Computational Principles for High-dim Data Analysis (Lecture Three)

Yi Ma

EECS Department, UC Berkeley

September 2, 2021

EECS208, Fall 2021

Relaxing the Sparse Recovery Problem

1 Convex Functions and Convexification

2 ℓ^1 Norm as Convex Surrogate for ℓ^0 Norm

3 Simple Algorithm for ℓ^1 Minimization

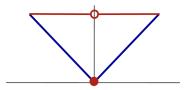
4 Sparse Error Correction via ℓ^1 Minimization

Why Convexification?

Intuitive reasons why ℓ^0 minimization:

$$\min \|m{x}\|_0$$
 subject to $m{A}m{x}=m{y}.$

is very challenging:



Not amenable to local search methods such as gradient descent.

(1)

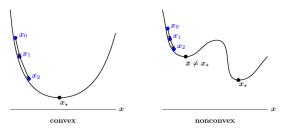
Convex versus Nonconvex Functions

For minimizing a generic function:

$$\min f(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathsf{C} \text{ (a convex set)}, \tag{2}$$

conduct **local gradient descent search**: (Appendix D)

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t\nabla f(\boldsymbol{x}_k). \tag{3}$$



Intuitively, convexity lends to global optimality.

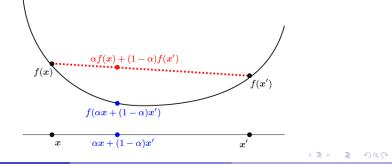
EECS208, Fall 2023

Convex Functions [Appendix B]

Definition (Convex Function)

A continuous function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for every pair of points $x, x' \in \mathbb{R}^n$ and $\alpha \in [0, 1]$ it satisfies the Jensen's inequality:

$$f(\alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{x}') \leq \alpha f(\boldsymbol{x}) + (1-\alpha)f(\boldsymbol{x}').$$
(4)



Global Optimality

Proposition

Any local minimum of a convex function is also a global minimum.

Proof.

Let \bar{x} be a local minimum: $\forall x : \|x - \bar{x}\|_2 \leq \epsilon$, we have $f(\bar{x}) \leq f(x)$. Assume x_* is the global minimum and $f(\bar{x}) > f(x_*)$. Choose λ such that $x_{\lambda} = \lambda \bar{x} + (1 - \lambda)x_*$ satisfies $\|x_{\lambda} - \bar{x}\|_2 \leq \epsilon$. Then

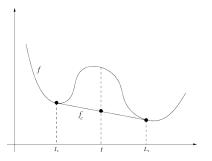
$$egin{array}{rll} egin{array}{rll} f(oldsymbol{ar{x}}) &\leq f(oldsymbol{x}_\lambda) \ &\leq f(\lambdaoldsymbol{ar{x}}+(1-\lambda)oldsymbol{x}_\star) \ &\leq \lambda f(oldsymbol{ar{x}})+(1-\lambda)f(oldsymbol{x}_\star) \ &< f(oldsymbol{ar{x}}). \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Convex Envelope

Definition (Lower Convex Envelope)

A function $f_c(x)$ is said to be a (lower) **convex envelope** of f(x) if for all convex functions $g \leq f$ we have $g \leq f_c$.



Lower convex envelope f_c is well and uniquely defined and is equivalent to the **convex biconjugate** function f^{**} of f.

The ℓ^1 Norm as Envelope of ℓ^0 Norm

$$\forall \boldsymbol{x} \in \mathbb{R}^{n} : \|\boldsymbol{x}\|_{0} = \sum_{i=1}^{n} \mathbb{1}_{\boldsymbol{x}(i)\neq 0}, \|\boldsymbol{x}\|_{1} = \sum_{i=1}^{n} |\boldsymbol{x}(i)|.$$
(5)
$$\underbrace{\|\boldsymbol{x}\|_{0}}_{\|\boldsymbol{x}\|_{1}} \operatorname{Largest \ convex}_{\text{lower \ bound}} \operatorname{Largest \ convex}_{\text{lower \ bound}} |\boldsymbol{x}\|_{0}$$

Figure: Convex surrogates for the ℓ^0 norm. |x| is the *convex envelope* of $||x||_0$ on [-1,1].

(日) (四) (日) (日) (日)

The ℓ^1 Norm as Envelope of ℓ^0 Norm

Theorem

The function $\|\cdot\|_1$ is the convex envelope of $\|\cdot\|_0$, over the set $B_{\infty} = \{x \mid \|x\|_{\infty} \leq 1\}$ of vectors whose elements all have magnitude at most one.

Proof.

Consider the cube C = $[0,1]^n$ with vertex vectors $\sigma \in \{0,1\}^n$. For any convex function $f \le \|\cdot\|_0$,

$$f(\boldsymbol{x}) = f\left(\sum_{i} \lambda_{i} \boldsymbol{\sigma}_{i}\right) \leq \sum_{i} \lambda_{i} f(\boldsymbol{\sigma}_{i}) \quad \text{[Jensen's inequality]}$$

$$\leq \sum_{i} \lambda_{i} \|\boldsymbol{\sigma}_{i}\|_{0} = \sum_{i} \lambda_{i} \|\boldsymbol{\sigma}_{i}\|_{1} \quad [\boldsymbol{\sigma}_{i} \text{ are binary}]$$

$$= \|\boldsymbol{x}\|_{1}. \quad (6)$$

Repeat the argument for each orthants.

Sparsity Promoting Property of Norms A Toy Problem: given a vector

$$\vec{\boldsymbol{v}}(t) = [t, t-1, t-1]^* \quad \in \mathbb{R}^3,$$

find t such that \vec{v} is sparse.

Strategy: given a certain norm $\|\cdot\|$,

$$\min_{t} f(t) = \|\vec{\boldsymbol{v}}(t)\|.$$

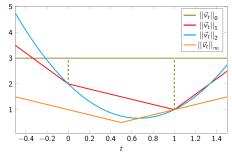


Figure courtesy of Carlos Fernandez of NYU.

Minimizing the ℓ^1 Norm

Replace ℓ^0 minimization:

```
\min \| \boldsymbol{x} \|_0 subject to \boldsymbol{A} \boldsymbol{x} = \boldsymbol{y} (7)
```

with the relaxed ℓ^1 minimization:

```
\min \|x\|_1 subject to Ax = y. (8)
```

Two technical difficulties:

- Nontrivial constraints: Unlike the general unconstrained problem (2), in the problem (8) the solution x must satisfy Ax = y.
- Nondifferentiable objective: ℓ^1 norm in (8) is not differentiable. So around points of interest the gradient $\nabla f(x)$ does not exist.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 ℓ^1 Minimization via Linear Programming

$$\min \|\boldsymbol{x}\|_{1} \quad \text{subject to} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{9}$$
Let
$$\boldsymbol{x}^{+} = \max\{\boldsymbol{x}, \boldsymbol{0}\}, \quad \text{and} \quad \boldsymbol{x}^{-} = \max\{-\boldsymbol{x}, \boldsymbol{0}\}.$$
Let $\boldsymbol{z} = \begin{bmatrix} \boldsymbol{x}^{+} \\ \boldsymbol{x}^{-} \end{bmatrix} \in \mathbb{R}^{2n}$ and we have:
$$\|\boldsymbol{x}\|_{1} = \mathbf{1}^{*}(\boldsymbol{x}^{+} + \boldsymbol{x}^{-}) = \mathbf{1}^{*}\boldsymbol{z} \quad \text{and} \quad \boldsymbol{A}\boldsymbol{x} = [\boldsymbol{A}, -\boldsymbol{A}]\boldsymbol{z}. \tag{10}$$

Then ℓ^1 minimization is equivalent to an LP problem:

$$\min_{\boldsymbol{z}} \mathbf{1}^* \boldsymbol{z}$$
 subject to $[\boldsymbol{A}, -\boldsymbol{A}] \boldsymbol{z} = \boldsymbol{y}, \ \boldsymbol{z} \ge \boldsymbol{0}.$ (11)

This LP problem can be solved in polynomial time.

Ma (EECS Department, UC Berkeley)

EECS208, Fall 2021

September 2, 2021 12 / 25

< □ > < □ > < □ > < □ > < □ > < □ >

Minimizing the ℓ^1 Norm via Local Greedy Descent

For minimizing a function with **constraints** (Appendix C& D):

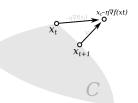
 $\min f(\boldsymbol{x}), \quad \text{subject to} \quad \boldsymbol{x} \in \mathsf{C} \text{ (a convex set)}, \tag{12}$

Basic Strategy: projected gradient descent (PGD):

$$\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathsf{C}} \left[\boldsymbol{x}_k - t_k \nabla f(\boldsymbol{x}_k) \right].$$
 (13)

where \mathcal{P}_{C} projects a point, say z, to the nearest point in C:

$$\mathcal{P}_{\mathsf{C}}[\boldsymbol{z}] = \arg\min_{\boldsymbol{x}\in\mathsf{C}} \ \frac{1}{2} \|\boldsymbol{z}-\boldsymbol{x}\|_2^2 \equiv h(\boldsymbol{x}).$$
(14)



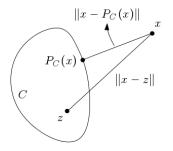
< □ > < □ > < □ > < □ > < □ > < □ >

Projection on a Convex Set

How to find the nearest point $\hat{x} = \mathcal{P}_{\mathsf{C}}[x]$ to a point x in a set $\mathsf{C} = \{z \mid h(z) \le c\}$?

Fact: \hat{x} satisfies two conditions:

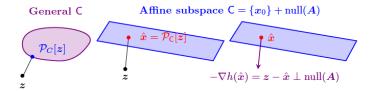
- **1** Feasibility: $h(\hat{x}) \leq c$;
- **2** Optimality:
 - $abla h(\hat{\boldsymbol{x}})$ is orthogonal to C at $\hat{\boldsymbol{x}}$.



Project onto a flat:
$$\mathsf{C} = \{oldsymbol{x} \mid oldsymbol{A}oldsymbol{x} = oldsymbol{y}\}$$

In this special case, \hat{x} satisfies two conditions:

- **1** Feasibility: $A\hat{x} = y$;
- **2** Optimality: $\boldsymbol{z} \hat{\boldsymbol{x}} \perp \text{null}(\boldsymbol{A})$.



From these conditions, we have:

$$\hat{x} = \mathcal{P}_{\{x|Ax=y\}}[z] = z - A^* (AA^*)^{-1} [Az - y].$$
 (15)

Directly check? Or derive alternatively? (exercise 2.11)

< □ > < □ > < □ > < □ > < □ > < □ >

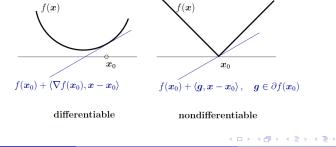
Minimizing the ℓ^1 Norm: Nondifferentiability Try to solve:

$$\min \|x\|_1$$
 subject to $Ax = y$. (16)

using projected gradient descent:

min
$$f(\boldsymbol{x})$$
: $\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathsf{C}} \left[\boldsymbol{x}_k - t_k \nabla f(\boldsymbol{x}_k) \right].$ (17)

But $\|x\|_1$ is not differentialble.



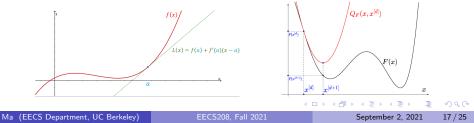
Design Strategies for All Local Descent Methods Minimization via local descent (Appendix D):

 $\min f(\boldsymbol{x}): \quad \boldsymbol{x}_k \quad o \quad \boldsymbol{x}_{k+1}$ such that $f(\boldsymbol{x}_k) \geq f(\boldsymbol{x}_{k+1}).$

At current iterate x_k , find a local surrogate $\hat{f}(x, x_k) \approx f(x)$ such that

$$oldsymbol{x}_{k+1} = rg\min_{oldsymbol{x}\in\mathsf{C}} \hat{f}(oldsymbol{x},oldsymbol{x}_k) \quad \mathsf{easy to find!}$$
 (18)

where $\hat{f}(x, x_k)$ could be linear, quadratic, higher-order; or upper-bound (conservative) or lower-bound (accelerating).



Subgradient and Subdifferential

Generalizing the gradient $abla f({m x})$ at ${m x}_0$ with the property:

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}_0) + \langle \nabla f(\boldsymbol{x}_0), \boldsymbol{x} - \boldsymbol{x}_0 \rangle, \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n.$$
 (19)

Definition (Subgradient and Subdifferential)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. A *subgradient* of f at x_0 is any vector $u \in \mathbb{R}^n$ satisfying

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}_0) + \langle \boldsymbol{u}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle, \quad \forall \ \boldsymbol{x}.$$
 (20)

The subdifferential of f at x_0 is the set of all subgradients of f at x_0 :

$$\partial f(\boldsymbol{x}_0) = \{ \boldsymbol{u} \mid \forall \, \boldsymbol{x} \in \mathbb{R}^n, \ f(\boldsymbol{x}) \ge f(\boldsymbol{x}_0) + \langle \boldsymbol{u}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle \}.$$
 (21)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subgradient and Subdifferential of ℓ^1 Norm

Lemma (Subdifferential of $\|\cdot\|_1$)

Let $x \in \mathbb{R}^n$, with $\mathsf{I} = \mathsf{supp}(x)$,

$$\partial \left\|\cdot\right\|_{1}(\boldsymbol{x}) = \{ \boldsymbol{v} \in \mathbb{R}^{n} \mid \boldsymbol{P}_{\mathsf{I}}\boldsymbol{v} = \operatorname{sign}(\boldsymbol{x}), \ \left\|\boldsymbol{v}\right\|_{\infty} \le 1 \}.$$
 (22)

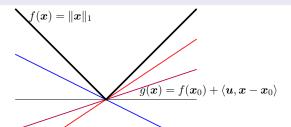


Figure: In blue, purple, and red, three linear lower bounds, taken at $x_0 = 0$, with slope $u = -\frac{1}{2}$, $\frac{1}{3}$, and $\frac{2}{3}$, respectively. Any slope $u \in [-1, 1]$ defines a linear lower bound on f(x) around $x_0 = 0$. So, $\partial | \cdot | (0) = [-1, 1]$. For $x_0 > 0$, the only linear lower bound has slope u = 1; for $x_0 < 0$, the only linear lower bound has slope u = -1. So, $\partial | \cdot | (x) = \{-1\}$ for x < 0 and $\partial | \cdot | (x) = \{1\}$ for x > 0.

Minimizing the ℓ^1 Norm: Projected Subgradient

To solve:

$$\min \|\boldsymbol{x}\|_1 \quad \text{subject to} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}. \tag{23}$$

using projected subgradient descent:

$$\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathsf{C}}[\boldsymbol{x}_k - t_k \boldsymbol{g}_k], \quad \boldsymbol{g}_k \in \partial f(\boldsymbol{x}_k).$$
 (24)

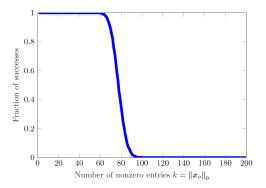
Algorithm (ℓ^1 Minimization via Projected Subgradient Descent):

- 1: Input: a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $y \in \mathbb{R}^m$.
- 2: Compute $\Gamma \leftarrow I A^*(AA^*)^{-1}A$, and $\tilde{x} \leftarrow A^{\dagger}y = A^*(AA^*)^{-1}y$.
- 3: $x_0 \leftarrow 0$.
- $\textbf{4:} \ t \leftarrow 0.$
- 5: repeat many times
- 6: $t \leftarrow t+1;$
- 7: $\boldsymbol{x}_t \leftarrow \tilde{\boldsymbol{x}} + \boldsymbol{\Gamma} \left(\boldsymbol{x}_{t-1} \frac{1}{t} \operatorname{sign}(\boldsymbol{x}_{t-1}) \right);$
- 8: end while

Minimizing the ℓ^1 Norm: Simulations

Solve:
$$\min \|\boldsymbol{x}\|_1$$
 s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}$. (25)

 $m{A}$ is of size 200×400 . Fraction of success across 50 trials.



Error Correction via ℓ^1 Minimization

Let $F \in \mathbb{C}^{n \times n}$ be the **Discrete Fourier Transform** (DFT), and $B \in \mathbb{C}^{n \times (d+1)}$ be a submatrix of the *d* lowest-frequency elements of this basis and their conjugates:

$$\boldsymbol{B} = \begin{bmatrix} \boldsymbol{f}_{-\frac{d-1}{2}} \mid \cdots \mid \boldsymbol{f}_{\frac{d-1}{2}} \end{bmatrix} \in \mathbb{C}^{n \times (d+1)},$$
(26)

 $\boldsymbol{y} = \boldsymbol{x}_o + \boldsymbol{e}_o, \quad ext{where} \ \ \boldsymbol{x}_o = \boldsymbol{B} \boldsymbol{w}_o \ \ ext{and} \ \ \|\boldsymbol{e}_o\|_0 \leq k.$

Discrete Logan's Theorem:

$$\min \|\boldsymbol{y} - \boldsymbol{x}\|_1 \quad \text{s.t.} \quad \boldsymbol{x} \in \operatorname{col}(\boldsymbol{B}).$$
(28)

イロト 不得下 イヨト イヨト 二日

Error Correction via ℓ^1 Minimization

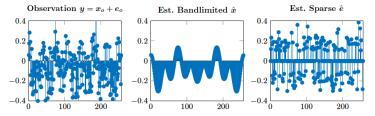
Let A be the (left) orthogonal complement to B: AB = 0. Then:

$$\bar{\boldsymbol{y}} = \boldsymbol{A} \boldsymbol{y} = \boldsymbol{A} (\boldsymbol{x}_o + \boldsymbol{e}_o) = \boldsymbol{A} \boldsymbol{e}_o.$$
 (29)

To solve for e_o :

$$\min \|\boldsymbol{e}\|_1$$
 s.t. $\boldsymbol{A}\boldsymbol{e} = \bar{\boldsymbol{y}}.$ (30)

According to Logan's Theorem, this succeeds if $d \times k \leq c \frac{\pi}{2}$.



What about other frequency components of F?

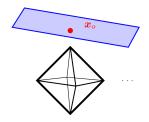
EECS208, Fall 2021

Next: Towards a Rigorous Justification Given $y = Ax_o$ with x_o sparse:

NP: $\min \|x\|_0$ subject to Ax = y (31)

P: min
$$||\mathbf{x}||_1$$
 subject to $A\mathbf{x} = \mathbf{y}$. (32)

When and Why does ℓ^1 minimization work?



Assignments

- Reading: Section 2.3 of Chapter 2.
- Reading: Appendix C & D.
- Programming Homework # 1.

-

< 1 k

э