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Lecture 7B: (Two-View Geometry, Calibration)
Scribes: Baiyu Shi, Lawrence Yunliang Chen

7.1 Summary of Two-View Geometry from Lecture 7A

We consider the setting where the camera is calibrated. Given two different views of the same scene, we
want to recover the unknown camera poses as well as the 3D scene structure. To do so, we use the pinhole
camera model. In this model we define 3D points X = [X,Y, Z, 1]T ∈ R4, image points x = [x, y, 1]T ∈ R3,
perspective projection λx = X where λ is depth, rigid body motion Π = [R, T ] ∈ R3×4, and rigid body
motion along with perspective projection λx = ΠX = [R, T ]X.

As shown in Figure 7.1, we can relate two different images of the same point X through λ2x2 = Rλ1x1 + T .

Figure 7.1: Visualization for the two-view geometry. The point X relative to the two camera frames are related by
a rigid-body transformation by X2 = RX1 + T .

The only knowns in the equation λ2x2 = Rλ1x1 + T are x1 and x2. The other variables, λ1, λ2, R, and T
are unknown. Through epipolar geometry we can algebraically eliminate depth from our relation equation
and get

xT
2 T̂Rx1 = 0.

In particular, the matrix E = T̂R ∈ R3×3 in the epipolar constraint equation is called the essential matrix.
It encodes the relative pose between the two cameras. The epipolar constraint is also called the essential
constraint.

The Essential matrix E = T̂R has some special properties. In particular, the space of all essential matrices
is 5 dimensional:

• 3 Degrees of Freedom - Rotation
• 2 Degrees of Freedom - Translation (up to scale!).
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We also have the following two theorems:

Theorem 1 (Essential Matrix Characterization) A non-zero matrix E is an essential matrix iff its
SVD: E = UΣV T satisfies: Σ = diag ([σ1, σ2, σ3]) with σ1 = σ2 ̸= 0 and σ3 = 0 and U, V ∈ SO(3). In other
words,

Σ =

 σ1 0 0
0 σ2 0
0 0 0

 .

Theorem 2 (Pose Recovery) There are two relative poses (R, T ) with T ∈ R3 and R ∈ SO(3) corre-
sponding to a non-zero matrix essential matrix.
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
Moreover, (R2, T2) =

(
eûπR1,−T1

)
are called twisted pair ambiguity.

Using these two theorems, a general procedure to estimate R and T is as follows:

1. Step 1: Given n pairs of image correspondences, find an essential matrix E that the epipolar error is
minimized

min
E

n∑
j=1

(
xjT
2 Exj

1

)2

(This comes from the requirement that xT
2 Ex1 = 0.)

• Denote a = x1 ⊗ x2

a = [x1x2, x1y2, x1z2, y1x2, y1y2, y1z2, z1x2, z1y2, z1z2]
T

Es = [e1, e4, e7, e2, e5, e8, e3, e6, e9]
T

• Rewrite aTEs = 0
• Collect constraints from all points

χEs = 0

min
E

n∑
j=1

(
xjT
2 Exj

1

)2

−→ min
Es

∥χEs∥2

• Note that if rank
(
χTχ

)
< 8, it will get a degenerate configuration.

2. Step 2: Then use SVD and Theorem 2 to decompose E into R, T .
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7.2 Two View 8-point Linear Algorithm

An issue of the above procedure is that the estimated E from step 1 is in general not an essential matrix:
that is, it cannot be exactly decomposed into a skew-symmetric matrix T̂ and a rotation matrix R due to
noises and errors in correspondence. The way to address this is to project E onto a manifold called the
Essential manifold. We have an elegant theorem as stated below.

Theorem 3 (Projection to Essential Manifold) If the SVD of a matrix F ∈ R3×3 is given by F =
U diag (σ1, σ2, σ3)V

T then the essential matrix E which minimizes the Frobenius distance ∥E−F∥2f is given

by E = U diag(σ, σ, 0)V T with σ = σ1+σ2

2 .

Using Theorem 3, we can refine the procedure in the previous section to do projection onto the essential
manifold after linear least square estimation (LLSE) as follows:

E =
{
T̂R | R ∈ SO(2), T ∈ S2

}
1. Step 1: Solve the LLSE problem:

min
E

n∑
j=1

(
xjT
2 Exj

1

)2

2. Step 2: Let F be the argmin found in Step 1. We project F onto the essential manifold using SVD:

F = UΣV T

Σ′ = diag(1, 1, 0)

E = UΣ′V T

3. Step 3: Recover the unknown pose:

(T̂ , R) =
(
URZ

(
±π

2

)
ΣUT , URT

Z

(
±π

2

)
V T

)
.

7.2.1 Pose Recovery from Essential Matrix

There are exactly two pairs of (R, T ) corresponding to essential matrix E and also two pairs of (R, T )
corresponding to essential matrix -E since the equation is homogeneous. We will use the positive depth
constraint to disambiguate the physically impossible solutions. We can use either the linear 8-point algorithm
or the nonlinear 5-point algorithms but the latter may yield up to 10 solutions. For this recovery method
to work, we need the translation to be non-zero and the points to be in general position rather than on the
same plane or quadratic surfaces, which are degenerate configurations that is explained in 7.3.

7.2.2 3D Structure Recovery

λ2x2 = Rλ1x1 + γT

We can eliminate one of the scales by taking cross product with x2, then we get:

λj
1
ˆ
xj
2Rxj

1 + γ
ˆ
xj
2T = 0, j = 1, 2, 3, .....n
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Then we solve the LLSE problem:

M jλj =
[

ˆ
xj
2Rxj

1
ˆ
xj
2T

] [
λj
1

γ

]
= 0

This is just the multiview version of the epipolar constraint:

xjT
2 T̂Rxj

1 = 0

Figure 7.2: We can use epipolar geometry to tell where the corresponding image coordinate in another camera frame
could lie, which are the white lines.

7.3 Two-view Geometry – Planar Case, Homography

Suppose we happen to pick points from the same plane, it becomes the planar degenerate configs. We denote
the normal vector to the plane as N . And suppose that the first camera’s frame is related to the second
camera’s frame by (R, T ). Then we have:

aX + bY + cZ = d

1

d
NTX = 1

λ2x2 = Rλ1x1 + T

λ2x2 = (R+
1

d
TNT )λ1x1

x2 ∼ Hx1

H =

(
R+

1

d
TNT

)
H is the linear mapping relating two corresponding planar points in two views.

We can eliminate the depth information of x2 ∼ Hx1 to obtain the equation x̂2Hx1 = 0.
Linear estimation of H: HL = λH.
Normalization of H: H = HL/σ3.
Decomposition of H =

(
R+ 1

dTN
T
)
into 4 solutions:



Lecture 7B: (Two-View Geometry, Calibration) 7-5

R1 = W1U
T
1 R3 = R1 R2 = W2U

T
2 R4 = R2

N1 = v̂2u1 N3 = −N1 N2 = v̂2u2 N4 = −N2
1
dT1 = (H −R1)N1

1
dT3 = − 1

dT1
1
dT2 = (H −R2)N2

1
dT4 = − 1

dT2

HTH = V ΣV T V = [v1, v2, v3]
∑

= diag
(
σ2
1 , σ

2
2 , σ

2
3

)
u1

.
=

√
1− σ2

3v1 +
√
σ2
1 − 1v3√

σ2
1 − σ2

3

u2
.
=

√
1− σ2

3v1 −
√
σ2
1 − 1v3√

σ2
1 − σ2

3

U1 = [v2, u1, v̂2u1] , W1 =
[
Hv2, Hu1, Ĥv2Hu1

]
U2 = [v2, u2, v̂2u2] , W2 =

[
Hv2, Hu2, Ĥv2Hu2

]
Summing up, to recover motion and pose from homography, we need to:

1. Step 1: Have at least 4 point correspondences: x̂j
2Hxj

1 = 0

2. Step 2: Use the fact that Hs
L is a nullspace of χ to approximate the homography matrix, where a is

rows of χ:

χHs
L = 0

a = xj
1 ⊗ x̂j

2

3. Step 3: Normalize and Decompose the homography matrix and then choose solutions that satisfy the
positive depth constraint:

H = HL/σ3

HTH = V ΣV T

We can also transform between Homography matrix and Essential matrix.
With two generic points,

E = T̂H, T ∼ l̂12l
2
2

With three planar points,

H = T̂TE + TvT , v ∈ R3

Some special cases of Homography:

1. Rotation case:
λ2x2 = Rλ1x1

x̂2Rx1 = 0

2. Reflection Case, symmetrical object:

g = (R, 0)

R = diag(−1, 1, 1])

3. Translation Case
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Figure 7.3: Different views related by only rotation stitched together. This also explains why we can get good
panoramic photos of the wild, e.g. when on top of a mountain. It is because the distance to the plane is too far
away and large d makes T negligible and H almost the same as R, making it different camera views only differ by a
rotation.

7.4 Two View Motion and Structure Recovery Summary

For two discrete views with general motion and general structure:

1. Use 8 points (in reality we may use many more correspondences and let them vote for the best essential
matrix) to estimate the essential matrix.

2. Decompose the essential matrix.

3. Use positive depth constraint (points constructed should be in front of the camera) to select the
appropriate solutions and conduct 3D reconstruction.

For two discrete views with general motion but planar structure:

1. Use 4 points to estimate the homography matrix H (may also utilize the special homography).

2. Normalize and decompose the H matrix and select the solutions that satisfy the positive depth con-
straint.

3. Recover 3D structure and camera poses.

7.5 Uncalibrated Geometry & Stratification

7.5.1 Uncalibrated Epipolar Geometry

Let X = [X,Y, Z,W ]T ∈ R4, (W = 1) be the world coordinates of a point. Recall that for a calibrated
camera, we have

• Image plane coordinates: x = [x, y, 1]T

• Camera extrinsic parameters: g = (R, T )
• Perspective projection: λx = [R, T ]X

In contrast, for an uncalibrated camera, we need to multiply the right hand side by the camera calibration
matrix K, and we get:

• Pixel coordinates: x′ = Kx
• Projection matrix: λx′ = ΠX = [KR,KT ]X
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Figure 7.4: In this figure, we have utilized the symmetry about the y axis and even though we only have one camera
view, with use of symmetry and reflection matrix, we can create a ”virtual” camera view with coordinate frame as
O′

c.

Remark. In practice, there are many different settings in which we have some partial knowledge about the
camera and the scene, and the approach to solving them will depend on the knowledge we have. Here are a
couple of cases:

• If K is known, then we are back to the calibrated case x = K−1x′

• If K is unknown, there are three possible scenarios:
– Calibration with complete scene knowledge (a rig) - estimate
– Uncalibrated reconstruction despite the lack of knowledge of K
– Autocalibration (recover K from uncalibrated images)

• Use partial knowledge about K
Parallel lines, vanishing points, planar motion, constant intrinsic matrix

Similar to the derivation of the epipolar geometry involving the essential matrix, we can derive the epipolar
constraint when the calibration matrix K is involved.

λ2Kx2 = KRλ1x1 +KT

Let T ′ = KT,Kx1 = x′
1,Kx2 = x′

2, we have

λ2x
′
2 = KRλ1K

−1x′
1 + T ′

Multiplying both sides by T̂ ′ = K̂T ∝ K−T T̂K−1, we get

λ2T̂ ′x′
2 = T̂ ′KRK−1x′

1

Multiplying both sides by x′
2, we get

x′T
2 T̂ ′KRK−1x′

1 = 0

x′T
2 K−T T̂RK−1x′

1 = 0.
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Figure 7.5: Linear transformation between the pixel coordinates of an uncalibrated camera and the calibrated coor-
dinates.

To summarize, the Epipolar constraint is

x′T2 K−T T̂RK−1︸ ︷︷ ︸
F

x′
1 = 0

x′T
2 Fx′

1 = 0.

The Fundamental matrix is

F = K−T T̂RK−1 = T̂ ′KRK−1.

The relationships between the epipolar lines l1, l2, epipoles e1, e2, and fundamental matrix are similar to
those with the essential matrix. Table 7.1 shows a side-by-side comparison.

Figure 7.6: Epipolar geometry in the uncalibrated setting.

7.5.2 Geometric Stratification

Facing with an uncalibrated problem where we don’t know K, we need to use the epipolar geometry and
constraint (x′

2)
TFx′

1 = 0 to recover the fundamental matrix F . The geometric picture is still the same, as
corresponding features from two views still must be coplanar per the epipolar geometry.
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Calibrated case Uncalibrated case

Image point x ′ = Kx

Camera (motion) g = (R, T ) g′ =
(
KRK−1,KT

)
Epipolar constraint xT

2 Ex1 = 0 (x′
2)

T
Fx′

1 = 0

Fundamental matrix E = T̂R F = T̂ ′KRK−1, T ′ = KT
Epipoles Ee1 = 0, eT2 E = 0 Fe1 = 0, eT2 F = 0

Epipolar lines ℓ1 = ETx2, ℓ2 = Ex1 ℓ1 = FTx′
2, ℓ2 = Fx′

1

Decomposition E 7→ [R, T ] F 7→
[(

T̂ ′
)T

F, T ′
]

Reconstruction Euclidean: Xe Projective: Xp = HXe

Table 7.1: Summary of Two-View Geometry.

The procedure is known as stratification, where we first reconstruct an Xp, but it will be different from the
true structure Xe by a general projective transformation H such that Xp = HXe. We can decompose H into
an affine part Ha and a projective part Hp, where H = HpHa. We can thus restore the parallel line using
the inverse of the projective transformation to get Xa = H−1

p Xp (called “affine upgrade”) and then restore
the angles using Xe = H−1

a Xa (called “Euclidean upgrade”). The procedure is summarized in Table 7.2.

Camera projection 3-D structure

Euclidean Π1e = [K, 0],Λ2e = [KR,KT ] Xe = geX =

[
Re Te

0 1

]
X

Affine Π2a = [KRK−1,KT ], Xa = HaXe =

[
K 0
0 1

]
Xe

Projective Π2p = [KRK−1 +KTvT , v4KT ], Xp = HpXa =

[
I 0

−vT v−1
4 v−1

4

]
Xa

Table 7.2: Summary of Two-View Geometry.


