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16.1 Overview

In this section, we will be discussing about the geometry of point and line features, their corresponding
multiple view matrix, geometric interpretation of the ranks and reconstruction algorithm. We will also be
discussing the Universal rank constraints and list out various examples for the same.

16.2 Geometry of point features

16.2.1 Point Features

Let us consider a point p in 3-D with its homogeneous coordinates as

X = [X,Y, Z,W ]T ∈ R4, where W = 1

The corresponding homogeneous coordinates of its 2-D image will be

x = [x, y, z]T ∈ R3, where z = 1

The projection of the 3-D point X to an image plane will be given as

λ(t)x(t) = Π(t)X

where λ(t) ∈ R is called the depth scale component and Π(t) = [R(t), T (t)] ∈ R3×4 is called the multiple-view
projection matrix.

16.2.2 Multiple view matrix for a point and its rank

Without loss of generality (WLOG), let us choose frame 1 as the reference such that

λixi = λ1Rix1 + Ti

Taking the cross product of xi and the above equation implies

xi × (λixi = λ1Rix1 + Ti) ⇐⇒
[
x̂iRix1 x̂iTi

] [λ1

1

]
= 0

We could generalize this for all frames or reference and thus create Mp

Mp =


x̂2R2x1 x̂2T2

x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm

 ∈ R3(m−1)×2

16-1
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Figure 16.1: The three images and
the three optical centres lie on a
straight line Figure 16.2: Three rays extended

from the three images x1, x2, x3

from their camera origin intersect
at one point p in space

where Mp is called the multiple view matrix associated with a point feature p. Here, Mp involves both the
image x1 and the co-images x̂2, x̂3.....x̂m.The Mp encodes the 3-D information.

The above matrix has a rank Mp ≤ 1 where rank(Mp)=1 is generic (as all rows when multiplied with
[
λ 1

]T
will give 0 and thus it will be linearly dependent) and rank(Mp)=0 is degenerate.

Figure 16.1 is a case where Rank (Mp) = 0, there is no clear solution. One possibility is that the center axis
of all three images are collinear and it is not possible to determine depth. Figure 16.2 is a case where Rank
(Mp) = 1, it means that it is possible to determine the depth from the three images.

16.2.3 Geometric interpretation of the rank condition

Given three vectors x1, x2, x3 ∈ R3 as shown in Figure 16.2, they should automatically satisfy both bilinear
(epipolar) and trilinear constraints

xT
i T̂iRix1 = 0 (16.1)

x̂i(Rix1T
T
j − Tix

T
1 R

T
j )x̂j = 0 (16.2)

where equation 16.1 is Bilinear/epipolar constraint and equation 16.2 is trilinear constraint.

The situation demostrated in Figure 16.1 shows regardless of what 3-D feature point one chooses, epipolar
constraints alone do not provide sufficient constraints to determine a unique preimage point from any given
three images. Fortunately,the 3-D preimage is uniquely determined if the three images satisfy the trilinear
constraint, except for one rare degenerate configuration in which the point p in question lies on the line
between collinear optical centers.

Other ways to formulate the constraints of m corresponding images of n points xj
i

λj
ix

j
i = ΠiX

j

Πi = [Ri, Ti]



Lecture 16: Geometry and Algebra of Multiple views 16-3

The above given equations are equivalent to

Hp =


Π1 x1 0 . . . 0

Π2 0 x2
. . .

...
...

...
. . .

. . . 0
Π1 x1 0 . . . 0




X
−λ1

...
−λm

 = 0 (16.3)

Hp ∈ R3m×(m+4), det
(
H(m+4)×(m+4)

)
= 0

and

Fp =


x̂1Π1

x̂2Π2

...
x̂mΠm

 (16.4)

X = 0, Fp ∈ R3m×4, det(F4×4) = 0

Equation 16.3 was presented by Heyden et al. and Equation 16.4 was presented Faugeras et al.

16.2.4 Reconstruction Algorithm for point features

Given m images of n points

(xj
1, . . . , x

j
i , . . . , x

j
m)

i=1,...,m

j=1,...,n

The equation relating points provided we have rotation and translations of cameras is given by

λj


x̂j
2R2x

j
1

x̂j
3R3x

j
1

...

x̂j
mRmxj

1

+


x̂j
2T2

x̂j
3T3

...
x̂j
mTm

 = 0,∈ R3(m−1)×1

The equation relating rotation and translations provided we have the points is given by

Pi

[
Rs

i

T s
i

]
=


λ1x1

1 ⊗ x̂1
i x̂1

i

λ2x2
1 ⊗ x̂2

i x̂2
i

...
...

λnxn
1 ⊗ x̂n

i x̂n
i


[
Rs

i

T s
i

]
= 0,∈ R3n×1

where ⊗ is the Kronecker product.

In general Pi will have rank 11, if n ≥ 6

Given m images of n > 6 points, for the j-th point, x̂j
2R2x

j
1 x̂j

2T2

x̂j
3R3x

j
1 x̂j

3T3

x̂j
mRmxj

1 x̂j
mTm

[
λj

1

]
= 0

We can extract λjs using singular value decomposition (SVD).
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Similarly, for the i-th image, 
λ1x1

1 ⊗ x̂1
i x̂1

i

λ2x2
1 ⊗ x̂2

i x̂2
i

...
...

λnxn
1 ⊗ x̂n

i x̂n
i


[
Rs

i

T s
i

]
= 0

We can extract (Rs
i , T

s
i ) using singular value decomposition (SVD).

Thus, the algorithm followed is:

1. Initialization

• Set k = 0

• Compute (R2, T2) using the 8-point algorithm

• Compute λj = λj
k and normalize so that α1

k = 1

2. Compute (R̃i, T̃i) as the null space of Pi=2,...,m

3. Compute new λj = λj
k+1 as the null space of M j , j = 1, . . . , n. Normalize so that λ1

k+1 = 1

4. If ∥λk − λk+1∥ ≤ ϵ stop, else k = k + 1 and goto step 2.

Figure 16.3: Four images of the cube and its features and the reconstructed 3-D features viewed from novel
vantage points

16.3 Geometry of line features

16.3.1 Line Features

Let us consider the homogeneous representation of a line L in 3-D as

X = Xo + µV, Xo, V ∈ R4, µ ∈ R

The corresponding homogeneous representation of its 2-D image will be

l = [a, b, c]T ∈ R3, ax+ by + c = 0
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The projection of the 3-D line to an image plane will be given as

l(t)Tx(t) = l(t)TΠ(t)X = 0

Π(t) = [R(t), T (t)] ∈ R3×4

where λ(t) ∈ R is called the depth scale component and Π(t) = [R(t), T (t)] ∈ R3×4 is called the multiple-view
projection matrix.

16.3.2 Multiple view matrix for a line and its rank

The Multiple view matrix associated with a line feature L (Ml) is given by:

Ml =


lT2 R2 l̂1 lT2 T2

lT3 R3 l̂1 lT3 T3

...
...

lTmRm l̂1 lTmTm

 ∈ R(m−1)×4

16.3.3 Geometric interpretation of the rank condition

Given three vectors l1, l2, l3 ∈ R3 that are images of the same line L in space, they satisfy the trilinear
constraint (Equation 16.5).

lTj Tj l
T
i Ri l̂1 − lTi Til

T
j Rj l̂1 = 0 (16.5)

Figure 16.4 shows that the rank of Ml is 1 and Figure 16.5 shows that if the rank of Ml is 0.

Figure 16.4: Three planes extended from the three images from their camera origin(o1,o2,o3) intersect in one
line L in space

Figure 16.5: The three images and the three optical centres (o1,o2,o3) lie on a plane P
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Let us consider a condition where the multi-view matrix is

Ml =


lT2 R2 l̂1 lT2 T2

lT3 R3 l̂1 lT3 T3

lT4 R4 l̂1 lT4 T4

lT5 R5 l̂1 lT5 T5

 ∈ R4×4

Thus the rank of Ml

rank(Ml) = 3, 2, 1

The figure corresponding for each rank is displayed below in Figure 16.6

Figure 16.6: Line features for higher ranks

16.3.4 Reconstruction algorithm for line features

1. Initialization

• Set k = 0

• Compute (R2, T2) and (R3, T3) using linear algorithm

• Compute λj = λj
k and normalize so that α1

k = 1

2. Compute (R̃i, T̃i) as the null space of Pi=2,...,m

3. Compute new λj = λj
k+1 as the null space of M j , j = 1, . . . , n. Normalize so that λ1

k+1 = 1

4. If ∥λk − λk+1∥ ≤ ϵ stop, else k = k + 1 and goto step 2.
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16.3.5 Summary of point and line features

Figure 16.7: Comparison between multiple images of a point and a line

16.4 Universal Rank Constraints

Points and lines are treated as separate entities in many cases. However, in reality, there could be a relation
between a point and a line. Therefore, joint incidence relations are not exploited. In such cases, we can form
a universal rank condition:

M =


D⊥

2 R2D1 DT
2 T2

D⊥
3 R3D1 DT

3 T3

...
...

D⊥
mRmD1 DT

mTm
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where,
Di = xi or l̂i

D⊥
i = x̂i or l̂i

T

If D1 = l̂1 and D⊥
i = x̂i for some i ≥ 2, then for Multi-nonlinear constraints

1 ≤ rank(M) ≤ 2

otherwise for Multi-linear constraints,
0 ≤ rank(M) ≤ 1

16.4.1 Universal Rank Constraint: Points and Lines

Figure 16.8: The image on the left is a generic configuration for the case rank (Mlp) = 2. The image on the
right is a degenerate configuration for the case rank(M) 1: a line-point-point-point-line scenario.

M =


x̂2R2 l̂1 x̂2T2

x̂3R3 l̂1 x̂3T3

x̂4R4 l̂1 x̂4T4

l̂5
T
R5 l̂1 l̂5

T
T5

 ∈ R10×4; 1 ≤ rank(M) ≤ 2

According to Figure 16.8, If rank(M) = 2, it can be shown that the point p must lie on the preimage plane
of l1, and it is also the preimage of all the image points x2, x3, ..., xm. The line L, however, is determined
only up to this plane, and the point p may or may not have to be on this line.

16.4.2 Universal Rank Constraint: Family of intersecting lines

Figure 16.9: Rank 2 always takes the case where you take in the reference frame an image of the line. This
means that if you use the universal rank condition, D1 = l̂1
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M =


l̂2

T
R2 l̂1 l̂2

T
T2

l̂3
T
R3 l̂1 l̂3

T
T3

l̂4
T
R4 l̂1 l̂4

T
T4

l̂5
T
R5 l̂1 l̂5

T
T5

 ∈ R4×4; 1 ≤ rank(M̃l) ≤ 2

16.4.3 Universal Rank Constraint: Multiple images of a cube

Figure 16.10: Suppose you start with looking at the vertex of the cube, then you can express the matrix with
any images of the lines L1−3. You have many components. Rank of the matrix is an algebraic convenient
way to write all of it. Solve for λ,R, T

M j =



x̂2jR2x
j
1 x̂j

2T2

l1jT2 R2x̂
j
1 l1jT2 T2

l2jT2 R2x̂
j
1 l2jT2 T2

l3jT2 R2x̂
j
1 l2jT2 T2

...
...

x̂mjRmxj
1 x̂j

mTm

l1jTm Rmx̂j
1 l1jTm Tm

l2jTm Rmx̂j
1 l2jTm Tm

l3jTm Rmx̂j
1 l2jTm Tm



0 ≤ rank(M j) ≤ 1

16.4.4 Multiple View Matrix for Coplanar Point features

Let us consider a homogeneous representation of a 3D plane π :

aX + bY + cZ + d = 0

where πX = 0, π = [π1, π2] : π1 ∈ R3, π2 ∈ R2.
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The equation describes the surface normal of the plane π. Thus, the multiple view matrix M will be:

M =


D⊥

2 R2D1 D⊥
2 T2

D⊥
3 R3D1 D⊥

3 T3

...
...

D⊥
mRmD1 D⊥

mTm

π1D1 π2



We need to specify all the images from the points and lines which lie on the same plane π and add the row
[π1D1, π

2] to the multiple view matrix. Everything else remains the same as the universal rank condition.

So, the Mp and Ml matrix are as follows:

Mp =


x̂2R2x1 x̂2T2

x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm

π1x1 π2

 ∈ R3(m−2)×2; 0 ≤ rank(Mp) ≤ 1

Ml =


lT2 R2 l̂1 lT2 T2

lT3 R3 l̂1 lT3 T3

...
...

lTmRm l̂1 lTmTm

π1 l̂1 π2

 ∈ R(m)×4; 0 ≤ rank(Ml) ≤ 1

Simultaneously, this results a homography in addition to the previous constraints

x̂i(Riπ
2 − Tiπ

1)x1 = 0

lTi (Riπ
2 − Tiπ

1)l̂1 = 0
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16.4.5 Multiple View Matrix for Coplanar Point features

Figure 16.11: You can verify performance of this approach by comparing the 8 point algorithm, point
features-only and using mixed features. Horizontal is the level of noise at measurement. Vertical axis is
accuracy where it recovery rotation and translation. With 8point, it can only tolerate certain kinds of noise.
You use points, it gets better. You use more and more information, you get more and more better recovery.
8 point algorithm start to fall apart. You use 8point to initialize and use multi point to get the solution
better.

16.5 Scene Knowledge and Symmetry

The world is much more beautiful and complex than points, lines, planes. When looking at images of the
world, you don’t even need a second image, or even a second image to know where exactly you are. Why do
objects like these give away their pose or geometry?

You can guess based on some geometric properties listed below. They are all different types of symmetry -
rotational, translational, or reflective symmetry.



16-12 Lecture 16: Geometry and Algebra of Multiple views

Our brains are tuned to symmetry, and is very powerful. There has been a deep history of work in this area
spanning mathematics, cognitive science, computer vision, detection and recognition and reconstruction. To
organize our thoughts, there are three main questions.

1. Why does an image of a symmetric object give away its structure?

2. Why does an image of a symmetric object give away its pose?

3. What else can we get from an image of a symmetric object?

Here is the key. Mathematics is about reduction. If there’s ONE thing you take away, it is this. You get
equivalent views from rotational geometry.

Figure 16.12: Left: a checkerboard exhibits different types of symmetries, including rotations about o by 90
and reflections along the x- and y-axes. g0 is the relative pose between the board and our vantage point.
Right: an image I1 taken at location o1. Notice that the image would be identical if it was taken at o2
instead (I2).
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Here, something comes for free. Remember, before you do 8-point algorithm, you need to detect and find
corresponding points. Look here, you get correspondence for free. It’s the same image. For a square, you
get eight views. It’s the same image, but you shuffle the order of the corners.

Now, you can recover the camera pose. That’s why you know exactly the camera pose. All the geometry
from multiview applies here. We call them ”virtual” images, but they are as good as the real one.

You can apply this to reflective and translational symmetry also.

There’s something you also get other than correspondence. You also get the baseline for free with these
virtual images. You don’t have to move.

There is so much information in the 3D world. All the virtual images produced by the same image are
related by the multiview matrix.

But to get this for free, you can only get symmetry if you have gotten the recognition correct. The most
powerful part of geometry right now is the recognition part. It’s a recognition problem. Once that’s done,
geometry is simple. Correspondence comes for free, big baseline comes for free. Even the R, T in the
multiview matrix, all of them are constrained. There is only ONE unique solution.

(a) Symmetry-based reconstruction (re-
flection

(b) Symmetric Curves and Surfaces

Figure 16.13: If you knew something was symmetric, you can reconstruct it off one image with pixel-wise
accuracy which you cannot get from SLAM. Symmetry gives you accuracy good enough for AR. For the
umbrella, if you know the curve, you can reconstruct it and the camera pose perfectly.

In order to associate features, points, lines, planes, you need to solve the recognition problem. You need to
recognize frame to frame, or which points form the same object.

The problem is about how you can extract, detect, match symmetric objects across images.

The naive approach 20 years ago without learning:

1. Color based segmentation

2. Polygon fitting

3. Symmetry verification

4. single view recovery - if we know something is symmetric, we can recover the view.
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5. find the set of camera pose consistent with symmetric object. There are multiple symmetric object,
find the camera motion that gives you the pose for all symmetric objects.

(a) Top shows initial pair of images. Bottom
shows images annotated with symmetric ob-
jects. Views taken very carefully by ONLY
rotating the camera. There is no translation
and no baseline.

(b) Reconstruction

Figure 16.14: Reconstruction results of the objects. It recovered the objects to the same scale compared to
the ground truth.

These are results from 20 years ago. Shows how much things are missing from modern robots.

Not only can you recover pose, you can calibrate from symmetry.

What you saw was a dinosaur approach to verify that it works.

To summarize,

1. Multiple (perspective) images = multiple-view rank condition - They are all variations on multi-view
rank matrices (rank = 0, 1, 2, 3) and all of the constraints.

2. single image + symmetry = ”multi-view” rank condition - It is the same as above except that the multi
view is special. Images are virtual and interpreted. Correspondence, baseline, structure come for free.

3. multiple images + symmetry = rank condition + scale correction - Again. Same as above. Now you
get scale.

4. matching + symmetry = rank condition + scale correction + clique identification. Careful about
matching symmetry.

16.6 Extra stuff

This is a sneak peek of 294. Only recently have we started to investigate.

There are limitations of traditional 3D reconstruction. Textureless objects, transparency, repetitive patterns,
large baseline, moving objects all make life harder.
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There are deep learning approaches to get pose, point clouds etc, but they haven’t solved 3D problems. NN
based 3D vision not even as good as nearest neighbors.

The hard part of the modern problem is recognition. Where is the correspondence? Where are the structures?
Where are the primitives?

Learning and geometry are complimentary.

Figure 16.15: Here are the results of combining geometry and learning. Improvement is dramatic. That’s it.
Lessons for learning people and geometry people. If you don’t put them together, maybe you’ll be a little
better than nearest neighbors.

Autonomous driving, service robot in manmade environment, none of this structure is being used for local-
ization, mapping, navigation.

Tango, Magic Leap. None of them are using these advances.


