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4.1 Review

Given a S.I.S.O. function where

ẋ = f(x) + g(x)u x ∈ R u ∈ R

y = h(x) y ∈ R

d

dt


γ1
γ2
...
γn

 =


f1(x1...xn)
f2(x1...xn)

...
fn(x1...xn)

+


g1(x1...xn)
g2(x1...xn)

...
gn(x1...xn)

u (4.1)

ẏ =
d

dt
y(k) =

d

dt
h(x(t)) =

∂

dx
h(x) · ẋ = Dh(x)[f(x) + g(x)u] = Lf (x) + Lghh(x)u

Lfh(x) is the Lie Derivative. g,h in the direction f

If Lgh(x) ̸= 0 −→ M =
1

Lgh(x)
[−Lfh(x) + v]

4.1.1 Input Output Linearization f

ẏ = v v = ˙ydes + k1(ydes − y)

u =
1

Lgh(x)
[−Lfh(x) + ˙ydes + k1(ydes − h(x))]

4.1.2 Nonlinear Control Law

u =
1

Lgh(x)
[−Lfh(x) + ˙ydes + k1(ydes − h(x))]

−→ ẏ = ˙ydes + k1(ydes − y)

ydes − y = e −→ ė+ k1e = 0

If Lgh(x) = 0ẏ = Lfh(x) + Lgh(x)u = Lfh(x)
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ÿ =
d

dt
(Lfh(x))

=
d

dx
(Lfh(x))(f(x) + g(x)u)

= Lf (Lfh) + Lf (Lgh)u

= Lf ◦ Lfh+ Lf ◦ Lghu

= L2
fh(x) + LfLgh

(4.2)

If LfLgh(x) ̸= 0

u =
1

LfLgh(x)
[−L2

fh(x) + v] ÿ = v y −→ ydes

v = ¨ydes+ k1( ˙ydes − ẏ) + k2(ydes − y)

= ˙ydes + k1( ˙ydes − Lfh(x)) + k2(ydes − h(x))
(4.3)

ë+ k1ė+ k2e = 0 e = ydes − y

4.1.3 Full Generalization

Let r be the lowest integer such that

Lgh(x) = 0 = LgLfh(x) = ... = LgL
r−2
f h(x) LgL

r−1
f h(x) ̸= 0

then
y = h(x)

ẏ = Lfh(x) + Lgh(x)u

ÿ = L2
fh(x) + LgLfh(x)u

y(x) = Lr
fh(x) + LgL

r−1
f h(x)u

r is the number of terms needed to differentiate y until the ?? appears on the right hand side

4.2 Two Input Two Output

Now, consider the two input, two output (TITO) case.

ẋ = f(x) + g1(x)u1 + g2(x)u2

y1 = h1(x)y2 = h2(x)

Here, we’ll follow the same procedure as before, with the only difference being that we’ll proceed one output
at a time. We begin:

ẏ1 =
d

dt
h1(x)

=
d

dx
h1(x)[f(x) + g1(x)u1 + g2(x)u2]

= Lfh1 + Lg1h1u1 + Lg2h1u2
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If either Lg1h1u1 or Lg2h1u2 is nonzero, we stop. Otherwise, we differentiate again:

ÿ1 = L2
fh1 + Lg1Lfh1u1 + Lg2Lfh1u2

Let r1 be the first deriative at which we get a nonzero term. Then:

yr11 = Lr1
f h1 + Lg1L

r1−1
f h1u1 + Lg2L

r1−1
f u1

Applying the same concept for r2, we write:

yr22 = Lr2
f h2 + Lg1L

r2−1
f h2u1 + Lg2L

r2−1
f u2

We may now rearrange the above in matrix form as:[
yr1

yr2

]
=

[
Lr1
f h1

Lr2
f h2

]
+

[
Lg1L

r1−1
f h1 Lg2L

r1−1
f h1

Lg1L
r2−1
f h2 Lg2L

r2−1
f h2

] [
u1

u2

]
The 2x2 matrix in the above equation is commonly referred to as A(x). If A(x) is invertible, consider the
following formulation for the system inputs:[

u1

u2

]
= −A−1(x)

([
Lr1
f h1

Lr2
f h2

]
+

[
v1
v2

])
Plugging into the output equation: [

yr11
yr22

]
=

[
Lr1
f h1

Lr2
f h2

]
+A(x)u

This then yield the following linearized system:[
yr11
yr22

]
=

[
v1
v2

]
Where v1 and v2 are traditionally designed inputs. As can be seen in the above, we’ve taken a TITO non-
linear system and transformed it into a system that’s both linear and decoupled! Wow!
As a brief review of vocabulary, recall that y1 and y2 are said to have “relative degrees” of r1 and r2, respec-
tively.
What can we conclude from this result? We know that if A−1 exists, (det(A(x) ̸= 0), then we can both
linearize and decouple the system’s dynamics. What happens, however, if A is not invertible? We must use
a clever “hack” - a dynamic extension. Let’s illustrate how we may apply this process with the following
example: a planar quadrotor.

4.2.1 Dynamic Extension of the Planar Quadrotor

Recall the following dynamics model for the planar quadrotor:
y
z
ϕ
ẏ
ż

ϕ̇

 =


ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =


x4

x5

x6

0
−g
0

+


0
0
0

−1
m sin(x3)
1
m cos(x3)

0

u1 +


0
0
0
0
0
1
I

u2

y1 = x1

y2 = x2
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Once again, we must follow the procedure of differentiating the outputs, y1 and y2, until the system inputs
appear. This will allow us to begin the process of feedback linearization. Let’s begin:

ẏ1 = ẋ1 = x4

ẏ2 = ẋ2 = x5

No luck yet - the inputs still haven’t appeared! Let’s continue differentiating:

ÿ1 = ẋ4 = −1
m sin(x3)u1

ÿ2 = ẋ5 = −g + 1
m cos(x3)u1

Thus, we find that the relative degrees, r1 and r2, are both 2. Let’s proceed to put this into the TITO form
from our previous derivation: [

ÿ1
ÿ2

]
=

[
0
−g

]
+

[−1
m sin(x3) 0
1
m cos(x3) 0

] [
u1

u2

]
The above system is decoupled, but has a problem - due to the A matrix having a column of zeros, we
conclude that the A matrix is singular and thus noninvertible. This is because at the moment, u2 has no
effect on the system. Upon inspecting our dynamics equations, we find that we can only “get” to u2 from
ẋ6.
To introduce u2 into the system, we use the following “hack.” Define a new state, z1, as follows:

u1 = z1

ż1 = v1

Where v1 is a new input to the system. What’s really happening here is the following - we’re introducing an
integrator into the system. By integrating v1, we get u1, which is our normal input to the system.
Thus, we increase the state dimension by 1 and get the system:

[
ẋ
ż1

]
=

[
f(x) + g1(x)z1

0

]
+

[
g2(x)
0

]
u2 +


0
0
0
1

 v1

ÿ1 =
−1

m
sin(x3)u1

ÿ2 = −g +
1

m
cos(x3)u1

Now, let’s continue to differentiate y2:

...
y 2 =

−1

m
sin(x3)z1x6 +

1

m
sin(x3)v1

Now, define another new state, v1 = z2, where ż2 = w, and w is another input.

y
(4)
1 =

−1

m
sinx3x

2
6z1 −

1

m
cosx3z2x6 −

1

m
cosx3z1u2 −

1

m
cosx3x6v1 −

1

m
sinx3w1

Now, we see that u2, as well as our new inputs, are all in the system equations! Let’s calculate the next
derivative of y2:

y
(4)
2 =

−1

m
cosx3x

2
6z1 −

1

m
sinx3z2x6 −

1

m
sinx3z1u2 +

1

m
cosx3x6v1 +

1

m
sinx3w1
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Now, we get u2 and other inputs appearing in the equation for u2! Let’s write out the fully realized equation
in matrix form. Note that the first vector, known as the drift vector, has been omitted due to its excessive
complexity: [

u
(4)
1

u
(4)
2

]
=

..
.

+

[−1
m cosx3

1
mI sinx3z1

1
m sinx3

−1
mI cosx3

] [
w1

u2

]

Now, our A matrix is invertible for the following condition:

det(A) =
1

m2I
z1 ̸= 0

Thus, as long as z1 ̸= 0, the A matrix is invertible. Assuming this condition, we may now proceed as standard
in our linearization problems. We may choose w1, u2 such that the system’s nonlinearities are canceled out,
leaving only a set of linear error differential equations behind.
The technique used to to achieve this method for noninvertible A is known as dynamic extension. An
extremely large class of nonlinear systems may be converted to this form. Recall the main idea: by defining
new states via integrators, we may introduce the input terms into our dynamics equations.


