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My Interests — From 3-D Vision to High-Dim Data

In order to recover 3D geometry from 2D images, we need
to understand low-dim structures in high-dim spaces...
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Capturing Shape and Texture of 3D Objects

Shanghai Museum Items
On HTC VIVE On iPhone VR kit

With Jingyi Yu of ShanghaiTech, 2017



CONTEXT - Data increasingly massive, high-dimensional...

??

> 1M pixels

Compression
De-noising
Super-resolution
Recognition...

Videos
> 1B voxels ser data
Streaming U > 1B users

;’;azl;in g ti Clustering
aliization. .. Classification

Collaborative filtering...

U.S.COMMERCE'S ORTNER SAYS YEN UNDERVALUED

* Commerce Dept. undersecretary of economic a®airs R obert Ortner said that
* he believed the dollar at current levels was fairly priced against most E uropean
currencies.

In a wide ranging address sponsored by the E xport-Import Bank, Ortner,
the bank's senior economist also said he believed that the yen was undervalued
and could go up by 10 or 15 pct.

"I do not regard the dollar as undervalued at this point against the yen,"
he said.

On the other hand, Ortner said that he thought that "the yen is still a
little bit undervalued,” and "could go up another 10 or 15 pct."

In addition, Ortner, who said he was speaking personally, said he thought
that the dollar against most E uropean currencies was "fairly priced."

Ortner said his analysis of the various exchange rate values was based on
such economic particulars as wage rate di®erentiations.

* Ortner said there had been little impact on U.S. trade de” cit by the decline
of the dollar because at the time of the P laza A ccord, the dollar was extremely
overvalued and that the ~rst 15 pct decline had little impact.

He said there were indications now that the trade de” cit was beginning to
level 0.

Turning to Brazil and Mexico, Ortner made it clear that it would be
almost impossible for those countries to earn enough foreign exchange to pay
the service on their debts. He said the best way to deal with this was to use
the policies outlined in Treasury Secretary James Baker's debt initiative.

Web data
Il > 100B webpages

Indexing
Ranking
Search...

How to extract low-dim structures from such high-dim data?



CONTEXT - Low dimensional structures in visual data
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Visual data exhibit low-dimensional structures
due to rich local regularities, global symmetries,
repetitive patterns, or redundant sampling.




CONTEXT — PCA: Fitting Data with a Low-dim. Subspace

If we view the data (image) as a matrix

A=lay |- | a,) € Rmx™
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r = rank(A) < m.

»

Principal Component Analysis (PCA) via singular value decomposition (SVD):

- Optimal estimate of A under iid Gaussian noise D = A + Z

« Efficient and scalable computation

» Fundamental statistical tool, with huge impact in image processing,
vision, web search, bioinformatics...

But... PCA breaks down under even a single corrupted observation.




CONTEXT — But life is not so easy...

Real application data often contain missing observations, corruptions,
or subject to unknown deformation or misalignment.

Classical methods (e.g., PCA, least square regression) break down...




Everything old ...

A long and rich history of robust estimation with error correction and
missing data imputation:
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R. J. Boscovich. De calculo probailitatum que respondent
diversis valoribus summe errorum post plures observationes

..., before 1756

A. Legendre. Nouvelles methodes pour la determination des
orbites des cometes, 1806

C. Gauss. Theory of motion of heavenly bodies, 1809

A. Beurling. Sur les integrales de Fourier absolument

Lz +

over-determined
+ dense, Gaussian

convergentes et leur application a une transformation
functionelle, 1938

B. Logan. Properties of High-Pass Signals, 1965

underdetermined
+ sparse, Laplacian



CONTEXT — Recent related progress

Sparse recovery: Given y = Lzg, L € R™*" m < n, recover .

n" o 4

m

_ Hl‘: Il. r € R"
=

I € Rmxn .

yElez

Impossible in general (m < n)

Well-posed if z¢ is structured (sparse), but still NP-hard

Tractable via convex optimization: min ||z||; s.t. y = Lz
... if L is “nice” (random, incoherent, RIP)

Hugely active area: Donoho+Huo °01, Elad+Bruckstein’03, Candes+Tao’04,05,
Tropp ’04,06, Donoho’04, Fuchs’05, Zhao+Yu’06, Meinshausen+Buhlmann’06,
Wainwright’09, Donoho+Tanner’09, Dimakis+Xu+Hassibi’09, ... and many others




CONTEXT — Recent related progress

Robust recovery: Given y = Lz + ¢g, L € R™*"™, m < n, recover x( and ey.

Impossible in general (m < n+m )

Well-posed if x( is sparse, errors ey not too dense, but still NP-hard

Tractable: via convex optimization: min ||z||; + ||¢||1 s.t. y = Lz + ¢
... if L is “nice” (cross and bouquet)

Hugely active area: Candes+Tao’05, Wright+Ma’10, Nguyen+Tran’11, Li 11, also
Zhang, Yang, Huang’11, Oymak+Tropp’15 etc...




EXPERIMENTS — Varying Level of Random Corruption

Extended Yale B Database Training: subsets 1 and 2 (717 images)
(38 subjects) Testing: subset 3 (453 images)
(7] 1 €1 Yo= A2

E
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g 40

* - ~—o— Algorithm 1
—©— PCA + NN

20| ~— ICA |+ NN

=t | NMF + NN

0 10 20 30 40 50 60 70 80 90
Percent occluded (%)

Wright, Yang, Ganesh, Sastry, and Ma. Robust Face Recognition via Sparse Representation, TPAMI 2009




Theory — Geometry and Statistics of Face Images

. E ” Highly coherent

(volume < 1.5 x 107229 )

Theorem 1. For any § > 0, Jvg(6) > 0 such that if v < vy and p < 1, in
weak proportional growth, with error support J and signs o chosen uniformly
at random,

lim P jo | £'-recoverability at (I,J,0) VI € ([n]) } = 1.

m—oQ0 kl

“¢1 recovers any sparse signal from almost any error with density less than 1”

Dense Error Correction via L1 —minimization, IEEE Trans. Information Theory, 2010



CONTEXT — Basic Algorithm for Sparsity (ISTA)

Algorithm 8.1 Iterative Soft-Thresholding Algorithm (ISTA) for BPDN

Problem: min, 1|y — Az|3 + Az, given y € R?, A € R™*™.
Input: g € R and L > A\ (AT A).
while x; not converged (k=1,2,...) do

Deep
Neural
Network
Module

W < T — %AT(A.’Bk — 'y) A
Tp+1 < soft(wg, A/L). Soft Thresholding
end while /
Output: ¢, + x;. >
Hj
A
RelLu

Nonlinear Thresholding

( RelLu(w)
) V 'I 0 >

Linear Operator w=Ax
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CONTEXT — Learned ISTA (LISTA)

If only interested in one instance: y = Axz AND with many training data: {(y, x)}.
We can optimize the optimization path of ISTA using supervised learning:

Algorithm 3 LISTA::fprop Algorithm 4 LISTA::bprop
LISTA : fprop(X, Z,W,,S,0) LISTA :: bprop(Z*, X, Z,W,,S5,0,6X,0W.,45S,50)
;; Arguments are passed by reference. ;; Arguments are passed by reference.
;; variables Z(t), C(t) and B are saved for bprop. ;; Variables Z(t), C(t), and B were saved in fprop.
B=W.X; Z(0) = hy(B) Initialize: B =0; §S =0; 66 =0
fort=1to T do 0Z(T)=(Z(T)—Z7)
Ct)y=B+SZ(t—-1) for t =T down to 1 do
Z(1) = ho(C (1)) 5C(1) = hy(C(1)).62(1)
end for 08 = 66 — sign(C(¢)).0C(t)
Z =2Z(T) 0B =B+ 6C(t)

S =6S+6C(t)Z(t—1)T
§Z(t—1)=8T6C(t)

end for

0B = 0B + hy(B).0Z(0)

36 = 00 — sign(B).hy(B)dZ(0)

oW, =06BXT; 6X =WIB

Gregor and LeCun, in ICML 2010.



CONTEXT — Recent related progress

Low-rank recovery: Given y = L[Ag], £ : R™*™ — RP, recover Aj.

ERPI =

4 E RITLX n

Impossible in general (p < mn)
Well-posed if A is structured (low-rank), but still NP-hard
Ally sty = L£(A)

.. if L is “nice” (random, rank-RIP)

Hugely active area: Recht+Fazel+Parillo’07, Candes+Plan’10, Mohan+Fazel’10,
Recht+Xu+Hassibi’11, Chandrasekaran+Recht+Parillo+Willsky’11,
Negahban+Wainwright’11, Oymak+Tropp’15 ...




CONTEXT — Recent related progress

Matrix completion: Given y = Pq[Ay], Q C [m] x [n], recover Aj.

H H B H
- IS *
4 * &
n o 29 A € RmXxn
. R * *

Impossible in general (2| < mn)
Well-posed if A is structured (low-rank), but still NP-hard
|All« s.t. y = Po(A)

Tractable via convex optimization: min

... if Qis “nice” (random subset) ...
...and A, interacts “nicely” with Pq ( Ao incoherent — not “spiky”).

Hugely active area: Candes+Recht ‘08, Keshevan+Oh+Montonari ‘09, Candes+Tao ‘09,
Gross ‘10, Recht ‘10, Negahban+Wainwright '10, Oymak+Tropp’15...




CONTEXT — Why Should You Care?

Learning Graphical Models
X = (XOaXh.) NN(Oa Z)

X
5 [ E() Z:()h, ] - Z_l _ [ J() J{)h, ]
Xo

X;, X; cond. indep. given other variables < (Z_I)M =0

Separation Principle:

—1 —1
Z() J() — 'J()h Jh, ‘]h,()

observed = sparse + low-rank

* sparse pattern - conditional (in)dependence
* rank of second component - number of hidden variables

Chandrasekharan, Patrrilo, and Wilsky of MIT, Annual of Statistics, 2012



CONTEXT — Why Should You Care?

Learning Deep Neural Networks

Theorem 1. The softmax function (17) can be approximated

as
, )
. 4‘( Softmax Output ngpg(y\x) = Py (y) (1 + 0% (y)s(x) + d(y)) + o(e)
|nput . ’ (v,b) N eUT(y)s(z)J,-b(y)
Features Qvx (vle) = D yey e W@ and the loss (16), equivalently expressed as the K-L diver-
o gence, can be approximated as
GDsrm o)
D(Py,x||Px QV}y) (18)
' i i i 1= 1
Figure 2. A simple neural network with one layer of hidden nodes, = IB-w 3T H% n 577(@7,)) (s) + o (62)’

with softmax output, can be viewed as selecting features.

where nV0)(s) & Ep. |(uTo(Y) +d(Y))?|. Moreover,
the loss (18) is minimized when d(y) + X 9(y) = 0, and ®,

W are designed from

(¥, ®)* = argmin |B — 7T 2. (19)
(,®)

From information-theoretic perspective, DNNs (with softmax
objective) is to learn a low-rank approximation of the joint distribution
P(X,Y) of the input X and output Y.

Lizhong Zheng of MIT, Submitted to ICML 2018




CONTEXT - Low-dimensional Models

The data should be low-dimensional (low-rank):

A=la;|---|a,] e R™*"  rank(A4) < m.




CONTEXT - Low-dimensional Models

... but some of the observations are grossly corrupted:
A+ FE, |Eijl

E;; arbitrarily large, but most are zero.




CONTEXT - Low-dimensional Models

... and some of them can be missing too:
D = Pq [:1 -+ b‘],

() C [m] x [n] the set of observed entries.




CONTEXT - Low-dimensional Models

... Special cases of a more general problem:

D =Li(A)+ Lo(FE)+ Z A, E either sparse or low-rank



THIS TALK

Given observations D = Pq|A + E + Z|, with
A low-rank,
E sparse,
/Z small, dense noise,

recover a good estimate of A and L.

O Theory and Algorithm
* Provably Correct and Tractable Solution
* Provably Optimal and Efficient Algorithms
O Potential Applications
* Visual Data (Restoration, Reconstruction, Recognition)
« Other Data

1 Extensions and Conclusions




ROBUST PCA - Problem Formulation

D - observation A — low-rank Fy— sparse

L

Problem: GivenD = A, + Ej, recover Ay and Ej .

Low-rank component Sparse component (gross errors)

Numerous approaches in the literature:

. Multivariate trimming [Gnanadesikan and Kettering “72]

. Power Factorization [Wieber’'70s]

. Random sampling [Fischler and Bolles ‘81]

. Alternating minimization [Shum & Ikeuchi’96, Ke and Kanade ‘03]
. Influence functions [de la Torre and Black ‘03]

Key question: can guarantee correctness with an efficient algorithm?




ROBUST PCA - Convex Surrogates for Sparsity and Rank

Seek the lowest-rank A that agrees with the data up to some sparse error [:

min rank(A) + v||Ello subj A+ E = D.

But INTRACTABLE! Relax with convex surrogates:
HEHO — #{Eij #* O} — ||EH1 — Zij |Ew\ L, norm

rank(A) = #{0;(A) #0} — ||A|lx =)_,0i(A).  Nuclear norm

Convex envelope over B2 2 X Bj o

O
A4




ROBUST PCA — By Convex Optimization

Seek the lowest-rank A that agrees with the data up to some sparse error [:

min rank(A) + v||Ello subj A+ E = D.
But INTRACTABLE! Relax with convex surrogates:
IElo =#{Ei;; #0}  — Bl =22 |E;l- Lynorm

rank(A) = #{0;(A) #0} — ||A|lx =)_,0i(A).  Nuclear norm

min ||All, + A|E|: subj A+ E = D.

Semidefinite program, solvable in polynomial time

V. Chandrasekaran et. al. IFAC 2009, J. Wright et. al. NIPS 2009.



ROBUST PCA — When the Convex Program Works?

D= A+ E D =PqlA]
0.5
0.4;
0.3+
K

0.2+
0.1+

0"1 1 | | 0"1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

rank(L) / n rank(L,) / n
Robust PCA, Random Signs Matrix Completion

White regions are instances with perfect recovery.

Correct recovery when A is indeed low-rank and £ is indeed sparse?



MAIN THEORY — Exact Solution by Convex Optimization

Theorem 1 (Principal Component Pursuit). If Ay € R™*", m > n has

rank
m

Non-adaptive weight factor

and Fo has Bernoulli support with error probabtlity p < p., then with very high
probability

(Ag, Ey) = argmin ||A|. \E]1 subj A+ E = Ay+ Ep,

and the minimizer is unique.

GREAT NEWS: “Convex optimization recovers almost any matrix of
rank O ( ) from errors corrupting O (mn) of the observations!”

[(H -n

o

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



MAIN THEORY — Corrupted, Incomplete Matrix

D =Pq| Ao + Eo |, Q ~ uIli<[m]X["1)

Tmen

Theorem 2 (Matrix Completion and Recovery). If Ay, Ey € R™*™ . m >
n, with
| n
rank(Ag) < C ——, and || Epllo < pmn,
wlog®(m)

and we observe only a random subset of size

entries, then with very high probability, solving the convex program

.
1’
i

min || A||. + \/lm

1 subj PqlA+ E| =D,

uniquely recovers (Ao, Ey).

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



MAIN THEORY - With Dense Errors and Noise

Theorem 3 (Dense Error Correction). If Ay has rank r < p, Sy and

Fo has random signs and Bernoulli support with error probabily
with very high probability

(Ag, Ep) = argmin ||Al|« + M| E

1 Sllbj A + F = ;vl() + ]L’(),

and the minimizer 1s unique.

Theorem 4 (Robust PCA with Noise). Given D € Ay + Ey + Z for any
\Z||r <, if Ay has rank r < p, + and FE, has Be ~support with

12 log?(n

error probability p < p*, then with very high probability

o 1
A, F) = argmin ||Al|, + —||F subj D—A—-F| <n,
(4, B) = argmin ||l + —=[E]s subj | | <n

sastisfies ||(A, E) — (Ao, Eo)|| < Cn for some constant C' > 0.

Ganesh, Zhou, Li, Wright , Ma, Candes, ISIT, 2010.




BIG PICTURE - Landscape of Theoretical Guarantees

Many have made contributions in the past few years:

Matrix Recovery (RPCA) D. Gross Matrix Completion
E. Candes (Stanford)
D= A+ E B. Recht (UC Berkeley) D =PqlA]
1 ) J. Wright (Columbia)
andom sSigns J. Tropp (Caltech) 1

V. Chandrasekharan (Caltech)

rank = O (Iog._i ”)

= 0 (5)
rank log®n /B Hassibi (Caltech)

P. Parrilo (MIT)

. Willsky (MIT)

Hastie (Stanford) [ &0 ]lo

. Montanari (Stanford)  rn.a.

. Jordan (Berkeley)

. Wainwright (Berkeley)

. Yu (Berkeley)

A. Singer (Princeton)

T. Tao (UCLA)

0 o / 4 S. Osher (UCLA) 0
rank(Ao) 0. Milenkovic (UIUC) 0 rank(Ao) 1

e Classical PCA Y. Bresler (UIUC) m
Y. Ma (UIUC)

M. Fazel (U Wash.)

Universality of phase transition (Oymak & Tropp). But does not yet apply here...

| Eo|lo

THLT

W00 >




ALGORITHMS — Are scalable solutions possible?

is high-dimensional and non-smooth.

Seemingly BAD NEWS: Our optimization problem

min ||A|. + A|E|: subj A+ E=D. \J./

Convergence rate of solving a generic convex program: min f (x)
X

Second-order Newton method, linear rate of convergence, but not scalable!

First-order methods depend strongly on the smoothness of f:

Function class JF

Suboptimality f(xx) — f(x*)

smooth

SN—

f convex, differentiable
IVf(z) - V)| < Lz -

CL|xop—z*||?
"122 | 29(

smooth + structured nonsmooth:

~—_—

F=f+g
f. g convex,
IVf(x) - Vf(z)| < L|x— 2

(j"]—"||fl3o—fl3‘||2

k2 = (_)(/‘—lﬁ’-)

N\

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 2003.

nonsmooth f convex
|f(z) = f(=')| < M|z — ||

CMII:\B/%—:B'H _ @(L)




ALGORITHMS — Why are scalable solutions possible?

GOOD NEWS: The objective function has special structures
min |A|l« + A||F]|1 subj A+ EF = D.

KEY OBSERVATION: Simple solutions for the proximal operations, given by

soft-thresholding the entries or singular values of the matrix, respectively.
A

, 1
S:(Q) = argminy el X[} + 5[l X — Qi

, 1
D.(Q) = argminy el X[, + 5| X — Qi

For composite functions F = f + g, with f smooth,
if g has an efficient proximal operator, we achieve
the same (optimal) rate as if F was smooth.




ALGORITHMS — Evolution of scalable algorithms

GOOD NEWS: Scalable first-order gradient-descent algorithms:

* Proximal Gradient [Osher, Mao, Dong, Yin '09,Wright et. al.’09, Cai et. al.’09].

 Accelerated Proximal Gradient [Nesterov ’83, Beck and Teboulle ‘09]:
 Augmented Lagrange Multiplier [Hestenes ‘69, Powell '69]:

» Alternating Direction Method of Multipliers [Gabay and Mercier ‘76].

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries

randomly corrupted: min ||A|l. + A||F||1 subj] A+ E = D.
Algorithms Accuracy Rank ||IE||_O # iterations | time (sec)
IT 5.99e-006 50 101,268 8,550 119,370.3
DUAL 8.65e-006 50 100,024 822 1,855.4
APG 5.85e-006 50 100,347 134 1,468.9
APG, 5.91e-006 50 100,347 134 82.7
EALMp 2.07e-007 50 100,014 34 37.5
IALMp 3.83e-007 50 99,996 23 11.8

3

/

10,000
times
speedup!

Lin, Chen, and Ma, UILU-ENG-09-2214, 2010.



ALGORITHMS — Evolution of scalable algorithms

A scalable algorithm: alternating direction method (ADMoM) for ALM:

(A,E,Y) = ||All« + M|E|l, +(Y,D - A— E) + 4||D - A— E|}%.

Apsy = Du_l (D — Ey + Yi/px), Shrink singular valugs
k
repeat- Er+1 = 8)\,“;1 (D — Agy1 + Yr/pr), Shrink absolute valyes /
Yierr = Y+ k(D — Agr1 — Egta)- >
Y \ .
. Residual Network Module
Linear operator
Lagrange J, * v
Multiplier Nonlinear thresholding weight layer
Update \l’ F(x) L relu N
_ weight layer identit
Linear operator Y
‘V-< F(x) +x
yk+1 v

Lin, Chen, and Ma, UILU-ENG-09-2214, 2010.



ALGORITHMS - Evolution of fast algorithms (around 2009)

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries

randomly corrupted: min ||A|l. + A||F||1 subj A+ E = D.
Algorithms Accuracy Rank ||IE||_O # iterations | time (sec)
IT 5.99e-006 50 101,268 8,550 119,370.3
DUAL 8.65e-006 50 100,024 822 1,855.4
APG 5.85e-006 50 100,347 134 1,468.9
APGp 5.91e-006 50 100,347 134 82.7
EALMp 2.07e-007 50 100,014 34 37.5
IALMp 3.83e-007 50 99,996 23 11.8

10,000
times
speedup!

Provably Robust PCA at only a constant factor (=20)
more computation than conventional PCA!




ALGORITHMS — Convergence rate with strong convexity

GREAT NEWS: Geometric convergence for gradient algorithms!

f restricted strong convex: O(log(1/c)) [Agarwal, Negahban, Wainwright, NIPS 2010]
f smooth, V f Lipschitz:  O(s71/?)

f differentiable:
f non-smooth:

5 -
= r
of -
. -
s e
g T
= =
“ -
- -

n) b)

Figure 1. Coanvergence rates of projected gradient descent in application to Lasso programs (£;-

constrained least-squares). Each pancl shows the log cptimization error log |6° — 9] versus the itora-

tice number {. Panel (a) shows throe curves, correspondimg to dimensicns d € {5000, 10000, 20000} ,

Sparsity s [Vd], and all with the same sample sizme m 2500. All cases show goometrnic con-

vergence, bet the rate for larger peobloms becomes progresswely slower. (b)) For an appropaately

rescalod sample sxe (o .—.%_, all three convergence rates should be roughly the same, as prodictod
y the theory.



ALGORITHMS — Recap and Conclusions

Key challenges of nonsmoothness and scale can be mitigated by using
special structure in sparse and low-rank optimization problems:

Efficient proximity operators = proximal gradient methods
Separable objectives = alternating directions methods

Efficient moderate-accuracy solutions for very large problems.
Special tricks can further improve specific cases (factorization for low-rank)

Techniques in this literature apply quite broadly.

Extremely useful tools for creative problem formulation / solution.
Fundamental theory guidmg engineering practice:

What are the basic principles and limitations?
What specific structure in my problem can allow me to do better?



APPLICATIONS

 Repairing Images and Videos
« Image Repairing, Background Extraction, Street Panorama
d Reconstructing 3D Geometry
« Shape from Texture, Featureless 3D Reconstruction
] Registering Multiple Images
« Multiple Image Alignment, Video Stabilization
1 Recognizing Objects
* Faces, Texts, efc.

d Other Data and Applications



Implications — Highly Compressive Sensing of Structured Information!

Recover low-dimensional structures from a fraction of missing
measurements with structured support.

compressive samples Low-rank Structures Sparse Structures




Repairing Images — Highly Robust Repairing of Low-rank Textures!

Low-rank Texture A Corruptions F/

Liang, Ren, Zhang, and Ma, in ECCV 2012.



Repairing Low-rank Textures

Photoshop

Low-rank Method

Liang, Ren, Zhang, and Ma, in ECCV 2012.




Repairing (Distorted) Low-rank Textures
Low-rank Method

Input

[ |
/ .
& 5L
:
:

—
—

===

Output

I

S J -
1 n ol
LNl / /I E —
- L ™ -y
3 - -
—= SN
° — O — ;
AT RN X ,
— O\
———

—
A
13

Liang, Ren, Zhang, and Ma, in ECCV 2012.



Structured Texture Completion and Repairing

Liang, Ren, Zhang, and Ma, in ECCV 2012.



Repairing Multiple Correlated Images

58 images of one person
under varying lighting:

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



Repairing Images — robust photometric stereo

Input images

Q¢ ~ shadow (20.7%)
I ~ specularities(13.6%)

1 Deg.

min ||All, + A|E|: subj D =Pao(A+ E).

{
i

A (a) Ground truth | (b) Our method (c) Least Squares (d) Error map (e) Error map (LS)
(our method)
Mean error 0.014° 0.96°
Max error 0.20° 8.0°

Wu, Ganesh, Li, Matsushita, and Ma, in ACCV 2010.




Repairing Video Frames — background modeling from video

Surveillance video

200 frames, Video D = Low-rank appx. A + Sparse error E/
144 x 172 pixels,

Significant foreground
motion

3

Candes, Li, Ma, and Wright, JACM, May 2011.



Implications — Highly Compressive Sensing of Structured Information!

Recover low-dimensional structures from diminishing fraction of
corrupted measurements.

compressive samples Low-rank Structures Sparse Structures




Repairing Video Frames — Street Panorama




Repairing Video Frames — Street Panorama

Low-rank

AutoStitch

Photoshop



Repairing Video Frames — Street Panorama

Low-rank

AutoStitch

Photoshop



Sensing or Imaging of Low-rank and Sparse Structures

Fundamental Problem: How to recover low-rank and sparse structures from

corrupted data Low-rank Structures Sparse Structures

i B . + .

subject to either nonlinear deformation 7 or linear compressive sampling P ?

asidl g




Reconstructing 3D Geometry and Structures

D — deformed observation A — low-rank structures FE — sparse errors

LB LB PP
e,
NFRFNFNFNFY
SENFNENENFY

= Eeen T+
NFNENFNFNFY
- 5 9 -
F_‘gj;ﬁ*_‘i;‘#ﬁ:‘
AL AL LR

Problem: GivenD o1 = A, + Ly, recover 7, Ag and E, simultaneously.

Low-rank component Sparse component
(regular patterns...) (occlusion, corruption, foreground...)

Parametric deformations
(affine, projective, radial distortion, 3D shape...)



Transform Invariant Low-rank Textures (TILT)

D — deformed observation A — low-rank structures FE — sparse errors

SO S S S S S
AR
B N N St X'y
NINININISNIN
Lo g g

— S5 H SN T
B S BNy
NINININININ
,‘-_"-:,*;\-'f_g_“.F_"-’fﬂ:'
PN AL AL N N

Objective: Transformed Principal Component Pursuit:

min ||All. + A[|E]||y subj A+ E=Dor

Solution: Iteratively solving the linearized convex program:

ﬁmin | A Ely subj A+ EFE=Dot+J-Ar

Or reduced version: subj Pgl|A+ E] =Pg|D o], PolJ] =0

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12

e + Al




THEORY — Compressive Robust PCA

Theorem 5 (Compressive Principal Component Pursuit). Let Ay €

R™*™ m > n have rank r < p, #ggm), and Eoy have a Bernoulli support

with error probability p < p*. Let Q+ be a random subspac of R™*™ of dimen-

S10M,
(@) = Co(pmn + mriClog”m

distributed according to the Haar measure, independent of the support of Ey.
Then with very high probability

1
(Ao, Ey) = argmin||A||*+\/—m||E|\1 subj Pgl|A+ E] =Pgl|Ao + Eo,

for some numerical constant p,, C, and p*, and the minimizer is unique.

A nearly optimal lower bound on minimum # of measurements!

Wright, Ganesh, Min, and Ma, IMA Information & Inference 2015, the Best Paper 2nd Prize



TILT — Shape from texture

Input (red window D )

Output (rectified green window A )

\
\

]

L
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- .

; .’ Al Ak
Sl T

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12




TILT — Shape and geometry from textures
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Zhang, Liang, and Ma, in ICCV 2011
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Zhang, Liang, and Ma, in ICCV 2011



TILT — Camera Calibration with Radial Distortion

~ 2 - - - - ; - -
r= \’i;x"é +v5,.f(r) = 1+ ke(1)r? + ke(2)r* + ke(5)r®

(%) - (100 2Oy + )2+ ng)l)
¥ f(r)yo + 2ke(Dxoyo + ke(3)(r? + 2y5)

Zhang, Matsushita, and Ma, in CVPR 2011



TILT — Camera Calibration with Radial Distortion

min Z,\Zl | A;

« T /\”E,”l Sllbj :1,‘ -+ E/- = Do (TOaTi)
To = (I(_, [(C), T = (R“TI)

Previous approach Low-rank method

Zhang, Matsushita, and Ma, in CVPR 2011



TILT — Holistic 3D Reconstruction of Urban Scenes

min ||Al|. + ||E|]1  s.t.

A+ FE = [Dl oT1, Do OTQ]

Mobahi, Zhou, and Ma, in ICCV 2011



TILT — Holistic 3D Reconstruction of Urban Scenes

From one input image From four input images

Mobahi, Zhou, and Ma, in ICCV 2011



TILT — Holistic 3D Reconstruction of Urban Scenes

From eight input images

7‘ Lln-n E=S =0 ==

BERESS
HEE =

Mobahi, Zhou, and Ma, in ICCV 2011




Virtual reality in urban scenes




Registering Multiple Images — Robust Alignment

D — corrupted & misaligned A — aligned low-rank FE — sparse errors
observation ~ signals
k/ \\ \ P\‘ ‘\‘
Problem: GivenD o1 = Ay + Ey, recover 7, Apand Ej.
Parametric deformations Low-rank component = Sparse component

(rigid, affine, projective...)

Solution: Robust Alignment via Low-rank and Sparse (RASL) Decomposition

Iteratively solving the linearized convex program:

P in 1Al + A|E|l, subj A+ E =Dor+ JAr
— (or QA+ FE)=QDoTt, QJ = O)



v

RASL - Aligning Face Images from the Internet

*48 images collected from internet Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL - Faces Detected

Input: faces detected by a face detector (D)

Average

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL - Faces Aligned

Output: aligned faces (D o 7)

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL — Faces Repaired and Cleaned

Output: clean low-rank faces (A )

. ; b |
' §

Average

g
>
ad=g
A7
a7
a3

Byl

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL — Sparse Errors of the Face Images

Output: sparse error images (F)

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



Object Recognition — Regularity of Texts at All Scales!

Input (red window D )

Output (rectified green window A )

% m

Zhang, Liang, Ganesh, Ma, ACCV’10 and IJCV’12




Recognition — Street Sign Rectification

1=1
subj Do7=[Ay--Ad+[Er - Edl.

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013



Recognition — Character Rectification and Recognition

Microsoft OCR for rotated characters
(2,500 common Chinese characters)

1002 — |
90¢ s -
—---I"I'I_-_--i‘ o -
80| *. \ 1
-
70+ N i
APGRN
60+ s 33‘ i
~
. \d i
S0 T lishu oo
40! Kaiti Y |
- = =heiti \
30 |===songti ‘\s‘ e 1
——lishu/TILT S ®
20+ " DS b
kaiti/TILT \: N
10. | ——heitiTILT it
—songti/TILT Teelte
00 5 10 15 20

Microsoft OCR for skewed characters
(2,500 common Chinese characters)

100
90

80
70
60
50
40
30
20r
10}

0

= = =lishu
kaiti
= = =heiti
= = =gongti
—lishu/TILT
kaiti/TILT
—heiti/TILT
——songti/TILT

0

0.05

0.1

0.15

0.2

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013



Super Resolution via Transform Invariant Group Sparsity

W~ D = RE X

WEExRRx: x=Da
a - BRI
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Super Resolution via Transform Invariant Group Sparsity
Aim: Exploiting non-local structures to perform super-resolution at large
upsampling factors by

1. Learning the transformation that reveals the group-sparse structure of
the image gradient (via TILT)

2. Enforcing this structure through group-sparse regularizers (DTV) that
incorporates the transform and is consequently invariant to the transform

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013



Super Resolution via Transform Invariant Group Sparsity

Input Bicubic (x8) "(x8 Sparse Coding (x4) TI-DTV (x8)

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013



Take-home Messages for Visual Data Processing

1. (Transformed) low-rank and sparse structures are central to visual data
modeling, processing, and analyzing;

2. Such structures can now be extracted correctly, robustly, and efficiently,
from raw image pixels (or high-dim features);

3. These new algorithms unleash tremendous local or global information from
single or multiple images, emulating or surpassing human capability;

4. These algorithms start to exert significant impact on image/video processing,
3D reconstruction, and object recognition.

But try not to abuse or misuse them...



Other Applications — Upright orientation of man-made objects

TILT for 3D: Unsupervised upright orientation of man-made 3D objects

3
min Z | A:ll« + Al i1

1=1

) st Dot = [Ala A2a A3] + [E17 EQ) E?]

Hg. 10. More models which have been successfully tested through our algonthm.

Jin, Wu, and Liu of USTC, China, Graphical Models, 2012.



Other Data/Applications — Web Image/Tag Refinement

Input: images with user-provided tags Output: images with refined tags
.
fly f
bird Tag Refinement N Y
N\ bird
cool I >
insect I/./ ‘ sky
strong eagle
tag_Animal
Tag
correlation
lag_Dog
E
User-provided tag matrix Low-rank matrix Sparse error matrix

Zhu, Yan of NUS, Singapore, ACM MM 2010.




Other Data/Applications — Web Document Corpus Analysis

Latent Semantic Indexing: the classical solution (PCA)

seven pct.
T he company said the dividend was raised to 37.5 cts a share from

y. 25 ¢ cividend on 3 pos-si Dense, difficult to interpret

Wo rds Chrysler said the stock diy s payable April 13 to holders<

rrrrr d March 23 while the caSh avidend is payable April 15 to holders

of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased

in its stock repurchase program that began in late 1984. T hat program
now has a target of 56.3 mIn shares with the latest stock split.

Chrysler said in a statement the actions "re° ect not only our out-

n
standing performance over the past few years but also our optimism a bette r m Od e Ilso I u t I o n ?
about the company's future." u

d;; word frequency (or TF/IDF) D L A 1 E

Low-rank Informative,
“background”  discriminative
topic model “keywords”

Documents D

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by




Other Data/Applications — Sparse Keywords Extracted

Reuters-21578 dataset: 1,000 longest documents; 3,000 most frequent words

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct.

T he company said the dividend was raised to 37.5 cts a share from
35 cts on a pre-split basis, equal to a 25 ct dividend on a post-split
basis.

Chrysler said the stock dividend is payable April 13 to holders of
record March 23 while the cash dividend is payable April 15 to holders
of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased
in its stock repurchase program that began in late 1984. T hat program
now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions "re’ ect not only our out-
standing performance over the past few years but also our optimism
about the company's future."

Min, Zhang, Wright, Ma, CIKM 2010.




Other Data/Applications — Protein-Gene Correlation

Microarray data

X

{Call Specific Genes microarray)

Step 1

Gene Expression for
each cell type Step 3

Ragression

o N

Hand W F

Speafic .  Whole Microarray

Step 2

Update

Fig. 1. The diagram of the workflow of the method presented in this paper

Endothefial Epithelal Fitvotas? Macrophage

Fig 6. HeatMap of estimaied gene signatures for the soried cell specific
genes afer adjustments based on fold changes. RPCA is used in the first
step. It is chear that this matrix is close to 2 block diagonal structure.

Wang, Machiraju, and Huang of Ohio State Univ. , Bioinformatics.




Other Data — Time Series Gene Expressions
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Figure S4. Separation result: (1., column) raw data (2,,; column) low-rank component and (3,
column) highly corrupted sparse component using threshold (M1: H1047R (kinase domain mutation)
M2: E545K (helical domain mutation), and M3: K111N mutation in PIK3CA).

Chang, Korkola, Amin, Tomlin of Berkeley, BiorXiv, 2014.




Other Data/Applications — Lyrics and Music Separation

Songs (STFT) Low-rank (music) Sparse (voices)
gy e
Y > {
g8 << B
& I%'*li s
— B8 0 42 B E
X 3 (5 3:
- —~ = = = A i' -'::.f
Low Rank
_ Robust Matrix L
Signal —> STFT |— —_—
PCA
Sparse
Matrix S
Time
Evaluation k ISTFT Frequency |[¢—
Masking

Po-Sen Huang, Scott Chen, Paris Smaragdis, Mark Hasegawa-Johnson of UIUC, ICASSP 2012.




Other Data/Applications — Internet Traffic Anomalies

Network Traffic = Normal Traffic + Sparse Anomalies + Noise

D=L+ RS+ N

Fig. 2. Network topology graph
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Mardani, Mateos, and Giannadis of Minnesota, Trans. Information Theory, 2013.




Other Data/Applications — Robust Filtering and System ID

GPS on a Car:
t = Ax+ Bu, AecR*T
y = Cr+z+e

N

gross sparse errors
(due to buildings, trees...)

Robust Kalman Filter: %;,1 = Az + K(yt — Cfﬁt)

Yn Yn—1 Yn—2 vl Yo
Yn—1 Yn—2 e Y-1
Robust System ID: U2 : = OsrXrsn + S
. y—n—|—2
L Yo Yy-1 e Y-n+2 Y—n+1 |

\ J
|

Hankel matrix

Dynamical System Identification, Maryan Fazel, Stephen Boyd, 2000



CONCLUSIONS - A Unified Theory for Sparsity and Low-Rank

Sparse Vector Low-Rank Matrix
Low-dimensionality of individual signal correlated signals
Measure L, norm ||z ||o rank(X)
Convex Surrogate L, norm ||z||1 Nuclear norm || X ||
Compressed Sensing y = Ax Y = A(X)
Error Correction y = Ax +e Y =AX)+FE
Domain Transform yoT = Ax +e Yor=AX)+ FE
Mixed Structures Y=AX)+B(F)+ 7

Joint NSF Project with Candes and Wright, 2010 - 2015




Compressive Sensing of Low-Dimensional Structures

L
o 1"

A norm || - || is said to be decomposable at X if there exists a subspace 7" and
a matrix S such that

O - [I(X) ={A | Pr(A) = S, [[Pro(A)]" <1},
where || - ||* is the dual norm of || - ||, and Pr. is nonexpansive w.r.t. || - ||*.

Theorem [Candes, Recht’11] Any low-complexity signal X O can be exactly
recovered from high compressive measurements via convex optimization:

| X ||e subject to Po(X) = PQ(XO),

for a decomposable norm | - ||.




Compressive Sensing and Unmixing of Low-dim Structures

. 0 0 . ) . k . . k o k 0
Suppose (X7,...,X}) = argmin) ., N|| X;|| subj > o, X;=> ., X},
for decomposable norms || - ||(;) that majorize the Frobenius norm.

Theorem 6 (Compressive Sensing of Mixed Low-Comp. Structures).
Let Q+ be a random subspac of R™*™ of dimension

dim(Q) > O(log2 m) X intrinsic degrees of freedomof (X1,..., X}),

distributed according to the Haar measure, independent of X ;. Then with very
high probability

k k k
(XY,...,X}0) = argminZ)\iHX‘,;H(i) sub)j PQ[ZXi] :PQ[ZX?},
1=1

1=1 =1

and the minimizer s unique.

Wright, Ganesh, Min, and Ma, ISIT’12, IMA |1& Best Paper 2nd Prize



Extensions — A Suite of Powerful Reqgularizers

For compressive robust recovery of a family of low-dimensional structures:
* [Zhou et. al. ‘09] Spatially contiguous sparse errors via MRF T . T‘
« [Bach '10] — relaxations from submodular functions s -~ ( :

« [Negahban+Yu+Wainwright '10] — geometric analysis of recovery . l
-

» [Becker+Candes+Grant '10] — algorithmic templates
* [Xu+Caramanis+Sanghavi “11] column sparse errors L, ; norm

» [Recht+Parillo+Chandrasekaran+Wilsky '11'12] — compressive sensing of various structures
» [Candes+Recht '11] — compressive sensing of decomposable structures
X% =argmin | X|, s.t. Po(X)=Po(X")

* [McCoy+Tropp’'11,Amenlunxen+McCoy+Tropp’13] — phase transition for recovery and
decomposition of structures

(X?Xg) = arg min HX1H(1) + /\HXgH(z) s.t. Xq+ Xy = X? + X‘(Z)

* [Wright+Ganesh+Min+Ma, ISIT'12,1&I’13] — compressive superposition of decomposable
structures

Take home message: Let the data and application tell you the structure...



Relationships with Deep Neural Networks

1. Evolution of the Structures of Deep Networks
FNN -> CNN -> ResNet -> ?7?

2. Deep Learning and Sparsity
Cascaded Structured Matrix Factorization
Global Optimality of Training

3. Supervision versus No-supervision
Simple Shallow Networks by Design
PCANet (and ScatteringNet and CapsuleNet)



Evolution of DNN - More Principled Structures

Fully Connected
Neural Networks
(before 2011)

2 e - 2 . ‘
L Sy . - ""‘C
1 Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

Convolution
Neural Networks
(AlexNet 2011)
I convolution layer \ sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLP
translational invariance <
| | |

weight layer
Residual F(x) ! relu
Neural Networks weight layer . x.
(2015, and AlphaGo Zero) identity

. PN
constrained optimization F(x) +x



Evolution of DNN — Temporal Sparse Coding & Stacked RNN

Temporally coherent Sparse Coding for Anomaly Detection in Video

T Algorithm 1 Sequential iterative soft-thresholding algo-
. 2 2 rithm.
inln E ||xt — Aoy ||2‘|‘>\1 ||04t || 1+ A2 St,t—l Hat — t—1 ||2 Input: extracted feature x.7, hyper-parameter A, A, ¥,
Xt t=1 initial ¢y, the steps of ISTA K
1: fort =1to T do

st JAG DI <1

2: OA[? = Q1
3: for k =1to K do
4 2= —-2(ATA+ S, o D))a; ™ + 2 AT,
5 alt) = softy, /4 (2 + W%,l)
6: end for
7: ap = &K
u = t t
RNN structures derived from group sparsity! |s endfor
9: return oy.7;
K K K
h¥ h¥ h¥ h¥ Ao aj a; ar
hg hi h3 h# af a; af
1
el h hi of a3 o
X1 X2 Xt X1 S12 Xy Sroar XT
(a) Vanilla stacked RNN [26] (b) Stacked RNN couterpart of TSC

Figure 1. The blue boxes represent the input x; of stacked RNNs. The green and orange boxes represent coding vectors a¥. The yellow
circles are similarities between neighboring frames.

Luo, Liu and Gao of ShanghaiTech University, in ICCV 2017.



Evolution of DNN — Graphical Model Inference as Networks

Structured Attentions for Visual Question Answering

Yi(2:), i (2, 2)) Glimpses

< \ < I < _
xo_,l_, JvE RSN /A bh—
= = =
CRF e o2 o
© e e
——
Recurrent Inference Layers .—

Yi(z)

NNO

QA
wng palqslaM

«“,

= “small”

!
SETITEXL:T)

wns paiySism

“What is the size

of the. sphere on 2.? L —
the right of the c

cyan cylinder? ”
Figure 2. The whole picture of the proposed model. The unary potential ), (z;) and pairwise potential 1;;(z;, z;) are computed with Eq.
(8), which are inputs to the recurrent inference layers. 1;(z;) is also used as an additional glimpse, which usually detects the key-word
objects. In the inference layers, x* represents b for MF and m(®) for LBP. The recurrent inference layers generates a refined glimpse
with Mean Field or Loopy Belief Propagation. The 2 glimpses are used to weight-sum the visual feature vectors. The classifier use both of
the attended visual features and the question feature to predict the answer. The demonstrated image is a real case.

Recurrent inference layers derived from MF or LBP (for graphical models)!

Zhu, Tu, and Ma et. al. of ShanghaiTech University, in ICCV 2017.




Il. Deep Learning and Sparsity

* Deep learning is a cascaded matrix factorization

il

O(X, ..., XT) = (- Y1 (VXX - XF)
N
nonlinearity features  weights
min LY, ®(X,..., X))+ A0(X1, ..., XF)
X1...X b P

loss labels regularizer

Vidal, Haeffele, and Young of JHU, ICML2014



Deep Learning and Sparsity

min (Y, ®(X',..., X)) +r0(X1L, ..., XH)
X1 ... XK

« Theorem: If the functions ® and © are sums of positively
homogeneous functions, then any local minimizer such that
for some i and all k Xz-’*’ = (0 gives a global minimizer

« Examples of positively homogeneous compositions ®
— Matrix multiplication: matrix factorization
— CANDECOMP/PARAFAC decompositions: tensor factorization
— Rectified linear units + max pooling: deep learning

« Examples of positively homogeneous regularizers ©
— Sums of products of norms (L1, L2, TV, etc.): structured factorizations

Vidal, Haeffele, and Young of JHU, ICML2014



lll. Supervision or None? - PCANet

Second stage

First stage Output layer

Input layer 71

wife T

W)l D D ) ' )

v

> > &
< > >

Patch-mean PCA filters Patch-mean PCA filters Quantization & Concatenated
removal convolution removal convolution mapping image and
block-wise
histogram

2-3 layers, fixed topology, simplest data-adaptive linear mapping,
and simplest nonlinear processing and simplest pooling...

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing, 2015



PCANet — Basic Structure

Stage 1
« Cascaded PCAfilters PE;,Elzer
« Binary hashing ' v v
* Block-wise histogram
Output layer
Composed Stage 2
block-wise
. PCA filter PCA filter
A Binarization bank 2 bank 2

& Binary to
Decimal

1L

. l
- ScatteringNet (S. Mallat et. al. 2013) Two to three layers!

PY - . . '
« CapsuleNet (G. Hinton et. al. 2017) ) IIZB’EJ/riefselgg-,fgfvvsal:-ge;vcl)sg)gl.
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PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015



PCANet — Test on NIST FERET

FERET contains images of 1,196 different individuals with
up to 5 images of each individual.

The probe set is divided into four subsets
Fb with different expression changes;
Fc with different lighting conditions;
Dup-I taken within the period of three to four months;
Dup-Il taken at least one and a half year apart.

-— 5

Gallery Fb Fc Gallery Dup-l Dup-Il

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015



PCANet — Test on NIST FERET

The non-overlapping block size (for histogram) is 15x15.

The dimension of the PCANet features are reduced to 1000 by a
whitening PCA (WPCA).

“Trn. CD” means trained with standard FERET CD dataset
The NN classifier with cosine distance is used.

Recognition rates (%) on FERET dataset.

Probe sets Fb Fc Dup-1 | Dup-1I || Avg.
LBP [18] 93.00 | 51.00 | 61.00 50.00 63.75
DMMA [25] 98.10 | 98.50 | 81.60 | 83.20 || 89.60
P-LBP [21] 98.00 | 98.00 | 90.00 | 85.00 92.75
POEM [26] 99.60 | 99.50 | 88.80 | 85.00 93.20
G-LQP [27] 99.90 | 100 93.20 | 91.00 96.03
LGBP-LGXP [28] 99.00 | 99.00 | 94.00 | 93.00 || 96.25
sPOEM+POD [29] 9970 | 100 | 9490 | 94.00 || 97.15
GOM [30] 9990 | 100 95.70 | 93.10 97.18
PCANet-1 (Irn. CD) | 9933 | 9948 | 88.92 84.19 92.98
PCANet-2 (Trn. CD) | 99.67 | 99.48 | 95.84 | 94.02 97.25
PCANet-1 99.50 | 98.97 | 89.89 | 86.75 93 78
PCANet-2 9958 | 100 | 9543 | 94.02(¢q| 97.26

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015




PCANet — Test on LFW

LFW contains 13,233 face images
of 5,749 individuals, collected from g

the web.
We use LFW-a [aligned version].

“‘Unsupervised” setting.

View 1 dataset is used to learn the
PCA filters and the projection matrix
of the WPCA, and to decide a
matching threshold.

the trained PCANet is applied to View
2 dataset, 10 subsets of pairs.

Mismatched pairs Matched pairs

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015




PCANet — Test on LFW

PCANet parameters: the filter size k1 = k2 = 7, the number of filters L1 = L2 =
8, and block size is 15x13.

The features of PCANet-1 and PCANet-2 are projected onto 400 and 3,200
dimensions, respectively.

“sgrt” means PCA features followed with a square-root operation.
We use NN classifier with cosine distance.

Comparison of verification rates (%) on LFW under

unsupervised setting.

Methods Accuracy
POEM [26] 82.70£0.59
High-dim. LBP [36] 84.08
High-dim. LE [36] 84.58
SFRD [37] 84.81
[-LQP [27] 86.20+0.46
OCLBP [33] 86.66--0.30
PCANet-1 81.18 = 1.99
PCANet-1 (sqrt) 8255 + 1.48
PCANet-2 85.20 + 1.46
PCANet-2 (sqrt) 86.28 + 1.14

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015
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A Perfect Storm...

Mathematical Theory
(high-dimensional statistics, convex geometry,
measure conceptration, combinatorics...)

0 _
0 01 02 03 04 05

(a) Robust PCA, Random Signs

BIG DATA Cloud Computing
(images, videos, (parallel, distributed, Applications
voices, texts, scalable platforms) & Services
diomedical, geospatial, (data processing,

analysis, compression,
knowledge discovery,
search, recognition...)

~&-d= 5000
- = 10000

Computational Methods g : Exs—
(convex optimization, first-order algorithms, - |._%,
random sampling, deep networks...) N
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THANK YOU!

Questions, please?

20—

J ;
B l

Dor = A+ E min [|A[ + AE];




