Lecture 4: (Nonlinear Control Cont.)

Scribes: Lekha Duvvoori, Massimiliano de Sa, Saahil Parikh

4.1 Review

Given a S.I.S.O. function where

$$
\begin{gather*}
\dot{x}=f(x)+g(x) u \quad x \in \mathbb{R} \quad u \in \mathbb{R} \\
y=h(x) \quad y \in \mathbb{R} \\
\frac{d}{d t}\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(x_{1} \ldots x_{n}\right) \\
f_{2}\left(x_{1} \ldots x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1} \ldots x_{n}\right)
\end{array}\right]+\left[\begin{array}{c}
g_{1}\left(x_{1} \ldots x_{n}\right) \\
g_{2}\left(x_{1} \ldots x_{n}\right) \\
\vdots \\
g_{n}\left(x_{1} \ldots x_{n}\right)
\end{array}\right] u \tag{4.1}\\
\dot{y}=\frac{d}{d t} y(k)=\frac{d}{d t} h(x(t))=\frac{\partial}{d x} h(x) \cdot \dot{x}=D h(x)[f(x)+g(x) u]=L_{f}(x)+L_{g} h h(x) u
\end{gather*}
$$

$L_{f} h(x)$ is the Lie Derivative. g , h in the direction f

$$
\text { If } \quad L_{g} h(x) \neq 0 \longrightarrow M=\frac{1}{L_{g} h(x)}\left[-L_{f} h(x)+v\right]
$$

4.1.1 Input Output Linearization f

$$
\begin{gathered}
\dot{y}=v \quad v=y_{\text {des }}+k_{1}\left(y_{\text {des }}-y\right) \\
u=\frac{1}{L_{g} h(x)}\left[-L_{f} h(x)+y_{\text {des }}+k_{1}\left(y_{d e s}-h(x)\right)\right]
\end{gathered}
$$

4.1.2 Nonlinear Control Law

$$
\begin{gathered}
u=\frac{1}{L_{g} h(x)}\left[-L_{f} h(x)+y_{\text {des }}+k_{1}\left(y_{\text {des }}-h(x)\right)\right] \\
\longrightarrow \dot{y}=y_{\text {des }}+k_{1}\left(y_{\text {des }}-y\right) \\
y_{\text {des }}-y=e \longrightarrow \dot{e}+k_{1} e=0
\end{gathered}
$$

$$
\text { If } \quad L_{g} h(x)=0 \dot{y}=L_{f} h(x)+L_{g} h(x) u=L_{f} h(x)
$$

$$
\begin{gather*}
\ddot{y}=\frac{d}{d t}\left(L_{f} h(x)\right) \\
=\frac{d}{d x}\left(L_{f} h(x)\right)(f(x)+g(x) u) \tag{4.2}\\
=L_{f}\left(L_{f} h\right)+L_{f}\left(L_{g} h\right) u \\
=L_{f} \circ L_{f} h+L_{f} \circ L_{g} h u \\
=L_{f}^{2} h(x)+L_{f} L_{g} h \\
\text { If } \quad L_{f} L_{g} h(x) \neq 0 \\
u=\frac{1}{L_{f} L_{g} h(x)}\left[-L_{f}^{2} h(x)+v\right] \quad \ddot{y}=v \quad y \longrightarrow y_{\text {des }} \\
v=y_{d} \ddot{e s}+k_{1}\left(y_{\text {des }}-\dot{y}\right)+k_{2}\left(y_{\text {des }}-y\right) \tag{4.3}\\
=y_{\text {des }}+k_{1}\left(y_{\text {des }}-L_{f} h(x)\right)+k_{2}\left(y_{\text {des }}-h(x)\right) \\
\ddot{e}+k_{1} \dot{e}+k_{2} e=0 \quad e=y_{\text {des }}-y
\end{gather*}
$$

4.1.3 Full Generalization

Let r be the lowest integer such that

$$
L_{g} h(x)=0=L_{g} L_{f} h(x)=\ldots=L_{g} L_{f}^{r-2} h(x) \quad L_{g} L_{f}^{r-1} h(x) \neq 0
$$

then

$$
\begin{gathered}
y=h(x) \\
\dot{y}=L_{f} h(x)+L_{g} h(x) u \\
\ddot{y}=L_{f}^{2} h(x)+L_{g} L_{f} h(x) u \\
y^{(x)}=L_{f}^{r} h(x)+L_{g} L_{f}^{r-1} h(x) u
\end{gathered}
$$

r is the number of terms needed to differentiate y until the ?? appears on the right hand side

4.2 Two Input Two Output

Now, consider the two input, two output (TITO) case.

$$
\begin{aligned}
\dot{x} & =f(x)+g_{1}(x) u_{1}+g 2(x) u_{2} & \\
y_{1} & =h_{1}(x) y_{2} & =h_{2}(x)
\end{aligned}
$$

Here, we'll follow the same procedure as before, with the only difference being that we'll proceed one output at a time. We begin:

$$
\begin{aligned}
\dot{y}_{1} & =\frac{d}{d t} h_{1}(x) \\
& =\frac{d}{d x} h_{1}(x)\left[f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}\right] \\
& =L_{f} h_{1}+L_{g_{1}} h_{1} u_{1}+L_{g_{2}} h_{1} u_{2}
\end{aligned}
$$

If either $L_{g_{1}} h_{1} u_{1}$ or $L_{g_{2}} h_{1} u_{2}$ is nonzero, we stop. Otherwise, we differentiate again:

$$
\ddot{y}_{1}=L_{f}^{2} h_{1}+L_{g_{1}} L_{f} h_{1} u_{1}+L_{g_{2}} L_{f} h_{1} u_{2}
$$

Let r_{1} be the first deriative at which we get a nonzero term. Then:

$$
y_{1}^{r_{1}}=L_{f}^{r_{1}} h_{1}+L_{g_{1}} L_{f}^{r_{1}-1} h_{1} u_{1}+L_{g_{2}} L_{f}^{r_{1}-1} u_{1}
$$

Applying the same concept for r_{2}, we write:

$$
y_{2}^{r_{2}}=L_{f}^{r_{2}} h_{2}+L_{g_{1}} L_{f}^{r_{2}-1} h_{2} u_{1}+L_{g_{2}} L_{f}^{r_{2}-1} u_{2}
$$

We may now rearrange the above in matrix form as:

$$
\left[\begin{array}{l}
y^{r_{1}} \\
y^{r_{2}}
\end{array}\right]=\left[\begin{array}{l}
L_{f}^{r_{1}} h_{1} \\
L_{f}^{r_{2}} h_{2}
\end{array}\right]+\left[\begin{array}{ll}
L_{g_{1}} L_{f}^{r_{1}-1} h_{1} & L_{g_{2}} L_{f}^{r_{1}-1} h_{1} \\
L_{g_{1}} L_{f}^{r_{2}-1} h_{2} & L_{g_{2}} L_{f}^{r_{2}-1} h_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

The 2 x 2 matrix in the above equation is commonly referred to as $A(x)$. If $A(x)$ is invertible, consider the following formulation for the system inputs:

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=-A^{-1}(x)\left(\left[\begin{array}{ll}
L_{f}^{r_{1}} & h_{1} \\
L_{f}^{r_{2}} & h_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right)
$$

Plugging into the output equation:

$$
\left[\begin{array}{l}
y_{1}^{r_{1}} \\
y_{2}^{r_{2}}
\end{array}\right]=\left[\begin{array}{l}
L_{f}^{r_{1}} h_{1} \\
L_{f}^{r_{2}} h_{2}
\end{array}\right]+A(x) u
$$

This then yield the following linearized system:

$$
\left[\begin{array}{l}
y_{1}^{r_{1}} \\
y_{2}^{r_{2}}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Where v_{1} and v_{2} are traditionally designed inputs. As can be seen in the above, we've taken a TITO nonlinear system and transformed it into a system that's both linear and decoupled! Wow!
As a brief review of vocabulary, recall that y_{1} and y_{2} are said to have "relative degrees" of r_{1} and r_{2}, respectively.
What can we conclude from this result? We know that if $A^{-} 1$ exists, $(\operatorname{det}(A(x) \neq 0)$, then we can both linearize and decouple the system's dynamics. What happens, however, if A is not invertible? We must use a clever "hack" - a dynamic extension. Let's illustrate how we may apply this process with the following example: a planar quadrotor.

4.2.1 Dynamic Extension of the Planar Quadrotor

Recall the following dynamics model for the planar quadrotor:

$$
\begin{aligned}
& {\left[\begin{array}{c}
y \\
z \\
\phi \\
\dot{y} \\
\dot{z} \\
\dot{\phi}
\end{array}\right]=\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}} \\
\dot{x_{4}} \\
\dot{x_{5}} \\
\dot{x_{6}}
\end{array}\right]=\left[\begin{array}{c}
x_{4} \\
x_{5} \\
x_{6} \\
0 \\
-g \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{-1}{m} \sin \left(x_{3}\right) \\
\frac{1}{m} \cos \left(x_{3}\right) \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
\frac{1}{I}
\end{array}\right] u_{2} } \\
& y_{1}=x_{1} \\
& y_{2}=x_{2}
\end{aligned}
$$

Once again, we must follow the procedure of differentiating the outputs, y_{1} and y_{2}, until the system inputs appear. This will allow us to begin the process of feedback linearization. Let's begin:

$$
\begin{aligned}
& \dot{y_{1}}=\dot{x_{1}}=x_{4} \\
& \dot{y_{2}}=\dot{x_{2}}=x_{5}
\end{aligned}
$$

No luck yet - the inputs still haven't appeared! Let's continue differentiating:

$$
\begin{aligned}
& \ddot{y}_{1}=\dot{x_{4}}=\frac{-1}{m} \sin \left(x_{3}\right) u_{1} \\
& \ddot{y}_{2}=\dot{x_{5}}=-g+\frac{1}{m} \cos \left(x_{3}\right) u_{1}
\end{aligned}
$$

Thus, we find that the relative degrees, r_{1} and r_{2}, are both 2. Let's proceed to put this into the TITO form from our previous derivation:

$$
\left[\begin{array}{l}
\ddot{y}_{1} \\
\ddot{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-g
\end{array}\right]+\left[\begin{array}{cc}
\frac{-1}{m} \sin \left(x_{3}\right) & 0 \\
\frac{1}{m} \cos \left(x_{3}\right) & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

The above system is decoupled, but has a problem - due to the A matrix having a column of zeros, we conclude that the A matrix is singular and thus noninvertible. This is because at the moment, u_{2} has no effect on the system. Upon inspecting our dynamics equations, we find that we can only "get" to u_{2} from \dot{x}_{6}.
To introduce u_{2} into the system, we use the following "hack." Define a new state, z_{1}, as follows:

$$
\begin{aligned}
u_{1} & =z_{1} \\
\dot{z_{1}} & =v_{1}
\end{aligned}
$$

Where v_{1} is a new input to the system. What's really happening here is the following - we're introducing an integrator into the system. By integrating v_{1}, we get u_{1}, which is our normal input to the system. Thus, we increase the state dimension by 1 and get the system:

$$
\begin{array}{r}
{\left[\begin{array}{c}
\dot{x} \\
\dot{z}_{1}
\end{array}\right]=\left[\begin{array}{c}
f(x)+g_{1}(x) z_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
g_{2}(x) \\
0
\end{array}\right] u_{2}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] v_{1}} \\
\ddot{y}_{1}=\frac{-1}{m} \sin \left(x_{3}\right) u_{1} \\
\ddot{y}_{2}=-g+\frac{1}{m} \cos \left(x_{3}\right) u_{1}
\end{array}
$$

Now, let's continue to differentiate y_{2} :

$$
\dddot{y}_{2}=\frac{-1}{m} \sin \left(x_{3}\right) z_{1} x_{6}+\frac{1}{m} \sin \left(x_{3}\right) v_{1}
$$

Now, define another new state, $v_{1}=z_{2}$, where $\dot{z}_{2}=w$, and w is another input.

$$
y_{1}^{(4)}=\frac{-1}{m} \sin x_{3} x_{6}^{2} z_{1}-\frac{1}{m} \cos x_{3} z_{2} x_{6}-\frac{1}{m} \cos x_{3} z_{1} u_{2}-\frac{1}{m} \cos x_{3} x_{6} v_{1}-\frac{1}{m} \sin x_{3} w_{1}
$$

Now, we see that u_{2}, as well as our new inputs, are all in the system equations! Let's calculate the next derivative of y_{2} :

$$
y_{2}^{(4)}=\frac{-1}{m} \cos x_{3} x_{6}^{2} z_{1}-\frac{1}{m} \sin x_{3} z_{2} x_{6}-\frac{1}{m} \sin x_{3} z_{1} u_{2}+\frac{1}{m} \cos x_{3} x_{6} v_{1}+\frac{1}{m} \sin x_{3} w_{1}
$$

Now, we get u_{2} and other inputs appearing in the equation for u_{2} ! Let's write out the fully realized equation in matrix form. Note that the first vector, known as the drift vector, has been omitted due to its excessive complexity:

$$
\left[\begin{array}{l}
u_{1}^{(4)} \\
u_{2}^{(4)}
\end{array}\right]=\left[\begin{array}{l}
\cdot \\
\cdot \\
\cdot
\end{array}\right]+\left[\begin{array}{cc}
\frac{-1}{m} \cos x_{3} & \frac{1}{m I} \sin x_{3} z_{1} \\
\frac{1}{m} \sin x_{3} & \frac{-1}{m I} \cos x_{3}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
u_{2}
\end{array}\right]
$$

Now, our A matrix is invertible for the following condition:

$$
\operatorname{det}(A)=\frac{1}{m^{2} I} z_{1} \neq 0
$$

Thus, as long as $z_{1} \neq 0$, the A matrix is invertible. Assuming this condition, we may now proceed as standard in our linearization problems. We may choose w_{1}, u_{2} such that the system's nonlinearities are canceled out, leaving only a set of linear error differential equations behind.
The technique used to to achieve this method for noninvertible A is known as dynamic extension. An extremely large class of nonlinear systems may be converted to this form. Recall the main idea: by defining new states via integrators, we may introduce the input terms into our dynamics equations.

