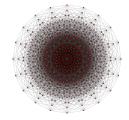
Computational Principles for High-dim Data Analysis

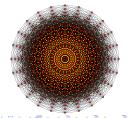
(Lecture Four)

Yi Ma

EECS Department, UC Berkeley

September 7, 2021





Convex Methods for Sparse Signal Recovery

- Geometric Intuition
- 2 A First Correctness Result via Incoherence

Coherence of a Matrix Correctness of ℓ^1 Minimization Constructing an Incoherent Matrix Limitations of Incoherence

"Algebra is but written geometry; geometry is but drawn algebra."

— Sophie Germain

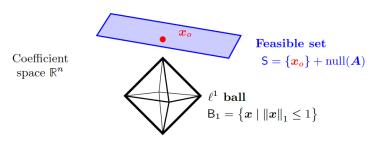
Geometric Intuition: Coefficient Space

Given $y = Ax_o \in \mathbb{R}^m$ with $x_o \in \mathbb{R}^n$ sparse:

$$\min \|x\|_1$$
 subject to $Ax = y$. (1)

The space of all feasible solutions is an affine subspace:

$$S = \{x \mid Ax = y\} = \{x_o\} + \text{null}(A) \subset \mathbb{R}^n.$$
 (2)

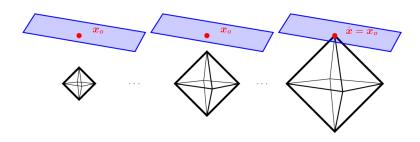


ℓ^1 Minimization in the Coefficient Space

Gradually expand a ℓ^1 ball of radius t from the origin $\mathbf{0}$:

$$t \cdot \mathsf{B}_1 = \{ \boldsymbol{x} \mid \|\boldsymbol{x}\|_1 \le t \} \quad \subset \mathbb{R}^n, \tag{3}$$

till its boundary first touches the feasible set S:



Comparison between ℓ^1 and ℓ^2 Minimization

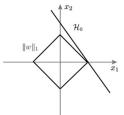
Given $y = Ax_o$ with x_o sparse:

$$\mathbf{A}: \quad \min \| oldsymbol{x} \|_1 \quad \text{subject to} \quad oldsymbol{A} oldsymbol{x} = oldsymbol{y}. \tag{4}$$

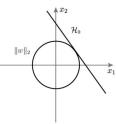
versus

$$\mathbf{B}: \quad \min \|oldsymbol{x}\|_2 \quad \mathsf{subject to} \quad oldsymbol{A} oldsymbol{x} = oldsymbol{y} \tag{5}$$

A L1 regularization



B L2 regularization



Sparsity Promoting with Different ℓ^p Norms

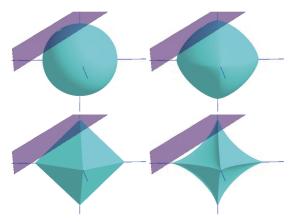


Figure: Intersection between the ℓ^p -ball and the feasible set S, for p=2,1.5,1and 0.7, respectively. (Some argue p = 0.5 is somewhat special.)

Figure from Sparse and Redundant Representations, Michael Elad, Springer, 2010.

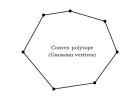
Geometric Intuition: High-dimensional Polytopes

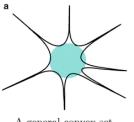
Neighborly Polytopes

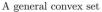
(vertices from a Gaussian matrix):

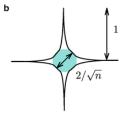
$$oldsymbol{A} = [oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n] \in \mathbb{R}^{m imes n}.$$

The "correct" visualization of high-dimensional convex polytopes, including the ℓ^1 ball:









The ℓ_1 ball

¹Lectures on Discrete Geometry, Jiri Matousek, Springer ≥ 2002 →

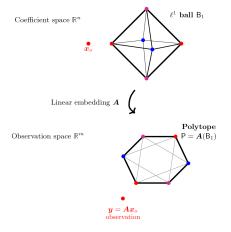
Geometric Intuition: Observation Space

The matrix $A \in \mathbb{R}^{m \times n}$ can be viewed as a linear projection from \mathbb{R}^n to \mathbb{R}^m :

$$\mathbf{A}: \mathsf{B}_1 \to \mathsf{P} = \mathbf{A}(\mathsf{B}_1), \quad (6)$$

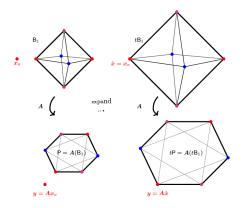
which maps a convex polytope to a convex polytope. Similarly, $\forall t \geq 0$:

$$t \cdot \mathsf{B}_1 \to t \cdot \boldsymbol{A}(\mathsf{B}_1).$$



Geometric Intuition: Observation Space

All k-faces of B_1 cannot be mapped to the inside of the polytope $A(\mathsf{B}_1)$:



A Million Dollar Question: When $\hat{x} = x_o$?

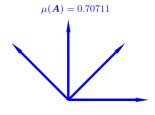
Coherence of a Matrix

Definition (Mutual Coherence)

For a matrix $m{A} = ig| m{a}_1 \mid m{a}_2 \mid \cdots \mid m{a}_n ig| \in \mathbb{R}^{m imes n}$ with nonzero columns, the mutual coherence $\mu(A)$ is the largest normalized inner product between two distinct columns:

$$\mu(\mathbf{A}) = \max_{i \neq j} \left| \left\langle \frac{\mathbf{a}_i}{\|\mathbf{a}_i\|_2}, \frac{\mathbf{a}_j}{\|\mathbf{a}_j\|_2} \right\rangle \right|. \tag{7}$$

Example:



$$\mu(\mathbf{A}) = 0.99488$$

Uniqueness of Sparse Solution

Proposition (Coherence Controls Kruskal Rank)

For any $A \in \mathbb{R}^{m \times n}$,

$$krank(\mathbf{A}) \ge \frac{1}{\mu(\mathbf{A})}.$$
 (8)

In particular, if $y = Ax_o$ and

$$\|\boldsymbol{x}_o\|_0 \leq \frac{1}{2\mu(\boldsymbol{A})},\tag{9}$$

then $oldsymbol{x}_o$ is the unique optimal solution to the ℓ^0 minimization problem

$$\min \|\boldsymbol{x}\|_0 \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{10}$$

Proof:

$$1 - k\mu(\mathbf{A}) < \sigma_{\min}(\mathbf{A}_{\mathsf{I}}^* \mathbf{A}_{\mathsf{I}}) \leq \sigma_{\max}(\mathbf{A}_{\mathsf{I}}^* \mathbf{A}_{\mathsf{I}}) < 1 + k\mu(\mathbf{A}). \tag{11}$$

Theorem (ℓ^1 Succeeds under Incoherence)

Let A be a matrix whose columns have unit ℓ^2 norm, and let $\mu(A)$ denote its mutual coherence. Suppose that $y=Ax_o$, with

$$\|\boldsymbol{x}_o\|_0 \le \frac{1}{2\mu(\boldsymbol{A})}.\tag{12}$$

Then x_o is the unique optimal solution to the problem

$$\min \|\boldsymbol{x}\|_1 \quad \text{s.t.} \quad \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}. \tag{13}$$

Tightness: there exist examples of A and x_o with $\|x_o\|_0 > \frac{1}{2}\left(1 + \frac{1}{\mu(A)}\right)$ for which ℓ^1 minimization does not recover x_o .

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Given $y = Ax_o$, try to find x_o via ℓ^1 minimization:

$$\min \|\boldsymbol{x}\|_1 \quad \text{s.t.} \quad \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}. \tag{14}$$

Lagrangian formulation:

$$\min \|\boldsymbol{x}\|_1 + \boldsymbol{\lambda}^*(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}), \quad \exists \boldsymbol{\lambda} \in \mathbb{R}^m.$$
 (15)

Optimality condition: x_o is a minimum of f(x) if and only if 0 is in the subgradient $\partial f(x)$ at x_o :

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_o) + \mathbf{0}^*(\boldsymbol{x} - \boldsymbol{x}_o).$$

Optimality condition for ℓ^1 Minimization:

$$\mathbf{0} \in \partial \|\mathbf{x}_o\|_1 - \mathbf{A}^* \boldsymbol{\lambda} \quad \Leftrightarrow \quad \mathbf{A}^* \boldsymbol{\lambda} \in \partial \|\mathbf{x}_o\|_1. \tag{16}$$

4 D > 4 A > 4 E > 4 E > 9 Q Q

Proof (a sketch of key ideas):

Due to convexity of $\|\cdot\|_1$, for any $v\in\partial\left\|\cdot\right\|_1(x_o)$ and $x'\in\mathbb{R}^n$,

$$||x'||_1 \ge ||x_o||_1 + \langle v, x' - x_o \rangle \tag{17}$$

For $v=A^*\lambda$, we have: $\langle A^*\lambda, x'-x_o \rangle = \langle \lambda, A(x'-x_o) \rangle = 0$. Therefore

$$\|\boldsymbol{x}'\|_1 \geq \|\boldsymbol{x}_o\|_1$$
.

To find such an optimality certificate $A^*\lambda \in \partial \|\cdot\|_1(x_o)$, we need:

$$A_{\mathsf{I}}^* \lambda = \sigma, \quad \|A_{\mathsf{I}^c}^* \lambda\|_{\infty} \le 1.$$
 (18)

A natural "candidate":

$$\hat{\boldsymbol{\lambda}}_{\ell^2} \doteq \boldsymbol{A}_{\mathsf{I}} (\boldsymbol{A}_{\mathsf{I}}^* \boldsymbol{A}_{\mathsf{I}})^{-1} \boldsymbol{\sigma}. \tag{19}$$

The rest is to check this satisfies (18) under the given conditions.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Proof (continued):

By construction, $A_1^*\hat{m{\lambda}}_{\ell^2}=m{\sigma}.$ We are just left to verify (18), by calculating

$$\|A_{\mathsf{I}^c}^* \hat{\lambda}_{\ell^2}\|_{\infty} = \|A_{\mathsf{I}^c}^* A_{\mathsf{I}} (A_{\mathsf{I}}^* A_{\mathsf{I}})^{-1} \sigma\|_{\infty}.$$
 (20)

Consider a single element of this vector $(j \in I^c)$, which has the form:

$$|\boldsymbol{a}_{j}^{*}\boldsymbol{A}_{\mathsf{I}}(\boldsymbol{A}_{\mathsf{I}}^{*}\boldsymbol{A}_{\mathsf{I}})^{-1}\boldsymbol{\sigma}| \leq \underbrace{\|\boldsymbol{A}_{\mathsf{I}}^{*}\boldsymbol{a}_{j}\|_{2}}_{\leq \sqrt{k}\mu} \underbrace{\|(\boldsymbol{A}_{\mathsf{I}}^{*}\boldsymbol{A}_{\mathsf{I}})^{-1}\|_{2,2}}_{<\frac{1}{1-k\mu(\boldsymbol{A})}} \underbrace{\|\boldsymbol{\sigma}\|_{2}}_{=\sqrt{k}}$$
(21)

$$< \frac{k\mu(\boldsymbol{A})}{1 - k\mu(\boldsymbol{A})} \tag{22}$$

$$\leq 1$$
Provided $k\mu(\mathbf{A}) \leq 1/2$. (23)

《四片《圖片《图片《图片》图

Example I. Consider a discrete Fourier transform matrix F. Let $I \subset [n]$ be a random set of m indices,

$$\mathbf{A} = \mathbf{F}_{\mathsf{I}}^* \in \mathbb{C}^{m \times n}.\tag{24}$$

Example II. For two orthogonal matrices Φ and Ψ ,

$$A = \Phi_{\mathsf{I}}^* \Psi. \tag{25}$$

Example III. For two orthogonal matrices, say Φ is Fourier F and Ψ is the identify I or the Wavelet W,

$$\mathbf{A} = [\mathbf{\Phi} \mid \mathbf{\Psi}] \in \mathbb{C}^{n \times 2n}. \tag{26}$$

Incoherence and Uncertainty Principle

Incoherence between
$$I$$
 and $F\colon |\langle {m e}_i, {m f}_j
angle| = rac{1}{\sqrt{n}}.$

Facts: A signal cannot be sparse in both time I and frequency F. Let $\hat{x} = Fx \in \mathbb{C}^n$ be the discrete Fourier transform of $x \in \mathbb{C}^n$. Then the **Heisenberg uncertainty principle** states that:

$$\operatorname{Var}(|\boldsymbol{x}|^2)\operatorname{Var}(|\hat{\boldsymbol{x}}|^2) \ge \frac{1}{16\pi^2}.$$
 (27)

Or a deterministic uncertainty principle:

$$\|\boldsymbol{x}\|_{0} \cdot \|\hat{\boldsymbol{x}}\|_{0} \ge n \quad \text{or} \quad \|\boldsymbol{x}\|_{0} + \|\hat{\boldsymbol{x}}\|_{0} \ge 2\sqrt{n}.$$
 (28)

4□ > 4□ > 4 = > 4 = > = 90

Incoherence and Uncertainty Principle

Theorem (Uncertainty Principle I²)

For $A = [\Phi \mid \Psi] \in \mathbb{C}^{n \times 2n}$ with two orthogonal matrices Φ and Ψ . For any $\mathbf{0} = \mathbf{\Phi} e + \mathbf{\Psi} \hat{e}$ with $\mathbf{\Phi} e = -\mathbf{\Psi} \hat{e} \neq \mathbf{0}$, we have

$$\|e\|_0 + \|\hat{e}\|_0 \ge \frac{2}{\mu(A)}.$$
 (29)

Corollary (Uncertainty Principle II)

For $A = [\Phi \mid \Psi] \in \mathbb{C}^{n \times 2n}$ with two orthogonal matrices Φ and Ψ . For any nonzero $y = \Phi x + \Psi \hat{x}$, we have

$$\|\boldsymbol{x}\|_0 + \|\hat{\boldsymbol{x}}\|_0 \ge \frac{2}{\mu(\boldsymbol{A})}.$$
 (30)

Question: What can you say about y = Ax with $\|x\|_0 < \frac{1}{u(A)}$?

18 / 26

²Sparse and Redundant Representations, Michael Elad, Springer, 2010.

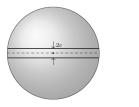
Recall phenomena associated with random matrices:

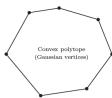
• Measure Concentration $(\epsilon \sim O(n^{-1/2}))$

$$Area\{x \in \mathbb{S}^{n-1} : -\epsilon \le x_n \le \epsilon\} = 0.99 \cdot Area(\mathbb{S}^{n-1}), \quad (31)$$

Neighborly Polytopes (vertices from a Gaussian matrix):

$$A = [a_1, a_2, \dots, a_n] \in \mathbb{R}^{m \times n}.$$





Theorem (Spherical Measure Concentration³)

Let $u \sim \mathrm{uni}(\mathbb{S}^{m-1})$ be distributed according to the uniform distribution on the sphere. Let $f: \mathbb{S}^{m-1} \to \mathbb{R}$ be an 1-Lipschitz function:

$$\forall \boldsymbol{u}, \boldsymbol{u}', |f(\boldsymbol{u}) - f(\boldsymbol{u}')| \leq 1 \cdot ||\boldsymbol{u} - \boldsymbol{u}'||_2,$$
 (32)

and let med(f) denote any median of the random variable Z = f(u). Then

$$\mathbb{P}\left[f(\boldsymbol{u}) > \operatorname{med}(f) + t\right] \leq 2\exp\left(-\frac{mt^2}{2}\right), \tag{33}$$

$$\mathbb{P}\left[f(\boldsymbol{u}) < \operatorname{med}(f) - t\right] \leq 2\exp\left(-\frac{mt^2}{2}\right). \tag{34}$$

Theorem

Let $A = [a_1 \mid \cdots \mid a_n]$ with columns $a_i \sim \mathrm{uni}(\mathbb{S}^{m-1})$ chosen independently according to the uniform distribution on the sphere. Then with probability at least 3/4,

$$\mu(\mathbf{A}) \le C\sqrt{\frac{\log n}{m}},\tag{35}$$

where C > 0 is a numerical constant.

Proof (a sketch): For any $m{v}\in\mathbb{S}^{m-1}$, $\mathbb{E}[|m{v}^*m{a}|]^2\leq[(m{v}^*m{a})^2]\leq\frac{1}{m}$ implies

$$\operatorname{med}(|\boldsymbol{v}^*\boldsymbol{a}|) \le 2\mathbb{E}[|\boldsymbol{v}^*\boldsymbol{a}|] \le \frac{2}{\sqrt{m}}.$$

$$\mathbb{P}\left[|\boldsymbol{v}^*\boldsymbol{a}| > \frac{2+t}{\sqrt{m}}\right] \le 2\exp\left(-\frac{t^2}{2}\right). \tag{36}$$

Proof (continued):

As all the n columns $\{a_i\}$ are independent:

$$\mathbb{P}\left[|\boldsymbol{a}_{i}^{*}\boldsymbol{a}_{j}| > \frac{2+t}{\sqrt{m}}\right] \leq 2\exp\left(-\frac{t^{2}}{2}\right). \tag{37}$$

Summing the failure probability over all n(n-1)/2 pairs of (a_i, a_j) :

$$\mathbb{P}\left[\exists (i,j) : |\boldsymbol{a}_i^* \boldsymbol{a}_j| > \frac{2+t}{\sqrt{m}}\right] \leq n(n-1) \exp\left(-\frac{t^2}{2}\right). \tag{38}$$

Setting $t = 2\sqrt{\log 2n}$, the RHS probability is less than 1/4.

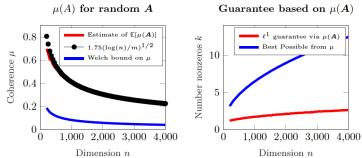
4□ > 4□ > 4 = > 4 = > = 90

Limitations of Incoherence

Theorem (Welch Bound)

For any matrix $A = [a_1 \mid \cdots \mid a_n] \in \mathbb{R}^{m \times n}$, $m \leq n$, and suppose that the columns a_i have unit ℓ^2 norm. Then

$$\mu(\mathbf{A}) = \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \ge \sqrt{\frac{n-m}{m(n-1)}} = \Omega\left(\frac{1}{\sqrt{m}}\right).$$
 (39)



Ma (EECS Department, UC Berkeley)

Limitations of Incoherence

Proof of the Welch bound.

Let $G = A^*A \in \mathbb{R}^{n \times n}$ and its eigenvalues satisfy: $\sum_{i=1}^m \lambda_i(G)$ = trace(G) = $\sum_{i=1}^{n} \|a_i\|_2^2 = n$. Using this fact, we have:

$$\frac{n^2}{m} \leq \frac{n^2}{m} + \sum_{i=1}^m \left(\lambda_i(\mathbf{G}) - \frac{n}{m}\right)^2 \tag{40}$$

$$= \frac{n^2}{m} + \sum_{i=1}^{m} \left\{ \lambda_i^2(G) + \frac{n^2}{m^2} - 2\frac{n}{m}\lambda_i(G) \right\}$$
 (41)

$$= \sum_{i=1}^{m} \lambda_i^2(G) = \|G\|_F^2 = \sum_{i,j} |a_i^* a_j|^2 = n + \sum_{i \neq j} |a_i^* a_j|^2$$
(42)

$$\leq n + n(n-1) \Big(\max_{i \neq j} |\boldsymbol{a}_i^* \boldsymbol{a}_j| \Big)^2. \tag{43}$$

Limitations of Incoherence

Incoherence ensures to recover k-sparse solution from

$$m \ge \tilde{O}(k^2)$$

measurements.

Experimental results suggest m = O(k):

In a proportional growth setting $m \propto n$, $k \propto m$, ℓ^1 minimization succeeds with very high probability whenever the constants of proportionality n/m and k/m are small enough.

Next: how to sharpen the bound?

Assignments

- Reading: Section 3.1 & 3.2 of Chapter 3.
- Programming Homework # 1.