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Lecture 15: Uncalibrated Geometry & Stratification
Scribes: Abanob Bostouros Adith Sundram

15.1 Learning Objectives

1. Uncalibrated epipolar geometry

2. Pre-calibration with partial/full scene knowledge

15.2 Definitions

e Real world reference point X = [x, vy, z, w]T € R*, (w=1)
e Image plane coordinates x = [x, y, 1]
e Camera extrinsic parameters g = (R, T)
e Perspective projection Ax = [R, T|X
e Pixel coordinates x' =K x
e Projection matrix Ax’ = TTX = [KR, KT|X
[se  [fse o0a

e K=| 0 fsg oy, where fis the focal length, s, sy s¢ is the distortion
0 0 1

15.3 Taxonomy on Uncalibrated Reconstruction

e K is known, back to x = K~ x/

e K is partially known, we can use parallel lines, vanishing points, planar motion, and constant intrinsic.
e K is completely unknown,

— Estimate calibration with complete scene knowledge
— Reconstruct despite the lack of K
— Recover from uncalibrated images

15.4 Uncalibrated Epipolar Geometry

We see the following Linear Transformation to Relate the Calibrated and Pixel Coordinates for a given
camera and frame
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Figure 15.1: Sinusoid Planner Simple Motion

15.5 The Fundamental Matrix F

F is a nonzero matrix F € R3**3 is a fundamental matrix if (SVD)F = ULV T
¥ = diag{o1,02,0} foroy,09 € Ry
det(F) =0
F=K 'TRK'=T'KRK™*

Note that F is Rank 2 because T is not invertable

15.6 Estimating F

e Find F that minmizes epipolar error over pixel cordinates
n - .
ming Z TP
j=1
a=1r)®zh
F* =1f1, fo, f3, f1, f5, fo, f7, fs, fo]
al'F* =0
xf*=0

15.7 Two View Linear Algorithm

Solve LLSE Problem

. /.
ming Y 7_q XIQJTFXf m Y[*=0
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Find the Solution Eigenvector associated with the smallest Eigenvalue

Compute SVD of F recovered from data
F=UxvT ¥ =diag(o1,02,03)

We can then project onto the Manifold

> = diag(c1,05,0) F=UX'VT

15.8 Calibration with a Rig

Given 3-D Coordinates on Known object X, we can eliminate scale, two linear components per point
o T
x’(m3 X) m X,
Yo T
y (7'(' 3 X) U X

We can then recover the following Projection Matrix
N = [r11, ™21, 731, T12, T22, 732, T13, 723, T33, T14, 24, ©34]
min ||MT5||2  subject to |NS||2 =1

and solve for the translation

Solve for Homography from the Plane to the Image

2! X
MMy'| =K[ry,7m,T] |Y
1 1

Two linear constraints on the calibration per image
H=K[r1,r2,T] €R>*® K~ hy,ho] ~ [r1,7]
WK-TK"'hy =0, hWTK-TK™'hy = hIK=TK 'h,.

Note that pre-fabricated objects like cube are not practical as their fabrication must be perfefct and calibrated
which is an expensive and unreliable way of calibration
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15.9 Calibration with a Planar Rig

Leveraging the fact that 2-D coordinates of feature points on a pre-fabricated plane are known. we can use
it instead of the 3-D object (eg. cube) to calibrate

15.10 Calibration with Scene Structure

15.10.1 Vanishing points

Intersection of Orthogonal Directions
vi = KRey, vpop=KRep, v3z= KRe;

Since for Orthogonal Directions, the Inner Product is Zero, we can thus solve for the Constraints on the
Matrix S

15.10.2 Calibration with Motions: Pure Rotation
Uncalibrated two views related by a pure rotation:
MoExp = MKRK 1Kx; xhbKRK- x| =0

We have the following linear constraints

s~ _cs1cT =0 where 1 = KKT



