15.1 Learning Objectives

1. Uncalibrated epipolar geometry
2. Pre-calibration with partial/full scene knowledge

15.2 Definitions

- Real world reference point $\mathrm{X}=[\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}]^{T} \in R^{4},(\mathrm{w}=1)$
- Image plane coordinates $\quad \chi=[\mathrm{x}, \mathrm{y}, 1]^{T}$
- Camera extrinsic parameters $\mathrm{g}=(\mathrm{R}, \mathrm{T})$
- Perspective projection $\quad \lambda \mathrm{x}=[\mathrm{R}, \mathrm{T}] \mathrm{X}$
- Pixel coordinates $x^{\prime}=\mathrm{K} \mathrm{x}$
- Projection matrix $\quad \lambda x^{\prime}=\Pi \mathrm{X}=[\mathrm{KR}, \mathrm{KT}] \mathrm{X}$
- $\mathrm{K}=\left[\begin{array}{ccc}f s_{x} & f s_{\theta} & o_{x} \\ 0 & f s_{\theta} & o_{y} \\ 0 & 0 & 1\end{array}\right]$, where f is the focal length, $\mathrm{s}_{x}, \mathrm{~s}_{y} \mathrm{~s}_{\theta}$ is the distortion

15.3 Taxonomy on Uncalibrated Reconstruction

- K is known, back to $\mathrm{x}=\mathrm{K}^{-1} \mathrm{x}^{\prime}$
- K is partially known, we can use parallel lines, vanishing points, planar motion, and constant intrinsic.
- K is completely unknown,
- Estimate calibration with complete scene knowledge
- Reconstruct despite the lack of K
- Recover from uncalibrated images

15.4 Uncalibrated Epipolar Geometry

We see the following Linear Transformation to Relate the Calibrated and Pixel Coordinates for a given camera and frame

Figure 15.1: Sinusoid Planner Simple Motion

15.5 The Fundamental Matrix F

F is a nonzero matrix $\mathrm{F} \in \mathrm{R}^{3 \times 3}$ is a fundamental matrix if $(S V D) F=U \Sigma V^{T}$

$$
\begin{gathered}
\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, 0\right\} \text { for } \sigma_{1}, \sigma_{2} \in R_{+} \\
\operatorname{det}(F)=0 \\
F=K^{-T} \hat{T} R K^{-1}=\hat{T}^{\prime} K R K^{-1}
\end{gathered}
$$

Note that F is Rank 2 because T is not invertable

15.6 Estimating F

- Find F that minmizes epipolar error over pixel cordinates

$$
\begin{gathered}
\min _{F} \sum_{j=1}^{n} x_{2}^{\prime j T} F x_{1}^{\prime j} \\
a=x_{1}^{\prime} \otimes x_{2}^{\prime} \\
F^{s}=\left[f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}\right] \\
a^{T} F^{s}=0 \\
\chi f^{s}=0
\end{gathered}
$$

15.7 Two View Linear Algorithm

Solve LLSE Problem

$$
\min _{F} \sum_{j=1}^{n} \mathbf{x}_{2}^{\prime j T} F \mathbf{x}_{1}^{\prime j} \Rightarrow \chi F^{s}=0
$$

Find the Solution Eigenvector associated with the smallest Eigenvalue
Compute SVD of F recovered from data

$$
F=U \Sigma V^{T} \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)
$$

We can then project onto the Manifold

$$
\Sigma^{\prime}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, 0\right) \quad F=U \Sigma^{\prime} V^{T}
$$

15.8 Calibration with a Rig

Given 3-D Coordinates on Known object X, we can eliminate scale, two linear components per point

$$
\begin{aligned}
x^{i}\left(\pi_{3}^{T} \mathbf{X}\right) & =\pi_{1}^{T} \mathbf{X}, \\
y^{i}\left(\pi_{3}^{T} \mathbf{X}\right) & =\pi_{2}^{T} \mathbf{X}
\end{aligned}
$$

We can then recover the following Projection Matrix

$$
\begin{aligned}
& \Pi^{s}=\left[\pi_{11}, \pi_{21}, \pi_{31}, \pi_{12}, \pi_{22}, \pi_{32}, \pi_{13}, \pi_{23}, \pi_{33}, \pi_{14}, \pi_{24}, \pi_{34}\right]^{T} \\
& \min \left\|M \Pi^{s}\right\|^{2} \quad \text { subject to } \quad\left\|\Pi^{s}\right\|^{2}=1
\end{aligned}
$$

and solve for the translation
Solve for Homography from the Plane to the Image

$$
\lambda\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=K\left[r_{1}, r_{2}, T\right]\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

Two linear constraints on the calibration per image

$$
\begin{gathered}
H \doteq K\left[r_{1}, r_{2}, T\right] \quad \in \mathbb{R}^{3 \times 3} \quad K^{-1}\left[h_{1}, h_{2}\right] \sim\left[r_{1}, r_{2}\right] \\
h_{1}^{T} K^{-T} K^{-1} h_{2}=0, \quad h_{1}^{T} K^{-T} K^{-1} h_{1}=h_{2}^{T} K^{-T} K^{-1} h_{2} .
\end{gathered}
$$

Note that pre-fabricated objects like cube are not practical as their fabrication must be perfefct and calibrated which is an expensive and unreliable way of calibration

15.9 Calibration with a Planar Rig

Leveraging the fact that 2-D coordinates of feature points on a pre-fabricated plane are known. we can use it instead of the 3-D object (eg. cube) to calibrate

15.10 Calibration with Scene Structure

15.10.1 Vanishing points

Intersection of Orthogonal Directions

$$
\mathbf{v}_{1}=K R e_{1}, \quad \mathbf{v}_{2}=K R e_{2}, \quad \mathbf{v}_{3}=K R e_{1}
$$

Since for Orthogonal Directions, the Inner Product is Zero, we can thus solve for the Constraints on the Matrix S

15.10.2 Calibration with Motions: Pure Rotation

Uncalibrated two views related by a pure rotation:

$$
\lambda_{2} K \mathbf{x}_{2}=\lambda_{1} K R K^{-1} K \mathbf{x}_{1} \quad \widehat{\mathbf{x}_{2}^{\prime}} K R K^{-1} \mathbf{x}_{1}^{\prime}=0
$$

We have the following linear constraints

$$
S^{-1}-C S^{-1} C^{T}=0 \text { where } S^{-1}=K K^{T}
$$

