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Convex Functions and Convexification

Why Convexification?

Intuitive reasons why `0 minimization:

min ‖x‖0 subject to Ax = y. (1)

is very challenging:

Not amenable to local search methods such as gradient descent.
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Convex Functions and Convexification

Convex versus Nonconvex Functions

For minimizing a generic function:

min f(x), x ∈ C (a convex set), (2)

conduct local gradient descent search: (Appendix D)

xk+1 = xk − t∇f(xk). (3)

Intuitively, convexity lends to global optimality.
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Convex Functions and Convexification

Convex Functions [Appendix B]

Definition (Convex Function)

A continuous function f : Rn → R is convex if for every pair of points
x,x′ ∈ Rn and α ∈ [0, 1] it satisfies the Jensen’s inequality:

f
(
αx+ (1− α)x′

)
≤ αf(x) + (1− α)f(x′). (4)
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Convex Functions and Convexification

Global Optimality

Proposition

Any local minimum of a convex function is also a global minimum.

Proof.

Let x̄ be a local minimum: ∀x : ‖x− x̄‖2 ≤ ε, we have f(x̄) ≤ f(x).
Assume x? is the global minimum and f(x̄) > f(x?).
Choose λ such that xλ = λx̄+ (1− λ)x? satisfies ‖xλ − x̄‖2 ≤ ε. Then

f(x̄) ≤ f(xλ)

≤ f(λx̄+ (1− λ)x?)

≤ λf(x̄) + (1− λ)f(x?)

< f(x̄).
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`1 Norm as Convex Surrogate for `0 Norm

Convex Envelope

Definition (Lower Convex Envelope)

A function fc(x) is said to be a (lower) convex envelope of f(x) if for all
convex functions g ≤ f we have g ≤ fc.

Lower convex envelope fc is well and uniquely defined and is equivalent to
the convex biconjugate function f∗∗ of f .
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`1 Norm as Convex Surrogate for `0 Norm

The `1 Norm as Envelope of `0 Norm

∀x ∈ Rn : ‖x‖0 =

n∑
i=1

1x(i) 6=0, ‖x‖1 =

n∑
i=1

|x(i)|. (5)

‖x‖1

Largest convex
lower bound

Convex functions
lower bounding ‖x‖0

x

‖x‖0

Figure: Convex surrogates for the `0 norm. |x| is the convex envelope of ‖x‖0
on [−1, 1].
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`1 Norm as Convex Surrogate for `0 Norm

The `1 Norm as Envelope of `0 Norm
Theorem

The function ‖·‖1 is the convex envelope of ‖·‖0, over the set
B∞ = {x | ‖x‖∞ ≤ 1} of vectors whose elements all have magnitude at
most one.

Proof.

Consider the cube C = [0, 1]n with vertex vectors σ ∈ {0, 1}n. For any
convex function f ≤ ‖ · ‖0,

f(x) = f
(∑∑∑

i

λiσi
)
≤

∑
i

λif(σi) [Jensen’s inequality]

≤
∑
i

λi ‖σi‖0 =
∑
i

λi ‖σi‖1 [σi are binary]

= ‖x‖1 . (6)

Repeat the argument for each orthants.
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`1 Norm as Convex Surrogate for `0 Norm

Sparsity Promoting Property of Norms
A Toy Problem: given a vector

~v(t) = [t, t− 1, t− 1]∗ ∈ R3,

find t such that ~v is sparse.
Strategy: given a certain norm ‖ · ‖,

min
t
f(t) = ‖~v(t)‖.

Figure courtesy of Carlos Fernandez of NYU.
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Simple Algorithm for `1 Minimization

Minimizing the `1 Norm

Replace `0 minimization:

min ‖x‖0 subject to Ax = y (7)

with the relaxed `1 minimization:

min ‖x‖1 subject to Ax = y. (8)

Two technical difficulties:

• Nontrivial constraints: Unlike the general unconstrained problem
(2), in the problem (8) the solution x must satisfy Ax = y.

• Nondifferentiable objective: `1 norm in (8) is not differentiable. So
around points of interest the gradient ∇f(x) does not exist.
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Simple Algorithm for `1 Minimization

`1 Minimization via Linear Programming

min ‖x‖1 subject to Ax = y. (9)

Let
x+ = max{x,0}, and x− = max{−x,0}.

Let z =
[
x+

x−

]
∈ R2n and we have:

‖x‖1 = 1∗(x+ + x−) = 1∗z and Ax = [A,−A]z. (10)

Then `1 minimization is equivalent to an LP problem:

min
z

1∗z subject to [A,−A]z = y, z ≥ 0. (11)

This LP problem can be solved in polynomial time.
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Simple Algorithm for `1 Minimization

Minimizing the `1 Norm via Local Greedy Descent

For minimizing a function with constraints (Appendix C& D):

min f(x), subject to x ∈ C (a convex set), (12)

Basic Strategy: projected gradient descent (PGD):

xk+1 = PC [xk − tk∇f(xk) ] . (13)

where PC projects
a point, say z, to the nearest point in C:

PC[z] = arg min
x∈C

1
2 ‖z − x‖

2
2 ≡ h(x). (14)
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Simple Algorithm for `1 Minimization

Projection on a Convex Set

How to find the nearest point x̂ = PC[x] to a point x in a set
C = {z | h(z) ≤ c}?

Fact: x̂ satisfies two conditions:

1 Feasibility: h(x̂) ≤ c;
2 Optimality:
−∇h(x̂) is orthogonal to C at x̂.
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Simple Algorithm for `1 Minimization

Project onto a flat: C = {x | Ax = y}
In this special case, x̂ satisfies two conditions:

1 Feasibility: Ax̂ = y;

2 Optimality: z − x̂ ⊥ null(A).

From these conditions, we have:

x̂ = P{x|Ax=y}[z] = z −A∗ (AA∗)−1 [Az − y] . (15)

Directly check? Or derive alternatively? (exercise 2.11)
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Simple Algorithm for `1 Minimization

Minimizing the `1 Norm: Nondifferentiability

Try to solve:
min ‖x‖1 subject to Ax = y. (16)

using projected gradient descent:

min f(x) : xk+1 = PC [xk − tk∇f(xk)] . (17)

But ‖x‖1 is not differentialble.
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Simple Algorithm for `1 Minimization

Design Strategies for All Local Descent Methods
Minimization via local descent (Appendix D):

min f(x) : xk → xk+1

such that f(xk) ≥ f(xk+1).

At current iterate xk, find a local surrogate f̂(x,xk) ≈ f(x) such that

xk+1 = arg min
x∈C

f̂(x,xk) easy to find! (18)

where f̂(x,xk) could be linear, quadratic, higher-order; or upper-bound
(conservative) or lower-bound (accelerating).
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Simple Algorithm for `1 Minimization

Subgradient and Subdifferential

Generalizing the gradient ∇f(x) at x0 with the property:

f(x) ≥ f(x0) + 〈∇f(x0),x− x0〉, ∀ x ∈ Rn. (19)

Definition (Subgradient and Subdifferential)

Let f : Rn → R be a convex function. A subgradient of f at x0 is any
vector u ∈ Rn satisfying

f(x) ≥ f(x0) + 〈u,x− x0〉, ∀ x. (20)

The subdifferential of f at x0 is the set of all subgradients of f at x0:

∂f(x0) = {u | ∀x ∈ Rn, f(x) ≥ f(x0) + 〈u,x− x0〉}. (21)
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Simple Algorithm for `1 Minimization

Subgradient and Subdifferential of `1 Norm

Lemma (Subdifferential of ‖·‖1)

Let x ∈ Rn, with I = supp(x),

∂ ‖·‖1 (x) = {v ∈ Rn | PIv = sign(x), ‖v‖∞ ≤ 1}. (22)

f(x) = ‖x‖1

g(x) = f(x0) + 〈u,x− x0〉

Figure: In blue, purple, and red, three linear lower bounds, taken at x0 = 0, with slope
u = − 1

2
, 1

3
, and 2

3
, respectively. Any slope u ∈ [−1, 1] defines a linear lower bound on

f(x) around x0 = 0. So, ∂| · |(0) = [−1, 1]. For x0 > 0, the only linear lower bound has
slope u = 1; for x0 < 0, the only linear lower bound has slope u = −1. So,
∂| · |(x) = {−1} for x < 0 and ∂| · |(x) = {1} for x > 0.
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Simple Algorithm for `1 Minimization

Minimizing the `1 Norm: Projected Subgradient

To solve:
min ‖x‖1 subject to Ax = y. (23)

using projected subgradient descent:

xk+1 = PC[xk − tkgk], gk ∈ ∂f(xk). (24)

Algorithm (`1 Minimization via Projected Subgradient Descent):

1: Input: a matrix A ∈ Rm×n and a vector y ∈ Rm.
2: Compute Γ← I −A∗(AA∗)−1A, and x̃← A†y = A∗(AA∗)−1y.
3: x0 ← 0.
4: t← 0.
5: repeat many times
6: t← t+ 1;
7: xt ← x̃+ Γ

(
xt−1 − 1

t sign(xt−1)
)
;

8: end while
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Simple Algorithm for `1 Minimization

Minimizing the `1 Norm: Simulations

Solve: min ‖x‖1 s.t. Ax = y. (25)

A is of size 200× 400. Fraction of success across 50 trials.
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Sparse Error Correction via `1 Minimization

Error Correction via `1 Minimization

Let F ∈ Cn×n be the Discrete Fourier Transform (DFT), and
B ∈ Cn×(d+1) be a submatrix of the d lowest-frequency elements of this
basis and their conjugates:

B =
[
f− d−1

2
| · · · | f d−1

2

]
∈ Cn×(d+1), (26)

y = xo + eo, where xo = Bwo and ‖eo‖0 ≤ k. (27)

Discrete Logan’s Theorem:

min ‖y − x‖1 s.t. x ∈ col(B). (28)
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Sparse Error Correction via `1 Minimization

Error Correction via `1 Minimization

Let A be the (left) orthogonal complement to B: AB = 0. Then:

ȳ = Ay = A(xo + eo) = Aeo. (29)

To solve for eo:
min ‖e‖1 s.t. Ae = ȳ. (30)

According to Logan’s Theorem, this succeeds if d× k ≤ cπ2 .

What about other frequency components of F ?
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Sparse Error Correction via `1 Minimization

Next: Towards a Rigorous Justification
Given y = Axo with xo sparse:

NP: min ‖x‖0 subject to Ax = y (31)

P: min ‖x‖1 subject to Ax = y. (32)

When and Why does `1 minimization work?
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Sparse Error Correction via `1 Minimization

Assignments

• Reading: Section 2.3 of Chapter 2.

• Reading: Appendix C & D.

• Programming Homework # 1.
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