EECS208 Discussion 1

Simon Zhai

Sep. 3

Reading: Chapters 1, 2, Appendix A, and B of High-Dim Data Analysis with Low-Dim Models.

1 Demos

See the demos in recordings: 1) ℓ^p -ball Illustration; 2) ℓ^0 -norm Recovery; 3) ℓ^1 -norm Minimization.

2 Linear Algebra

Reading: Appendix A.1.

2.1 Vector Space

Definition 2.1 (Vector Space (Definition A.1)) A vector space \mathbb{V} over a field of scalars \mathbb{F} is a set \mathbb{V} (with a distinguished zero element $\mathbf{0} \in \mathbb{V}$) endowed with two operations:

- **vector addition** +, which takes two vectors $v, w \in \mathbb{V}$ and produce another vector $v + w \in \mathbb{V}$,
- scalar multiplication · (sometimes omitted), which takes a vector $v \in V$ and a scalar $\alpha \in F$ and produce a vector $\alpha v \in V$,

such that:

- 1. the addition + is associative v + (w + x) = (v + w) + x;
- 2. the addition + is commutative: v + w = w + v;
- 3. zero is the additive identity: v + 0 = v;
- 4. every element has an additive inverse: $\forall v \in \mathbb{V}, \exists -v$, such that v + (-v) = 0;
- 5. $\forall \alpha, \beta \in \mathbb{F}, \alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$
- 6. multiplicative identity: $\exists 1 \in \mathbb{F}$, such that 1v = v;
- 7. $\alpha(\boldsymbol{v} + \boldsymbol{w}) = \alpha \boldsymbol{v} + \alpha \boldsymbol{w}$;
- 8. $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$.

Examples of Vector Space. 1) $\mathbb{V} = \mathbb{R}^n$, $\mathbb{F} = \mathbb{R}$; 2) $\mathbb{V} = \mathbb{C}^n$, $\mathbb{F} = \mathbb{C}$; and some other vector spaces.

2.2 Inner Product, Norm, and Orthogonal Complement

Definition 2.2 (Inner Product (Definition A.8)) *A function* $\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \mapsto \mathbb{F}$ *is an inner prod if it satisfies:*

- linearity: $\langle \alpha \boldsymbol{v} + \beta \boldsymbol{w}, x \rangle = \alpha \langle v, x \rangle + \beta \langle w, x \rangle$;
- conjugate symmetry: $\langle v, w \rangle = \overline{\langle w, v \rangle}$;
- positive definiteness: $\langle v, v \rangle \ge 0$, equality holds if and only if v = 0.

Definition 2.3 (Norm (Definition 2.1)) A norm on a vector space \mathbb{V} over \mathbb{R} is a function $\|\cdot\| : \mathbb{V} \to \mathbb{R}$ that is

- nonnegatively homogeneous: $\|\alpha x\| = \alpha \|x\|$ for all vectors $x \in \mathbb{V}$, scalars $\alpha \in \mathbb{R}$,
- positive definite: $\|x\| \ge 0$, and $\|x\| = 0$ if and only if x = 0,
- subadditive: $\|\cdot\|$ satisfies the triangle inequality $\|x+y\| \leq \|x\| + \|y\|$, $\forall x, y \in \mathbb{V}$.

Norm Induced by Inner Product.

- Vector ℓ^2 -norm: $\|m{x}\|_2^2 = \langle m{x}, m{x} \rangle = \sum_{i=1}^n x_i^2, orall x \in \mathbb{R}^n$.
- Matrix Frobenius norm: $\|m{X}\|_F^2 = \sum_{i=1}^n \sum_{j=1}^m x_{i,j}^2 = \langle m{X}, m{X} \rangle_F = \mathrm{trace}(m{X}^{ op} m{X}), orall m{X} \in \mathbb{R}^{m imes n}.$

Definition 2.4 (Orthogonal Complement) *For* $S \subseteq V$

$$\mathsf{S}^{\perp} = \{ \boldsymbol{v} \in \mathbb{V} | \langle \boldsymbol{v}, \boldsymbol{s} \rangle, \forall \boldsymbol{s} \in \mathsf{S} \}. \tag{2.1}$$

Definition 2.5 (Range and Null Space of a Matrix (Equation A.5.3 - A.5.5))

$$\begin{aligned} & \mathsf{null}(\boldsymbol{A}) = \{\boldsymbol{x} | \boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}\} \\ & \mathsf{range}(\boldsymbol{A}) = \{\boldsymbol{A}\boldsymbol{x} | \boldsymbol{x} \in \mathbb{R}^n\} = \mathsf{col}(\boldsymbol{A}) \\ & \mathsf{row}(\boldsymbol{A}) = \{\boldsymbol{w}^\top \boldsymbol{A} | \boldsymbol{w} \in \mathbb{R}^m\}. \end{aligned} \tag{2.2}$$

2.3 SVD

Definition 2.6 (Compact SVD (Theorem A.34)) Let $X \in \mathbb{R}^{n_1 \times n_2}$ be a matrix and $r = \operatorname{rank}(X)$. Then there exist $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ with ordering $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$, and matrices $U \in \mathbb{R}^{n_1 \times r}, V \in \mathbb{R}^{n_2 \times r}$, such that $U^{\top}U = V^{\top}V = I_r$ and

$$X = U\Sigma V^{\top} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}.$$
 (2.3)

Definition 2.7 (Full SVD (Theorem A.36)) Let $X \in \mathbb{R}^{n_1 \times n_2}$ be a matrix. Then there exist orthogonal matrices $U \in O(n_1)$ and $V \in O(n_2)$ and scalars with ordering $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{n_1,n_2\}} > 0$, such that if we let $\Sigma \in \mathbb{R}^{n_1 \times n_2}$ with $\Sigma_{ii} = \sigma_i$ and $\Sigma_{ij} = 0, \forall i \neq j$, we have

$$X = U\Sigma V^{\top}. (2.4)$$

3 Statistics

Definition 3.1 (Mean, Variance) *Given a random variable* $x \in \mathcal{X}$ *with probability density function* p(x)*, the mean (expectation) is defined as*

$$\mathbb{E}x = \int_{x \in \mathcal{X}} x p(x) dx \tag{3.1}$$

and the variance is defined as

$$Var(x) = \mathbb{E}(x - \mathbb{E}x)^2. \tag{3.2}$$

Definition 3.2 (Covariance and Covariance of a Vector) *Given two random variable* $x \in \mathcal{X}, y \in \mathcal{Y}$ *, the covariance of* (x, y) *defined on the joint distribution* $\mathcal{X} \times \mathcal{Y}$ *is defined as*

$$Cov(x,y) = \mathbb{E}[(x - \mathbb{E}x)(y - \mathbb{E}y)]. \tag{3.3}$$

For a vector $x \in \mathbb{R}^n$, the covariance matrix of x is defined as

$$\begin{bmatrix} \operatorname{Cov}(x_1, x_1) & \operatorname{Cov}(x_1, x_2) & \dots & \operatorname{Cov}(x_1, x_n) \\ \operatorname{Cov}(x_2, x_1) & \operatorname{Cov}(x_2, x_2) & \dots & \operatorname{Cov}(x_2, x_n) \\ \operatorname{Cov}(x_n, x_1) & \operatorname{Cov}(x_n, x_2) & \dots & \operatorname{Cov}(x_n, x_n) \end{bmatrix}$$
(3.4)

Example 3.3 (Mean and Covariance of Gaussian Vectors) Suppose we have a Gaussian vector $\boldsymbol{x} \in \mathbb{R}$ satisfying $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^m$, then the vector $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}$ satisfies $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}^{\top})$.