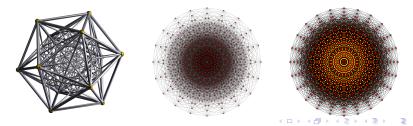
Computational Principles for High-dim Data Analysis (Lecture Five)

Yi Ma

EECS Department, UC Berkeley

September 9, 2021



EECS208, Fall 2021

Convex Methods for Sparse Signal Recovery (Towards Stronger Correctness Results)

1 Restricted Isometry Property (RIP)

2 Restricted Strong Convexity (RSC)

3 Success of ℓ^1 Minimization under RIP

"Algebra is but written geometry; geometry is but drawn algebra." – Sophie Germain

From Incoherence to Isometry

Consider two columns $oldsymbol{A}_{\mathsf{I}} = [oldsymbol{a}_i \mid oldsymbol{a}_j] \in \mathbb{R}^{m imes 2}$ of $oldsymbol{A}$,

$$oldsymbol{A}_{\mathsf{I}}^*oldsymbol{A}_{\mathsf{I}} = \left[egin{array}{ccc} 1 & oldsymbol{a}_i^*oldsymbol{a}_j \ oldsymbol{a}_j^*oldsymbol{a}_i & 1 \end{array}
ight] \quad \mathbb{R}^{2 imes 2}.$$

If $|\boldsymbol{a}_i^*\boldsymbol{a}_j| \leq \mu(\boldsymbol{A})$ is small, this matrix is well conditioned:

$$1 - \mu(\mathbf{A}) \leq \sigma_{\min}(\mathbf{A}_{\mathsf{I}}^* \mathbf{A}_{\mathsf{I}}) \leq \sigma_{\max}(\mathbf{A}_{\mathsf{I}}^* \mathbf{A}_{\mathsf{I}}) \leq 1 + \mu(\mathbf{A}).$$
(2) of size $\leq k$,

$$1 - k\mu(\mathbf{A}) \leq \sigma_{\min}(\mathbf{A}_{\mathsf{I}}^*\mathbf{A}_{\mathsf{I}}) \leq \sigma_{\max}(\mathbf{A}_{\mathsf{I}}^*\mathbf{A}_{\mathsf{I}}) \leq 1 + k\mu(\mathbf{A}).$$
(3)

If $\delta = k\mu(A)$ is small, all $\sigma(A_{\rm I}^*A_{\rm I})$ are close to 1.

ΥI

< □ > < 同 > < 三 > < 三 >

Restricted Isometry Property

Definition (Restricted Isometry Property)

The matrix A satisfies the *restricted isometry property (RIP)* of order k, with constant $\delta \in [0, 1)$, if

$$\forall x \text{ } k\text{-sparse}, \quad (1-\delta) \|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta) \|x\|_2^2.$$
 (4)

The order-k restricted isometry constant $\delta_k(\mathbf{A})$ is the smallest number δ such that the above inequality holds.

Example of Gaussian Matrices: If A_{I} is a large $m \times k$ (k < m) matrix with entries independent $\mathcal{N}(0, 1/m)$,

$$\sigma_{\min}(\mathbf{A}_{\mathsf{I}}^*\mathbf{A}_{\mathsf{I}}) \approx (\sqrt{1} - \sqrt{k/m})^2 \ge 1 - 2\sqrt{k/m},$$

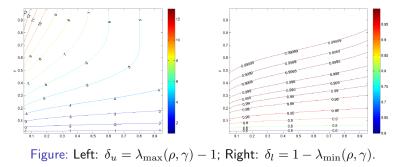
$$\sigma_{\max}(\mathbf{A}_{\mathsf{I}}^*\mathbf{A}_{\mathsf{I}}) \approx (\sqrt{1} + \sqrt{k/m})^2 \le 1 + 3\sqrt{k/m}.$$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Restricted Isometry Property

Upper and lower bounds¹ for RIP constants of random Gaussian matrix $A \in \mathbb{R}^{m \times n}$. Consider proportional growth of the size of (k, m, n): $\rho = \frac{k}{m}, \gamma = \frac{m}{n}$.



¹Improved Bounds on Restricted Isometry Constants for Gaussian Matrices, B. Bah, J. Tanner, SIAM Journal on Matrix Analysis and Applications, 2010.

EECS208, Fall 2023

Restricted Isometry Property: Uniqueness

Theorem (ℓ^0 Recovery under RIP)

Suppose that $y = Ax_o$, with $k = ||x_o||_0$. If $\delta_{2k}(A) < 1$, then x_o is the unique optimal solution to

$$\min \|\boldsymbol{x}\|_0 \quad s.t. \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{5}$$

Proof.

Suppose on the contrary that there exists $x' \neq x_o$ with $||x'||_0 \leq k$. Then $x_o - x' \in \text{null}(A)$, and $||x_o - x'||_0 \leq 2k$. This implies that $\delta_{2k}(A) \geq 1$, contradicting our assumption.

イロト 不得 トイヨト イヨト 二日

Restricted Isometry Property: Correctness

Theorem (ℓ^1 Recovery under RIP)

Suppose that $y = Ax_o$, with $k = ||x_o||_0$. If $\delta_{2k}(A) < \sqrt{2} - 1$, then x_o is the unique optimal solution to

$$\min \|\boldsymbol{x}\|_1 \quad s.t. \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{6}$$

Some later developments:

- $\delta_{2k} < \sqrt{2} 1 \approx 0.414$, Candes and Tao, 2006.
- $\delta_{2k} < 0.4531$, Fouchart and Lai, 2009.
- $\delta_{2k} < 0.472$, Cai, Wang, and Xu, 2009.
- $\delta_k < 0.307$, Cai, Wang, and Xu, 2010.²

EECS208, Fall 2021

²New Bounds for Restricted Isometry Constants, T. Cai, L. Wang, and G. Xu, IEEE Transactions on Information Theory, 56, 2010.

Restricted Isometry Property: Universality

Computing RIP constant $\delta_k(\mathbf{A})$ is in general *NP*-hard; and in fact, certifying a matrix is (k, δ) -RIP is also hard when $k \gg \sqrt{m}$.³ However:

Theorem (RIP of Gaussian Matrices)

There exists a numerical constant C > 0 such that if $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a random matrix with entries independent $\mathcal{N}\left(0, \frac{1}{m}\right)$ random variables, with high probability, $\delta_k(\mathbf{A}) < \delta$, provided

$$m \ge Ck \log(n/k)/\delta^2.$$
(7)

Compare with Incoherence: With incoherence, we need $m \ge \Omega(k^2)$. Here this result allows (k, m, n) to scale proportionally:

$$m \ge \Omega(k).$$

³The Average-Case Time Complexity of Certifying the Restricted Isometry Property, Y. Ding, D. Kunisky, A. Wein, and A. Bandeira, https://arxiv.org/pdf/2005.11270.pdf.a.e.

ℓ^1 Recovery under RIP

How to prove ℓ^1 minimization succeeds under RIP?

< □ > < 同 >

Null Space Property

Given $oldsymbol{y} = oldsymbol{A} oldsymbol{x}_o$, try to recover $oldsymbol{x}_o$ from

 $\min \|x\|_1$ subject to Ax = y. (8)

Let x_{ℓ^1} is the optimal solution. If $h = x_{\ell^1} - x_o \neq 0$. Since $y = Ax_o = Ax_{\ell^1}$, we also have Ah = 0. We must have

$$egin{array}{rcl} 0 &\geq & \|m{x}_{\ell^1}\|_1 - \|m{x}_o\|_1 = \|m{x}_o + m{h}\|_1 - \|m{x}_o\|_1 \ &\geq & \|m{x}_o\|_1 - \|m{h}_{\mathsf{I}}\|_1 + \|m{h}_{\mathsf{I}^c}\|_1 - \|m{x}_o\|_1 \ &= & -\|m{h}_{\mathsf{I}}\|_1 + \|m{h}_{\mathsf{I}^c}\|_1. \end{array}$$

That is, we have

$$\|h_{\mathsf{I}^c}\|_1 \le \|h_{\mathsf{I}}\|_1$$

Null Space Property

Definition (Null Space Property)

The matrix A satisfies the *null space property* of order k if for every $h \in \text{null}(A) \setminus \{0\}$ and every I of size at most k,

$$\|\boldsymbol{h}_{\mathsf{I}}\|_{1} < \|\boldsymbol{h}_{\mathsf{I}^{c}}\|_{1}.$$
 (9)

11/22

Example:
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$
:

$$\int \\ \int \\ ull(A) = span(\begin{bmatrix} -1 \\ 1 \end{bmatrix})$$

$$e_3 + null(A)$$

$$B_1$$

$$e_3 + e_4 = e_5 = e_5$$
Ma (ECS Department, UC Berkeley)
$$ECS208, Fall 2021$$
September 9, 2021

Null Space Property

Lemma (Success from Null Space Property)

Suppose that A satisfies the null space property of order k. Then for any $y = Ax_o$, with $||x_o||_0 \le k$, x_o is the unique optimal solution to the ℓ^1 problem

$$\min \|\boldsymbol{x}\|_1 \quad s.t. \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{10}$$

Proof.

Let $y = Ax_o$, with $||x_o||_0 \le k$, and let $I = \operatorname{supp}(x_o)$. Let \hat{x}_{ℓ^1} be the optimal solution, so $h = \hat{x}_{\ell^1} - x_o \in \operatorname{null}(A)$. If $h \ne 0$, then

$$\|\hat{m{x}}_{\ell^1}\|_1 = \|m{x}_o + m{h}\|_1 \ge \|m{x}_o\|_1 - \|m{h}_{\mathsf{I}}\|_1 + \|m{h}_{\mathsf{I}^c}\|_1 > \|m{x}_o\|_1,$$

contradicting the optimality of \hat{x}_{ℓ^1} .

No direction h in null(A) could further reduce $||x_o||_1$.

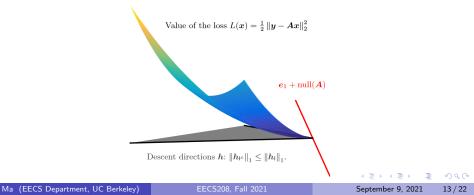
Restricted Strong Convexity Condition

The null space property is equivalent to:

$$\|\boldsymbol{A}\boldsymbol{h}\|_{2}^{2} > 0 \quad \forall \boldsymbol{h} \ \|\boldsymbol{h}_{\mathsf{l}^{c}}\|_{1} \leq \|\boldsymbol{h}_{\mathsf{l}}\|_{1}.$$
 (11)

 $\|Ah\|_2^2$ must attain its minimum $\mu > 0$ on a compact set. The above is equivalent to:

$$\|\boldsymbol{A}\boldsymbol{h}\|_{2}^{2} \geq \mu \|\boldsymbol{h}\|_{2}^{2}, \quad \forall \boldsymbol{h} \ \|\boldsymbol{h}_{l^{c}}\|_{1} \leq \|\boldsymbol{h}_{l}\|_{1}.$$
 (12)



Restricted Strong Convexity Condition

Definition (Restricted Strong Convexity)

The matrix A satisfies the *restricted strong convexity* (RSC) condition of order k, with parameters $\mu > 0$, $\alpha \ge 1$, if for every I of size at most k and for all nonzero h satisfying $\|\mathbf{h}_{l^c}\|_1 \le \alpha \|\mathbf{h}_l\|_1$,

$$\|Ah\|_{2}^{2} \ge \mu \|h\|_{2}^{2}.$$
 (13)

Lemma (Success from RSC Condition)

Suppose that A satisfies the restricted strong convexity condition of order k with constant $\alpha \geq 1$, for some $\mu > 0$. Then for any $y = Ax_o$, with $||x_o||_0 \leq k$, x_o is the unique optimal solution to the ℓ^1 problem

$$\min \|\boldsymbol{x}\|_1 \quad \text{subject to} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{14}$$

RIP Ensures Incoherence

Lemma (RIP Ensures Incoherence of Images of Sparse Vectors)

If x, z are vectors with disjoint support, and $|\text{supp}(x)| + |\text{supp}(z)| \le k$, then

$$|\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{A}\boldsymbol{z} \rangle| \leq \delta_k(\boldsymbol{A}) \|\boldsymbol{x}\|_2 \|\boldsymbol{z}\|_2.$$
 (15)

Proof.

WLOG, $||\mathbf{x}||_2 = ||\mathbf{z}||_2 = 1$. Notice that $||\mathbf{p} + \mathbf{q}||_2^2 - ||\mathbf{p} - \mathbf{q}||_2^2 = 4\langle \mathbf{p}, \mathbf{q} \rangle$. Hence,

$$|\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{A}\boldsymbol{z}\rangle| \leq \frac{1}{4} \left| \|\boldsymbol{A}\boldsymbol{x} + \boldsymbol{A}\boldsymbol{z}\|_{2}^{2} - \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{A}\boldsymbol{z}\|_{2}^{2} \right|$$
 (16)

$$\leq \frac{1}{4} \left| (1+\delta_k) \| \boldsymbol{x} + \boldsymbol{z} \|_2^2 - (1-\delta_k) \| \boldsymbol{x} - \boldsymbol{z} \|_2^2 \right|.$$
 (17)

Since $oldsymbol{x}$ and $oldsymbol{z}$ have disjoint support, $\|oldsymbol{x}+oldsymbol{z}\|_2^2 = \|oldsymbol{x}-oldsymbol{z}\|_2^2 = 2.$

15 / 22

イロト 不得 トイヨト イヨト 二日

Bounds between Norms

Lemma (Bounds between Norms of Sparse Vectors)

For any vector \boldsymbol{z} with $\|\boldsymbol{z}\|_0 \leq k$, $\|\boldsymbol{z}\|_1 \leq \sqrt{k} \|\boldsymbol{z}\|_2$ and $\|\boldsymbol{z}\|_2 \leq \sqrt{k} \|\boldsymbol{z}\|_{\infty}$.

Proof.

First inequality: since x^2 is a convex function, we have:

$$\left(\frac{a_1 + a_2 + \dots + a_k}{k}\right)^2 \le \frac{a_1^2 + a_2^2 + \dots + a_k^2}{k}.$$
 (18)

Second inequality:

$$\frac{a_1^2 + a_2^2 + \dots + a_k^2}{k} \le \max_j \{a_j^2\}.$$
 (19)

< □ > < □ > < □ > < □ > < □ > < □ >

- 3

Theorem (RIP Implies RSC)

If a matrix A satisfies RIP with $\delta_{2k}(A) < \frac{1}{1+\alpha\sqrt{2}}$, then A satisfies the RSC condition of order k with constant α .

Proof (A Sketch): We want to show:

$$\forall \boldsymbol{h} \in \mathbb{R}^{n} : \|\boldsymbol{h}_{\mathsf{I}^{c}}\|_{1} \leq \alpha \cdot \|\boldsymbol{h}_{\mathsf{I}}\|_{1}, \ |\mathsf{I}| = k \implies \|\boldsymbol{A}\boldsymbol{h}\|_{2} \geq \mu \|\boldsymbol{h}\|_{2}.$$
(20)

Partition the indices of the entries in h_{l^c} based on their magnitudes:

 J_1 indexes the k largest (in magnitude) elements of h_{1^c} ,

- J_2 indexes the k largest (in magnitude) elements of $oldsymbol{h}_{(\mathsf{I}\cup\mathsf{J}_1)^c}$,
- J_3 indexes the k largest (in magnitude) elements of $oldsymbol{h}_{(\mathsf{I}\cup\mathsf{J}_1\cup\mathsf{J}_2)^c}$,

Then $\forall i \geq 1$, $\|\mathbf{h}_{\mathsf{J}_i}\|_1 \geq k \cdot \|\mathbf{h}_{\mathsf{J}_{i+1}}\|_{\infty}$.

Image: A match a ma

Proof (Continued):

Step 1: Since h_{I} and h_{J_1} likely have the largest entries, first try to show:

$$\|\boldsymbol{A}\boldsymbol{h}\|_{2} \geq C \|\boldsymbol{h}_{|\cup J_{1}}\|_{2}, \text{ for some } C > 0.$$
(21)
From $\boldsymbol{A}\boldsymbol{h}_{1} + \boldsymbol{A}\boldsymbol{h}_{J_{1}} = \boldsymbol{A}\boldsymbol{h} - \boldsymbol{A}\boldsymbol{h}_{J_{2}} - \boldsymbol{A}\boldsymbol{h}_{J_{3}} - \cdots, \text{ we have:}$
 $(1 - \delta_{2k})\|\boldsymbol{h}_{|\cup J_{1}}\|_{2}^{2} \leq \|\boldsymbol{A}\boldsymbol{h}_{|\cup J_{1}}\|_{2}^{2}$
 $= \langle \boldsymbol{A}\boldsymbol{h}_{1} + \boldsymbol{A}\boldsymbol{h}_{J_{1}}, -\boldsymbol{A}\boldsymbol{h}_{J_{2}} - \boldsymbol{A}\boldsymbol{h}_{J_{3}} - \cdots \rangle + \langle \boldsymbol{A}\boldsymbol{h}_{1} + \boldsymbol{A}\boldsymbol{h}_{J_{1}}, \boldsymbol{A}\boldsymbol{h} \rangle$
 $\leq \sum_{j=2}^{\infty} \left(|\langle \boldsymbol{A}\boldsymbol{h}_{1}, \boldsymbol{A}\boldsymbol{h}_{J_{j}} \rangle| + |\langle \boldsymbol{A}\boldsymbol{h}_{J_{1}}, \boldsymbol{A}\boldsymbol{h}_{J_{j}} \rangle| \right) + \|\boldsymbol{A}\boldsymbol{h}_{|\cup J_{1}}\|_{2} \|\boldsymbol{A}\boldsymbol{h}\|_{2}$
 $\leq \delta_{2k} (\|\boldsymbol{h}_{1}\|_{2} + \|\boldsymbol{h}_{J_{1}}\|_{2}) \sum_{j=2}^{\infty} \|\boldsymbol{h}_{J_{j}}\|_{2} + (1 + \delta_{2k})^{1/2} \|\boldsymbol{h}_{|\cup J_{1}}\|_{2} \|\boldsymbol{A}\boldsymbol{h}\|_{2}$
 $\leq \delta_{2k} \sqrt{2} \|\boldsymbol{h}_{|\cup J_{1}}\|_{2} \|\boldsymbol{h}_{l^{c}}\|_{1} / \sqrt{k} + (1 + \delta_{2k})^{1/2} \|\boldsymbol{h}_{|\cup J_{1}}\|_{2} \|\boldsymbol{A}\boldsymbol{h}\|_{2}.$ (22)

Proof (Continued):

From the restricted cone condition, we have

$$\|\boldsymbol{h}_{\mathsf{I}^c}\|_1 \le \alpha \|\boldsymbol{h}_{\mathsf{I}}\|_1 \le \alpha \sqrt{k} \|\boldsymbol{h}_{\mathsf{I}}\|_2 \le \alpha \sqrt{k} \|\boldsymbol{h}_{\mathsf{I} \cup \mathsf{J}_1}\|_2.$$
(23)

This gives:

$$\|\boldsymbol{A}\boldsymbol{h}\|_{2} \geq \frac{1 - \delta_{2k}(1 + \alpha\sqrt{2})}{(1 + \delta_{2k})^{1/2}} \,\|\boldsymbol{h}_{\mathsf{I} \cup \mathsf{J}_{1}}\|_{2} \,. \tag{24}$$

Step 2: Try to show:

$$\|\boldsymbol{h}_{\mathsf{I}\cup\mathsf{J}_1}\|_2^2 \ge C' \|\boldsymbol{h}\|_2^2$$
, for some $C' > 0.$ (25)

Since the *i*-th element of $h_{(I\cup J_1)^c}$ is no larger than the mean of the first *i* elements of h_{I^c} , we have

$$|\mathbf{h}_{(\mathsf{I}\cup\mathsf{J}_{1})^{c}}|_{(i)} \le \|\mathbf{h}_{\mathsf{I}^{c}}\|_{1}/i.$$
 (26)

・ 何 ト ・ ヨ ト ・ ヨ ト

Proof (Continued):

Combining with the restriction (20), we have

$$\begin{split} \|\boldsymbol{h}_{(\mathsf{I}\cup\mathsf{J}_{1})^{c}}\|_{2}^{2} &\leq \|\boldsymbol{h}_{\mathsf{I}^{c}}\|_{1}^{2} \sum_{i=k+1}^{\infty} \frac{1}{i^{2}} \leq \frac{\|\boldsymbol{h}_{\mathsf{I}^{c}}\|_{1}^{2}}{k} \\ &\leq \frac{\alpha^{2}\|\boldsymbol{h}_{\mathsf{I}}\|_{1}^{2}}{k} \leq \alpha^{2}\|\boldsymbol{h}_{\mathsf{I}}\|_{2}^{2} \leq \alpha^{2}\|\boldsymbol{h}_{\mathsf{I}\cup\mathsf{J}_{1}}\|_{2}^{2} \end{split}$$

So we have

$$\|\boldsymbol{h}\|_{2}^{2} \leq (1+\alpha^{2})\|\boldsymbol{h}_{\mathsf{I}\cup\mathsf{J}_{1}}\|_{2}^{2}.$$
(27)

Finally: Combine the results:

$$\|\boldsymbol{A}\boldsymbol{h}\|_{2} \geq \frac{1 - \delta_{2k}(1 + \alpha\sqrt{2})}{(1 + \delta_{2k})^{1/2}\sqrt{1 + \alpha^{2}}} \|\boldsymbol{h}\|_{2}.$$
 (28)

RIP for ℓ^1 Minimization

Conclusion: We need $\delta_{2k} < \frac{1}{1+\alpha\sqrt{2}}$ to ensure RSC hence the NSP. For ℓ^1 minimization

$$\min \|\boldsymbol{x}\|_1 \quad \text{s.t.} \quad \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}. \tag{29}$$

to succeed, we need

$$\forall \boldsymbol{h} \in \mathsf{null}(\boldsymbol{A}): \|\boldsymbol{h}_{\mathsf{I}^c}\|_1 \leq \|\boldsymbol{h}_{\mathsf{I}}\|_1,$$

hence $\alpha=1$ and the associated RIP constant should be:

$$\delta_{2k} < \frac{1}{1+\sqrt{2}} = \sqrt{2} - 1.$$

Next: what $m \times n$ matrix A has a small RIP constant δ_k ?

• • = • • = •

Assignments

- Reading: Section 3.3 Chapter 3.
- Programming Homework #1.

< 1 k

э