
A

EECS C106B / 206B Robotic Manipulation and Interaction Spring 2022

Lecture 5A: (Optimal Control, Reinforcement Learning, Vision)
Scribes: Bryan Chen, Aaron Rovinsky

5.1 Overview of Autonomous Systems and Control

5.1.1 A Common Closed-Loop Autonomous System Setup

Closed-loop autonomous systems, such as vacuuming robots, autonomous cars, video game players, stock
traders, and other examples, follows the same decision loop:

5.1.2 Recent History of Control and RL

AI/RL involves learning through data/experience, simulation, model-free methods, and feature-based repre-
sentations. Decision/Control/Dynamic Programming involves optimality, Markov Decision Programs, and
policy/value iterations. Following is a history of their applications:

• 1950s: Exact dynamic programming and optimal control is formed (Bellman, Shannon)

• Late 80s-early 90s: AI/RL and Decision/Control/DP ideas meet

• 1992, 1996: The first autonomous control success in backgammon programs (Tesauro)

5-1

5-2 Lecture 5A: (Optimal Control, Reinforcement Learning, Vision)

• Mid 90s: Algorithmic progress, analysis, and applications are made. The first books are published

• Mid 2000s: ML, Big Data, Robotics, Deep Neural Nets

• 2016: Alpha Go, AlphaZero, DeepMind

5.1.3 New Challenges

In modern problems, RL can handle the following issues: unknown or changing environment, delayed rewards
or feedback, enormous state/action space, and nonconvexity.

5.2 Terminology

5.2.1 State Space Model

The state space models are based on the environment controlled plant dynamical system. They are similar,
except OC/DP has a control space and dynamical system whereas AI/RL has an action space and MDP
transition or simulation.

Table 5.1: State Space Model Comparison
OC/DP AI/RL

State and Control space: S,U State and Action space: S,A
State: xk ∈ S, k = 0, 1... State: st ∈ S, t = 0, 1...

Control: uk ∈ U, k = 0, 1... Action: at ∈ A, t = 0, 1...
Dynamical System: MDP Transition (or simulation):

xk+1 = f(xk, uk),xk+1 = f(xk, uk, wk)(stochastic) Tijk = p(st+1 = i|st = j, at = k)
Output/observation (feature): yk = h(xk, uk) + nk Observation (feature): p(ot|st)

5.2.2 Optimization Objective

The optimization objective is based on the policy control decision. For OC/DP, a cost function and control
law is used, while AI/RL has reward and policy.

Table 5.2: Optimization Objective Comparison

OC/DP AI/RL

Cost function: J(x0;u0, ..., uN) =
∑N

k=0 g(xk, uk) Reward return: J(s1; a1, ..., aT) =
1
T

∑T
t=1 E[r(st, at)]

Control law: u(xk);u
∗(xk), Policy: π(at|st);π∗(at|st),

xk+1 = f(xk, u(xk)), uk+1 = u(xk+1) p((st+1, at+1)|(st, at)) = p(st+1|st, at)π(at+1, st+1)
Value function (minimal cost to go): Value function (maximal return):

J∗(x0) = minu(·)
∑N

k=0 g(xk, k) V ∗(s1) = maxπ(·)
1
T

∑T
t=1 Eπ[r(st, at)]

Lecture 5A: (Optimal Control, Reinforcement Learning, Vision) 5-3

5.3 Principle of (Path) Optimality

Principle of Optimality (Richard Bellman ’54): An optimal path has the property that any subsequent
portion is optimal.

So optimality naturally lends itself to dynamic programming. We can express an optimal controller as:

J∗(xk) = min
uk

[g(xk, uk) + J∗(f(xk, uk)︸ ︷︷ ︸
xk+1

)],∀xk

Consider the Bellman operator
T (J)(x) = min

u
[g(x, u) + J(f(x, u))]

Repeatedly applying the Bellman operator is a form of dynamic programming which converges to the optimal
controller, i.e. T (J∗) = J∗.

5.4 Value Function vs. Q-Function

OC/DP AI/RL
J∗(xk) = minuk

[g(xk, uk) + J∗(f(xk, uk))]︸ ︷︷ ︸
Q(xk,uk)

,∀xk V ∗(st) = maxπ Eπ[p(st+1|st, at) [r(st, at) + V ∗(st+1)]︸ ︷︷ ︸
Q(st,at

u∗
k = argminuk

Q(x∗
k, uk) π∗(st) = argmaxat

Q(st, at)
x∗
k+1 = f(x∗

k, u
∗
k) p(st+1|st, π∗(st))

In optimal control, the value function J∗(xk) describes the minimum total present and future cost of being in
the current state xk and taking an action uk to end up in the state xk+1, i.e. the total cost-to-go assuming the
optimal controller. Similarly, in reinforcement learning, the value function V ∗(st) describes the total reward-
to-go assuming the optimal policy. The Q-function is a very similar concept but considers the input/action
as well. So the Q-function describes the optimal cost-to-go or reward-to-go assuming you are in state xk or
st and take the action uk or π(st).

5.5 The Closed-Loop Autonomous System Formalized

This diagram describes the learning/control process using the terminology established earlier in this lecture.
An agent uses its policy to produce a control input, the agent interacts with its environment using using this

5-4 Lecture 5A: (Optimal Control, Reinforcement Learning, Vision)

input and makes some observation, the observation translates to some kind of cost or reward, the agent is
updated based on the observed cost or reward, and the process iterates.

5.6 From Principle to Computation

5.6.1 What to Compute and How

For both OC/DP and AI/RL, certain functions, control/policy, and identification must be computed.

OC/DP AI/RL
Optimal value function: J∗(x) V ∗(s)
Optimal Q-function: Q∗(x, u) Q∗(s, a)

Optimal control/policy u∗(x) π∗(a|s) or u∗(y), π∗(a|o)
System/model ID f∗(x, u) p∗(st+1|st, at

One possible method is the closed-form solution from the Linear Quadratic Regulator setup:

J∗(xk) = min
uk

[xT
kQxk + [uT

kRuk + J∗(Axk+1 +Buk)]

This can be solved by using the Riccati equation with the form:

Kk = −(R̄+ B̄TVk+1B̄)−1B̄TVk+1Ā

Vk = Q̄+ ĀTVk+1Ā− ĀTVk+1B̄(R̄+ B̄TVk+1B̄)−1B̄TVk+1Ā

Another example is in parallel parking a nonholonomic car. Here, the optimal trajectories are zigzagging
sinusoids.

min

∫ 1

0

||u(t)||2dt

Lecture 5A: (Optimal Control, Reinforcement Learning, Vision) 5-5

5.6.2 Control vs Learning

Overall, control and learning have different applications, conditions, and assumptions. This is important
when selecting a solution for a broad class of problems vs a few important instances.

OC/DP AI/RL
LQR Backgammon (Tesauro 1992)

Parallel parking Chess (Deep Blue 1997)
Chained form systems AlphaGo (2017)
Mechanical systems Video games, robots

OC/DP conditions and assumptions: clear model class/uncertainty, clear cost function, low/moderate di-
mension, continuous state/time.

AI/RL conditions and assumptions: unknown models (but can sample from them), uncertain/long-horizon
return, large-scale, high-dimensional, discrete state/time

5.6.3 Computation with Approximation

If no analytical or closed-form solution exists, there are several options to compute the approximate cost
function J̃ :

• Problem approximation: Use the optimal cost function of a related problem, then compute with exact
DP

• Rollout and model predictive control: Use the cost function of some policy computed with a simplified
optimization process

• Neural networks and other feature-based architecture: These can approximate the function with offline
training

• Simulation to generate training data for architecture: Approximation architecture involve parameters
”optimized” with data

• Policy iteration, self-learning, repeated policy changes: Multiple policies are sequentially generated,
and each provides data to train the next

5.7 What to Learn or Compute?

5.7.1 How to Compute?

There are on the order of 3580 possible chess configurations, 250150 possible Go configurations, and 1082

atoms in the universe. So how can we possibly hope to find optimal solutions/strategies (not to mention
closed-form solutions) in these high-dimensional settings with extremely large state and/or action spaces?
In principle this is possible given that humans learn to play games like Chess and Go reasonably well, and
in practice researchers have been able to develop successful algorithms to play these games. How is this
possible?

5-6 Lecture 5A: (Optimal Control, Reinforcement Learning, Vision)

5.7.2 How to Approximate?

Given that we have no closed-form solution to many problems of interest, we must find some way to approx-
imate solutions tractably. This can be done via featurization i.e. reducing the high-dimensionality. Consider
the problem of autonomous driving, for example. The inputs to the system at the lowest level are image
pixels, which are very high-dimensional. But within these images, only a few pixels are actually useful, for
example those which tell you there is or is not an obstacle in your path. So when we train neural networks
to obtain useful policies, we can loosely think of this as learning features from data and performing some
kind of regression on those features.

5.7.3 How to Learn Low-Dimensional Structures?

Our ability to solve problems in high-dimensional spaces relies crucially on the fact that low-dimensional
structures exist in high-dimensional spaces. Featurization really is compression, which is the process by
which high-dimensional data is converted to low-dimensional data without losing too much information.
The goals and roles of deep neural networks are compression, optimization, and linearization, i.e. neural
networks take high-dimensional inputs and compress then to low-dimensional representations to optimize
over. For example, when classifying digits using the MNIST image dataset, the inputs are high-dimensional
images but neural networks (specifically convolutional neural networks) will learn features from the data like
lines and curves at certain angles, and the presence or lack of these features in images allows the network to
perform classification.

5.8 Some Representative Algorithms: Value-Based RL

5.8.1 Q-Learning

A basic Q-Learning algorithm was developed by Watkins and Dayan in 1992:

Qt+1(st, at) = (1− η)Qt(st, at) + ηTt(Qt)(st, at)

where T is the Bellman operator. This is a model-free (no need to learn the dynamics of the system),
stochastic approximation to solve the Bellman equation.

5.8.2 Sample Complexity

Yuxin Chen et. al. in 2021 showed that a theoretical lower bound on how many samples are needed to find
the optimal Q-function is |S||A|, but in most practical settings the size of the sample space alone is enough
to make gathering this many samples impossible. For example, for the AlphaGo program, |S| = 2361. This is
the tightest bound that has been derived, so theoretical bounds do not explain our ability to learn efficiently.

The key insight for explaining why we can solve high-dimensional problems tractably is the low-dimensional
structure discussed earlier in the lecture. If we consider a tabular (matrix) Q-function where each entry
represents a unique state-action tuple, i.e. Qij = Q(si, aj), it will be the case in most high-dimensional
problems that the optimal Q-function is actually very structured i.e. low-dimensional, even if the magnitude
of the state space is very large.

A work by Yuzhe Yang et. al. in 2020 showed that the number of samples required to find an optimal
Q-function is actually proportional to the rank of Q (assuming it is represented as a matrix). So the fact

Lecture 5A: (Optimal Control, Reinforcement Learning, Vision) 5-7

that we don’t need an impossible amount of data to find optimal Q-functions in high-dimensional settings
can be explained by the fact that the Q-functions themselves are highly ordered due to the low-dimensional
structures embedded in these settings.

5.8.3 Example: Parallel Parking

A case-study on parallel parking using reinforcement learning was performed by Dwarakanath in 2020 which
showed that state-of-the-art RL methods still fall short of more classical model-based control methods i.e.
there is a long way to go in refining RL algorithms to produce truly optimal agents/controllers.

