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Lecture 6: (Quadrotors and Nonholonomic Constraints)
Scribes: Osher Lerner, Tarun Amarnath

6.1 Quadrotors

6.1.1 Fundamental questions

How much power to hover? Model air as incompressible fluid and analyze velocity and pressure gradients.

Conservation of mass

ρAvi = ρA2v2

Conservation of momentum

T = (ρAvi)v2

(mass flow rate x change in velocity)

Thrust of Pressure Difference

T = A(pL − pU )

Induced Power/Ideal Power

Pinduced =
T 3/2

√
2ρA

Propellor ”Figure of Merit”: Fraction of aerodynamic shaft power converted to useful aerodynamic
induced power. Typically 0.3-0.6.

FM =
Pinduced
Pshaft

Ground Effect Induced power is lower when hovering near the ground.

6.1.2 Demonstrated experiments

Human can produce enough to hover! (npr video)

Gyroplanes going back to 1907.

Coordinated assembly, moving rotors, morphology. Maneuverability. Planes + quadrotors.
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6.1.3 Equations of control

Figure 6.1: Quadrotor Diagram
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+R
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
Sigmas controlled by motor servos



Lecture 6: (Quadrotors and Nonholonomic Constraints) 6-3

Abstracted away we get

mẍ =

 0
0

−mg

+R

 0
0
u1


Ṙ = Rω̂

Iω̇ = −ω × Iω +

u2u3
u4


R = eẑψeŷθex̂ϕ

(yaw, pitch, roll respectively)

ω̂ = RT Ṙ = ẑψ̇ + e−ẑψ ŷeẑψ θ̇ + e−ẑψe−ŷθx̂eŷθeẑψ

γ̇θ̇
ϕ̇

 = J(γ, θ, ϕ)ω

Call roll, pitch and yaw the outputs y.

ÿ1ÿ2
ÿ3

 =

 0
0

−mg

+R

 0
0
u1



ẏ4 = γ̇ =
[
1 0 0

]
Jω

Differentiate until the inputs show up

ÿ4 =
[
1 0 0

]
J̇ω +

[
Rz 0
0 a42 a43 a44

]
u1
u2
u3
u4


Rank 2 matrix! so we can’t take the inverse to solve for the input.

Dynamic Extension We keep differentiating the dynamics until the input term is nonzero, then keep
differentiating until it has a nonsingular matrix.

On the third derivative of y, we get a rank 4 matrix if u1 ̸= 0 and a44 ̸= 0. Can linearize and decouple.
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6.2 Nonholonomic Systems

Examples

• twirling a pencil around your fingers! Making and braking contact.

• rolling with the constraint of not slipping

• how to reorient yourself in space

Nonoholonomic mechanics.

6.2.1 Pfaffian Constraints

Constraints on the velocities. Given state q ∈ Rn, constraints i = 1, ..., k of the form

ωi(q)q̇ = 0

with ωi(q) ∈ Rn are Pfaffian. Assume the rows are linearly indpeendent at q so that the constraints are
linearly independent.

Given such constraints, can we convert them into constraints on the states instead?

A single constraint is said to be integrable if ∃h : Rn → R s.t.

ωi(q)q̇ = 0 ⇐⇒ h(q) = 0
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From
∂2h

∂qi∂qj
=

∂2h

∂qj∂qi

we get

∂(αwj
∂qi

=
∂(αwi
∂qj

A set of Pfaffian constraints is holonomic if there exists hi(q) for i = 1, . . . , k such that

ωi(q)q̇ = 0 ⇔ hi(q) = c

It is nonholonomic if there are p < k such constraints, partially nonholonomic if p > 0 and completely
nonholonomic if p = 0 (there are no such constraints).

Constraints in velocity appearing as constraints in the state. Limiting the state to a (n − p) dimensional
manifold.

To get the directions we can move we construct the right null space of the constraints. That is

wi(q)gj(q) = 0

The allowable trajectories satisfying the Pfaffian constraints are the trajectories of the control system.

q̇ = g1(q)u1 + · · ·+ gm(q)um

6.2.2 Examples

6.2.2.1 Raibert’s hopper

2 DoF: 1 rotates leg, and 1 extends and retracts.
What is the control law required to make this robot flip in the air?

Pfaffian constraint (angular momentum is conserved)

Iθ̇ +m(I + d)2(θ̇ + ψ̇) = (I +m(I + d)2)θ̇ +m(I + d)2ψ̇ = 0

q̇ =

 1
0

− m(I+d)2

I+m(I+d)2

u1 +
01
0

u2
6.2.2.2 Planar space robot

Reorient satteliates without using boosters.

Angular momentum constraints on Lagrangian leads to state q = (ψ1, ψ2, θ)
T having the control system

q̇ =

 1
0

−a13
a33

u1 +
 0

1
−a23
a33

u2
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6.2.2.3 Rolling without slipping

State q = (x, y, θ, ϕ)T

ẋ− ρ cos θϕ̇ = 0

ẏ − ρ sin θϕ̇ = 0

Control law

q̇ =


ρ cos θ
ρ sin θ

0
1

u1 +

0
0
1
0

u2

6.2.2.4 Front Wheel Drive Car

Figure 6.2: Front Wheel Drive Car

Kinematic model of a car. Steering angle ϕ, angle of car body is θ, position x, y.

Constraints

sin(θ + ϕ)ẋ− cos(θ + ϕ)ẏ − I cos(ϕ)θ̇ = 0

sin(θ)ẋ− cos(θ)ẏ = 0

Control law

q̇ =


cos θ
sin θ

1
l tanϕ

0

u1 +

0
0
0
1

u2
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6.2.2.5 Car with N trailers

Figure 6.3: Car with N Trailers

q = (x, y, ϕ, θ0, . . . , θN )T ∈ RN+4

N + 2 sets of wheels which roll without slipping gives N + 2 Pfaffian constraints.

6.2.2.6 Firetruck

Rear axle is also steerable (driver in the front and driver in the back). Velocity tangential to the wheels is 0.


