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Relaxing the Sparse Recovery Problem

@ Convex Functions and Convexification
@ (' Norm as Convex Surrogate for /° Norm
© Simple Algorithm for ¢* Minimization

@ Sparse Error Correction via ¢! Minimization
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Why Convexification?

Intuitive reasons why ¢° minimization:
min ||x||p subject to Az =1y. (1)

is very challenging:

Not amenable to local search methods such as gradient descent.
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Convex versus Nonconvex Functions

For minimizing a generic function:
min f(x), « € C(a convex set), (2)

conduct local gradient descent search: (Appendix D)

Lt+1 = T — tVf(CCk) (3)
To
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Intuitively, convexity lends to global optimality.
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Convex Functions [Appendix B

Definition (Convex Function)

A continuous function f : R™ — R is convex if for every pair of points
x, ' € R" and a € [0, 1] it satisfies the Jensen's inequality:

flaz+(1-0)2) < af(@)+(1-a)f(). (4)

x ax + (1 — a)z’ z'
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Global Optimality

Any local minimum of a convex function is also a global minimum.

Proof.

Let & be a local minimum: Ve : ||z — Z|2 < ¢, we have f(&) < f(x).
Assume x, is the global minimum and f(&) > f(xy).
Choose A such that ) = Az + (1 — A\)x, satisfies ||z) — Z||2 < e. Then

f(@) < f=)
< fOz+ (1= Nzy)
< M@+ 1= A)f(=)
< f(®).

O

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 2, 2021 6/25



£ Norm as Convex Surrogate for ¢° Norm

Convex Envelope

Definition (Lower Convex Envelope)

A function f.(x) is said to be a (lower) convex envelope of f(x) if for all
convex functions g < f we have g < f..

Lower convex envelope f. is well and uniquely defined and is equivalent to
the convex biconjugate function f** of f.
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2% Norm as Convex Surrogate for ¢° Norm

The ¢* Norm as Envelope of /° Norm

n n
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lower bounding ||z||o

Figure: Convex surrogates for the /° norm. |z| is the convex envelope of | z||,
on [—1,1].

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 2, 2021 8/25



2% Norm as Convex Surrogate for ¢° Norm

The ¢* Norm as Envelope of /° Norm

The function ||-||, is the convex envelope of ||-||,, over the set

Boo = {z | ||||,, < 1} of vectors whose elements all have magnitude at
most one.

Proof.

Consider the cube C = [0, 1]™ with vertex vectors o € {0,1}". For any
convex function f < - ||o,

flx®) = f(z)\iai) < Z)\if(ai) [Jensen's inequality]

7
< Z Xilloilly, = Z i lloilly [o; are binary]
i i
= ;- (6)
Repeat the argument for each orthants. [
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£ Norm as Convex Surrogate for ¢° Norm

Sparsity Promoting Property of Norms

A Toy Problem: given a vector

(t) = [t,t—1,t —1]* €R3,
find ¢ such that ¥ is sparse.
Strategy: given a certain norm || - ||,

min f() = (1))
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Figure courtesy of Carlos Fernandez of NYU.
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Minimizing the ¢! Norm

Replace ¢ minimization:

min ||z||p subjectto Ax =1y (7)
with the relaxed ¢! minimization:

min ||x|; subjectto Az =wy. (8)

Two technical difficulties:

® Nontrivial constraints: Unlike the general unconstrained problem
(2), in the problem (8) the solution & must satisfy Az = y.

* Nondifferentiable objective: ¢! norm in (8) is not differentiable. So
around points of interest the gradient V f(x) does not exist.
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Simple Algorithm for ¢1 Minimization

¢' Minimization via Linear Programming

min ||z||; subjectto Az =wy. (9)

Let

" = max{x,0}, and =z = max{—=z,0}.

Let z = [if} € R?" and we have:
|zlli = 1*(zt +27) =12 and Az =[A,—A]z. (10)
Then ¢! minimization is equivalent to an LP problem:
mzin 1"z subjectto [A,—A]z=1y, 2>0. (11)

This LP problem can be solved in polynomial time.
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Simple Algorithm for £ Minimization

Minimizing the ¢' Norm via Local Greedy Descent

For minimizing a function with constraints (Appendix C& D):

min f(x), subjectto =z € C(a convex set), (12)

Basic Strategy: projected gradient descent (PGD):

LTht1 = PC [ka — thf(:Bk)] . (13) Xnvfixt)
where Pc projects
a point, say z, to the nearest point in C: Xt

Pclz] = argmeig 3z — z|5=h(z). (14)
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Simple Algorithm for ¢1 Minimization

Projection on a Convex Set

How to find the nearest point & = Pc[x] to a point x in a set
C={z]|h(z) <c}?

Fact: & satisfies two conditions:
@ Feasibility: h(z) <¢; |z — Pe(z)]|

® Optimality:
—Vh(z) is orthogonal to C at @.
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Project onto a flat: C = {x | Ax = y}

In this special case, & satisfies two conditions:
@ Feasibility: Az =1y
® Optimality: z — 2 L null(A).

General C Affine subspace C = {zo} + null(A)

(> Py ey

—Vh(2) =2z — @ L null(A

From these conditions, we have:
= Plajaz=y) 2] = 2 — A" (AA") ' [Az — y]. (15)

Directly check? Or derive alternatively? (exercise 2.11)
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Simple Algorithm for ¢1 Minimization

Minimizing the ¢! Norm: Nondifferentiability
Try to solve:
min ||x||; subjectto Az =1y. (16)

using projected gradient descent:

min f(x) 1 @1 = Pclzr — 6V f(x)] . (17)

But ||z||1 is not differentialble.

Zo Zo
f(@o) + (Vf(@0), & — ) f(xo) +{g,® —x0), g€if(x)
differentiable nondifferentiable

September 2, 2021 16 /25



Design Strategies for All Local Descent Methods

Minimization via local descent (Appendix D):

min f(x) : x — Tl
such that f(zx) > flwns).

At current iterate xj, find a local surrogate f(x,x;) ~ f(x) such that
Ty = arg mig f(x,x;) easy to find! (18)
xE

where f(ac,wk) could be linear, quadratic, higher-order; or upper-bound
(conservative) or lower-bound (accelerating).

/
Qr(x,z)

/10 = f@ + F@ - a)
F(z)

24 gl z
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Subgradient and Subdifferential

Generalizing the gradient V f(x) at ay with the property:

f(x) > f(xo) + (Vf(xo), x —x0), VaeR™ (19)

Definition (Subgradient and Subdifferential)

Let f: R™ — R be a convex function. A subgradient of f at xg is any
vector u € R” satisfying

f(x) > f(xo) + (u,x — xy), V. (20)
The subdifferential of f at xq is the set of all subgradients of f at x:

Of(xo) = {u |Vx € R", f(x) > f(z0) + (u, T — o)} (21)
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Subgradient and Subdifferential of /! Norm

Lemma (Subdifferential of ||-||;)

Let x € R™, with | = supp(x),
-y (®) = {v € R" | Pv = sign(z), [Jv], <1} (22)

9(x) = f(xo) + (u, — o)

Figure: In blue, purple, and red, three linear lower bounds, taken at @y = 0, with slope

u = f%, é and % respectively. Any slope u € [—1, 1] defines a linear lower bound on
f(x) around g = 0. So, 9| -|(0) = [—1,1]. For &g > 0, the only linear lower bound has
slope u = 1; for &y < 0, the only linear lower bound has slope uw = —1. So,

9| |(x) ={-1} for x < 0 and 9| - |(x) = {1} for & > 0.
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Minimizing the ¢* Norm: Projected Subgradient

To solve:
min ||x||; subjectto Az =1y. (23)

using projected subgradient descent:

Tp+1 = Pcler — trgr], gr € 0f(xk). (24)

Algorithm (¢! Minimization via Projected Subgradient Descent):

1: Input: a matrix A € R"™*™ and a vector y € R™.
2. Compute ' < T — A*(AA*)"'A, and & « Afy = A*(AA*)"1y.
3: g+ 0.

4: t <+ 0.

5: repeat many times
6 t+—t+1,

7 < x+ T ( Ti_q — %sign(wt_l) );
8: end while
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Simple Algorithm for ¢' Minimization

Minimizing the ¢* Norm: Simulations

Solve: min|z|; st Az=uy. (25)

A is of size 200 x 400. Fraction of success across 50 trials.

1N o o
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T T T
Il Il Il
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Number of nonzero entries k = ||z,||,
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Sparse Error Correction via ¢' Minimization

Error Correction via ¢} Minimization

Let F' € C™*™ be the Discrete Fourier Transform (DFT), and

B e C™*(@+1) pbe a submatrix of the d lowest-frequency elements of this
basis and their conjugates:

B=[f ui| | fua] ecr @, (26)

Yy==x,+ e, where x,=Bw, and ||e,|o < k. (27)

Discrete Logan’s Theorem:

min ||y — |1 st. x € col(B). (28)
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Error Correction via ¢} Minimization

Let A be the (left) orthogonal complement to B: AB = 0. Then:

y=Ay = Az, +e,) = Ae,. (29)
To solve for e,:
min |le]|; st. Ae=wy. (30)
According to Logan’s Theorem, this succeeds if d x k < c5.

Observation y = . + €. Est. Bandlimited & Est. Sparse e

o 160 260
What about other frequency components of F'?
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Sparse Error Correction via ¢' Minimization

Next: Towards a Rigorous Justification

Given y = Ax, with x, sparse:

NP: min |zl subjectto Az =1y (31)

P: min||x|; subjectto Ax=1y. (32)

When and Why does /' minimization work?
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Assignments

® Reading: Section 2.3 of Chapter 2.
® Reading: Appendix C & D.

® Programming Homework # 1.
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