ε. (1)

Three typical scenarios (or combination of them):

• Deterministic error: z is bounded: ‖z‖2 ≤ ε, and ε is known.

• Stochastic noise: entries of z ∼iid N (0, σ
2

m ) hence ‖z‖2 ≈ σ.

• Inexact sparsity: xo is not perfectly sparse with ‖xo − [xo]k‖ small.
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Problem Formulation

Problem Formulation

The observation y is perturbed by a small amount of noise z:

y = Axo + z, ‖z‖2 ≤ ε. (2)

Three typical tasks (or combination of them):

• Estimation: Is ‖x̂− xo‖2 small?

• Prediction: Is Ax̂ ≈ Axo?

• Identification: Is supp(x̂) = supp(xo)?
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Problem Formulation

Lasso versus Basis Pursuit Denoising

To find a sparse xo from noisy measurements:

y = Axo + z, ‖z‖2 ≤ ε. (3)

I. BPDN (basis pursuit denoising):

min ‖x‖1 subject to ‖y −Ax‖2 ≤ ε. (4)

II. LASSO (least absolute shrinkage and selection operator):

minλ ‖x‖1 +
1
2 ‖y −Ax‖22. (5)

∃λ ↔ ε such that BPDN and LASSO have the same optimal solution.
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Stable Recovery of Sparse Signals

Stable Recovery: Bounded Error (Best Scenario)

Knowing the support I of xo, solve the least squares problem:

min ‖y −AIx
′(I)‖22 (6)

to obtain the “oracle” (best possible) estimate:{
x̂′(I) = (A∗I AI)

−1A∗I y,

x̂′(Ic) = 0.
(7)

From ‖AIx̂
′ −AIxo‖2 ≤ ε, we have the (tight) error bound:∥∥x̂′ − xo

∥∥
2
≤ ε

σmin(AI)
∼ cε. (8)
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Stable Recovery of Sparse Signals

Stable Recovery: Bounded Error

Theorem (Stable Sparse Recovery via BPDN)

Suppose that y = Axo + z, with ‖z‖2 ≤ ε, and let k = ‖xo‖0. If
δ2k(A) <

√
2− 1, then any solution x̂ to the optimization problem:

min ‖x‖1 s.t. ‖y −Ax‖2 ≤ ε satisfies

‖x̂− xo‖2 ≤ Cε. (9)

Here, C is a constant which depends only on δ2k(A) (and not on ε).
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Stable Recovery of Sparse Signals

Stable Recovery: Bounded Error

Proof.

From feasibility of the solutions,

‖A(x̂− xo)‖2 = ‖(y −Ax̂)− (y −Axo)‖2
≤ ‖y −Ax̂‖2 + ‖y −Axo‖2
≤ 2ε.

Let h = x̂− xo, from optimality of x̂: ‖x̂‖1 ≤ ‖xo‖1 , we have

‖hIc‖1 ≤ ‖hI‖1 .

With δ2k <
√
2− 1, A satisfies the RSC property on h above. Therefore,

we have
‖Ah‖22 ≥ µ‖h‖22. (10)
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Model: xo is k-sparse, and the matrix A ∼ N (0, 1
m) and z ∼ N (0, σ

2

m ):

y = Axo + z ∈ Rn. (11)

Solve the Lasso program for an estimate x̂:

x̂ = argmin
x

1
2 ‖y −Ax‖22 + λm ‖x‖1 . (12)

Let h = x̂− xo ∈ Rn and L(x)
.
= 1

2 ‖y −Ax‖22. Notice that
∇L(x) = −A∗(y −Ax) and in particular:

∇L(xo) = −A∗(y −Axo) = −A∗z.

L(x̂) = L(xo) + 〈∇L(xo), x̂− xo〉+
1

2
‖A(x̂− xo)‖22.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 21, 2021 9 / 21



Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Since x̂ minimizes the objective function, we have:

0 ≥ L(x̂) + λm‖x̂‖1 − L(xo)− λm‖xo‖1
≥ 〈∇L(xo), x̂− xo〉+ λm(‖x̂‖1 − ‖xo‖1)
≥ − | 〈A∗z,h〉 | +λm(‖x̂‖1 − ‖xo‖1)
≥ −‖A∗z‖∞‖h‖1 + λm(‖hIc‖1 − ‖hI‖1). (13)

This is almost the cone condition: ‖hIc‖1 ≤ ‖hI‖1, given the first term is
very small.

Need a slightly relaxed version of the cone condition.
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Lemma

For the lasso problem (12), if we choose λm ≥ c · 2σ
√

logn
m , then with

high probability, h = x̂− xo satisfies the cone condition:

‖hIc‖1 ≤
c+ 1

c− 1
· ‖hI‖1. (14)

Proof (Sketch):
As a∗i z is a Gaussian random variable of variance σ2/m, we have

P [|a∗i z| ≥ t] ≤ 2 exp

(
−mt

2

2σ2

)
. (15)

By union bound on the n columns, we have

P [‖A∗z‖∞ ≥ t] ≤ 2 exp

(
−mt

2

2σ2
+ log n

)
. (16)
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Proof (continued): Choose t2 = 4σ
2 logn
m , then with high probability at

least 1− cn−1, we have

‖A∗z‖∞ ≤ 2σ

√
log n

m
.

choose λm ≥ c · 2σ
√

logn
m for some c > 0. Then from the last inequality of

(13), we have

0 ≥ −‖A∗z‖∞‖h‖1 + λm(‖x̂‖1 − ‖xo‖1)

≥ −λm
c
‖hI‖1 −

λm
c
‖hIc‖1 + λm‖hIc‖1 − λm‖hI‖1

= λm

((
1− 1

c

)
‖hIc‖1 −

(
1 +

1

c

)
‖hI‖1

)
. (17)
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Theorem (Stable Sparse Recovery via Lasso)

Suppose that A ∼iid N (0, 1
m), and y = Axo + z, with xo k-sparse and

z ∼iid N (0, σ
2

m ). Solve the Lasso

min 1
2 ‖y −Ax‖22 + λm ‖x‖1, (18)

with regularization parameter λm = c · 2σ
√

logn
m for a large enough c.

Then with high probability,

‖x̂− xo‖2 ≤ C ′σ

√
k log n

m
. (19)

Compared to (9), C ′
√

k logn
m can be very small as k/m→ 0!
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Proof.

From the optimality of x̂:

0 ≥ L(x̂) + λm‖x̂‖1 − L(xo)− λm‖xo‖1

≥ 1

2
‖A(x̂− xo)‖22 + 〈∇L(xo), x̂− xo〉+ λm(‖x̂‖1 − ‖xo‖1)

≥ 1

2
‖Ah‖22 + λm

((
1− 1

c

)
‖hIc‖1 −

(
1 +

1

c

)
‖hI‖1

)
, (20)

Hence

1

2
‖Ah‖22 ≤ λm

(
1 +

1

c

)
‖hI‖1 ≤ λm

(
1 +

1

c

)√
k‖h‖2.

W.H.P., random A satisfies the RSC property: ‖Ah‖22 ≥ µ‖h‖22.
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

The above bound is nearly optimal in the sense:1

Theorem

Suppose that we will observe y = Ax+ z. Set

M?(A) = inf
x̂

sup
‖x‖0≤k

E ‖x̂(y)− x‖22 . (21)

Then for any A with ‖e∗iA‖2 ≤
√
n for each i, we have

M?(A) ≥ Cσ2
k log(n/k)

m
. (22)

Difference in bound ‖x̂(y)− x‖22 is only O(σ2 k log km )↘ 0 as k/m↘ 0.

1How well can we estimate a sparse vector? E. Candes and M. Davenport, 2013.
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Recovery of Inexact Sparse Signals

Approximate Sparsity

xo is not perfectly k-sparse. Let [xo]k be the best k-sparse signal that
approximates xo. Then we can rewrite the observation model as:

y = A[xo]k +A(xo − [xo]k) + z.

How well does `1 minimization recover such signals?

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 21, 2021 16 / 21



Recovery of Inexact Sparse Signals

Approximate Sparsity

Theorem

Let y = Axo + z, with ‖z‖2 ≤ ε. Let x̂ solve the basis pursuit denoising
problem

min ‖x‖1 subject to ‖y −Ax‖2 ≤ ε. (23)

Then for any k such that δ2k(A) <
√
2− 1,

‖x̂− xo‖2 ≤ C
‖xo − [xo]k‖1√

k
+ C ′ε (24)

for some constants C and C ′ which only depend on δ2k(A).

Notice: When xo − [xo]k = 0, this reduces to previous result on stable
recovery.
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Recovery of Inexact Sparse Signals

Approximate Sparsity

Sketch of Proof.

From feasibility of the solution x̂:

‖Ah‖2 = ‖A(x̂− xo)‖2 ≤ 2ε.

From optimality of the solution x̂:

0 ≤ ‖xo‖1 − ‖x̂‖1 ⇐⇒ ‖hIc‖1 ≤ ‖hI‖1 + 2 ‖xoIc‖1 . (25)

Follow the same proof of RIP for the clean case. The only difference is to
replace the condition ‖hIc‖1 ≤ ‖hI‖1 with the new one. We obtain:

‖Ah‖2 ≥
1− (1 +

√
2)δ2k

(1 + δ2k)1/2
‖hI∪J1‖2 −

2
√
2δ2k

(1 + δ2k)1/2
‖xoIc‖1√

k
. (26)

Combing with ‖h‖2 ≤ 2‖hI∪J1‖2 + 2
‖xoIc‖1√

k
gives the result.
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Recovery of Inexact Sparse Signals

Conclusions

`1 minimization

min ‖x‖1 subject to ‖y −Ax‖2 ≤ ε.

finds a stable estimate x̂ to the k-sparse xo:

x̂ : ‖x̂− xo‖2 ≤ Cε.

For a random matrix A ∈ Rm×n, we need:

• mutual coherence:
m = O(k2).

• restricted isometry:

m = O
(
k log(n/k)

)
.
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Recovery of Inexact Sparse Signals

Next: the Phase Transition Phenomenon

Can we characterize this phenomenon mathematically?
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Recovery of Inexact Sparse Signals

Assignments

• Reading: Section 3.5 of Chapter 3.

• Written Homework # 2.
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