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6.1 OUTLINE

• 3-D Euclidean Space and Rigid-Body Motion

– Coordinates and coordinate frames

– Rigid-body motion and homogeneous coordinates

• Geometric Models of Image Formation

– Pinhole Camera Model

• Camera Intrinsic Parameters

– From Metric to Pixel Coordinates

• Images of Basic Geometric Elements

– Points, lines planes etc.

6.2 3-D Euclidean Space and Rigid Body motion

6.2.1 Euclidean Space

6.2.1.1 Recall Vectors in Space

1. The standard basis vectors,

e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1


that define a coordinate in R3 represented by p =

xy
z



2. ”free vector” defined by a pair of coordinates such that v = p − q =

X1 −X2

Y1 − Y2

Z1 − Z2

 with magnitude and

direction.

3. Vectors allow us to measure the important things in any dimensional space such as distance, length,
angle

6-1



6-2 Lecture 6A: (Rigid Body Motion and Imaging Geometry)

6.2.1.2 Inner Product

• Defined for vectors u and v: ⟨u, v⟩ := uT v = u1v1 + u2v2 + u3v3

• L2 norm (length) of vector u: ||u|| :=
√
uTu =

√
u2
1 + u2

2 + u3
3

• Angle between vectors: cos(θ) = ⟨u,v⟩
||u||||v||

6.2.1.3 Cross product

• Defined by u× v = ûv

• Gives new vector orthogonal to both u and v

• Skew symmetric û :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0



6.2.2 Rigid-Body Motion

6.2.2.1 Rotation Matrix

Special Orthogonal group to define rotation matrices:

SO(3) =
{
R ∈ R3×3 | RTR = RRT = I, detR = 1

}
Particularly this group allows for compositions of rotations that never leave the space of possible rotations
and is thus invertible all the way back to an original starting point Rotating a coordinate p to coordinate q
with matrix R has the relation q = Rp

Properties

1. Preserve inner product (vector length)

∥Rv∥22 = vTRTRv = ∥v∥22,∀v ∈ R3

2. Preserve cross product (orientation)

Ru×Rv = R(u× v)

3. The useful ”hat” operator:

R̂u = RûRT∀u ∈ R3, R ∈ SO(3)

Following proof: R̂uRv = Rûv by property 2 implies RT R̂uRv = ûv,∀u, v ∈ R3 because RTR = I.
Note plugging in property 3 into R̂u on the LHS satisfies the equation.
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6.2.2.2 Reflection Matrix

Main mathematical difference from rotation is determinant

RTR = I, det(R) = −1

Main intuitive/consequential difference is that reflections do not preserve orientation

Ru×Rv = −R(u× v)

Reflections belong to the orthogonal group:

O(3) =
{
R ∈ R3×3 | RTR = I,det(R) = ±1

}
6.2.2.3 Homogenous Coordinates

When looking at the translation and rotation of an object, coordinates are related by: Xc = RXw + T and
velocities are related by: Ẋc = ω̂Xc + v.

Remember for Homogenous coordinate append a 1 to position vectors and 0 to velocity vectors. Thus to
express the above with homogenous coordinates (there was typo in the lecture slides for these matrices):

X =


Xc

Yc

Zc

1

 =

[
R T
0 1

]
Xw

Yw

Zw

1

 V =


Ẋc

Ẏc

Żc

0

 =

[
ω̂ v
0 0

]
Xc

Yc

Zc

1



6.3 Geometric Models of Image Formation

6.3.1 Pinhole Camera Model

We begin this section discussing the general practice of projecting a 3-D scene onto a 2-D plane (image).
This leads us into a rather simple model known as the pinhole camera model. The general equaltions of a
pinhole camera model are as follows.

X =

XY
Z

 −→ x =

[
x
y

]
=

f

Z

[
X
Y

]

where X is the point within the 3-D image in camera frame coordinates and x is the 2-D point in camera
frame coordinates. f is the focal length. Rewriting this equation in Homogenous Coordinates gives us

x =−→ 1

Z

fXfY
Z

 where X =


X
Y
Z
1
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It follows that

Z

xy
1

 =

f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

Kf

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

Π0


X
Y
Z
1



6.4 Camera Intrinsic Parameters

6.4.1 From Metric to Pixel Coordinates

We are now faced with the challenge of converting our 2-D coordinates into pixel frame coordinates within
our image. Letting x

′
represent our pixel coordinates:

x
′
=

x′

y
′

1

 =

sx sθ ox
0 sy oy
0 0 1

 xy
1



Combing the above ideas of both the Pinhole Camera λx = KfΠ0X and Pixel coordinates x
′
= Ksx

λx
′
= KsKfΠ0X =

fsx fsθ Ox

0 fsy Oy

0 0 0

1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1


Where K = KsKf

Our camera model then becomes:

λx
′
= KΠ0X = ΠX

6.5 Images of Basic Geometric Elements

6.5.1 Points, Lines, Planes etc

We now discuss Image formation with regards to a single point as well as a line From the above section, we
learned that we can map a point from camera coordinates to pixel coordinates using the formula
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λx
′
= KΠ0X = ΠX$

Representing a line is slightly more tricky. A homogenous representation of a line L follows the form

X =


X
Y
Z
1

+


X0

Y0

Z0

1

+ µ


V1

V2

V3

0


And the homogenous representation of its 2-D image is

l = [a,b, c]T ∈ R3

Therefore the projection of a 3-D line to an image plane is

lx = lTΠX = 0

where [KR,KT ] ∈ R3×4

This idea of lines led into the topic of vanishing points. We discussed the idea that as the above value

µ → ∞

(or λ from the slides) we reach a point in which is considered a vanishing point

We briefly discussed 3-D reconstruction from multiple images. The following image was helpful in under-
standing this concept
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1. Images are all ”incident” at the corresponding features in space.

2. Features in space have many types of incidence relationships.

3. Features in space have many types of metric relationships.

The lecture concluded with an inspiring speech from Professor Ma as he discussed the many innovations yet
to be made in the field of computer vision, as well as potential final project ideas.


