
A

EECS C106B / 206B Robotic Manipulation and Interaction Spring 2022

Lecture 2A: Introduction to Control - Stability, Lyapunov Methods
Scribes: Maxime Defauw, Amit Palekar, Enya Xing

2.1 Control

The goal of control of a system is that even with small deviations, they will be dampened.

2.1.1 Control of a First Order System

Problem
We start with state x and input u, where u is a velocity. We construct the kinematic model ẋ = u Our goal
here is to follow the trajectory xdes(t)

General approach
We define error e(t) = xdes(t)− x(t). Our goal is to have our error converge exponentially to 0.

Strategy
Our goal here is to find u such that ė +Kpe = 0. If we have a Kp > 0 then e(t) = exp(−Kp(t − t0)e(t0).
Here, Kp helps determine how fast the error converges to 0 as proportional feedback. We define u(t) =
ẋdes(t) +Kpe(t), where Kpe(t) is the feedback term.

2.1.2 Control of a Second Order System

Problem
We start with state x and input u. We construct the kinematic model ü = u, where u is an acceleration.
We want to follow the trajectory xdes(t).

General approach
We define our error term e(t) = xdes(t)− x(t). Again, we want our error to converge exponentially to 0.

Strategy
As we only have control over the 2nd derivative, we want to find a u such that u(t) = ẍdes(t) + Kdė(t) +
Kpe = 0. ẍdes(t) is the feed-forward term, Kdė(t) is the derivative term, and Kpe is the proportional term.
Kd,Kp > 0

2.1.3 Control for Trajectory Tracking

PD Control
u(t) = ẍdes(t) +Kdė(t) +Kpe = 0. ẍdes(t). The Kp, or proportional term, has a capacitance response and
Kd, or derivative term, has a resistance response.

2-1

2-2 Lecture 2A: Introduction to Control - Stability, Lyapunov Methods

PID Control
u(t) = ẍdes(t) + Kdė(t) + Kpe = 0 + KI

∫ t

0
e(τ)dτ . Here, the integral term KI helps atone for any model

imperfections to make the steady state error to go to 0.

2.1.4 Control Gains

Stereotyped 2nd Order Response

• ë+Kdė+Kpe = 0

• ë+ 2ζwnė+ w2
ne = 0

• λ = −wn(ζ ± i
√
1− ζ2)

Here ζ is the dampening ratio. There are 2 closed loop eigenvalues. If ζ > 1, both λ are real. If ζ < 1, the
response is more lively.

A high gain Kp value results in a more bouncy and lively response. A low Kp value results in a more staged
and steady response. Through manual tuning of the Kp,Kd,KI terms, it is possible to ijmpact rise time,
overshot, settling time, and steady-state error, as general guidelines. An example of PID gain tuning is the
Ziegler-Nichols Method which relies on increasing Kp until the ultimate gain Ku is as big as possible.

Model-Based Control

The model-based control law is written as u(t) = m(ẍ(t)+Kdė(t)+Kpe(t))+ bẋ(t)+kx(t). The servo-based
component, or (ẍ(t)+Kdė(t)+Kpe(t)) is used to drive the error term to zero. The model-based component,
m and +bẋ(t) + kx(t) is model-specific.

2.2 Written Example

2.2.1 Quadrotor example

The equilibrium, in the hover configuration is

qe =

y0z0
0

 ,xe =

[
qe
0

]
with y0, z0ϕ0 = 0u1,0 = mg, u2,0 = 0

To make it look like a control system — with a desired y and z — you need to build a second order controller
for y and z, while considering ϕ an input. Then construct another controller to get the desired ϕ. Each of
these controllers will make for a first order system.

The inner loop in this system should be fast. This is needed for example in aircraft control systems. The
first thing test engineers make sure is to have the ϕ control in place before moving to control other variables.

In the quadrotor case, the equations are as follows

Lateral dynamics
ÿ = −gϕ
ϕ̈ = u2

Ixx

Vertical dynamics
z̈ = u1

m
Desired attitude

ϕdes = − ÿc

g

ϕ̇des = 0
ϕ̈des = 0

Lecture 2A: Introduction to Control - Stability, Lyapunov Methods 2-3

Z-position controller
u1 = m(z̈c)

Attitude controller
u2 = Ixxϕ̈c

Looking at the vertical dynamics first. Since z̈ is a controlled variable, you figure out what mz̈c is. Next,
u2 = Ixxϕ̈c, which is a function of some controlled variable ϕ̈c. To get ϕ̈c, you take ydes and pretend that
phi is like an input.

Putting all this together we get the following equations.

Control equations
u1 = m(z̈c + kd,z(żdes − ż) + kp,z(zdes − z))

u2 = Ixx(ϕ̈des + kd,ϕ(ϕ̇des − ˙phi) + kp,ϕ(ϕdes − ϕ))
ϕdes = − 1

g (z̈des + kd,y(ẏdes − ẏ) + kp,y(ydes − y))

We first start with ϕdes and do a PD control in the y direction. Tweak the kd,y and kpy. u2 has to be a
fast variable since it’s the inner attitude loop. Therefore, a high kp,y is needed so that the desired value of
ϕ follows from treating it as an input variable. The you tweak the kd,z and kp,z for u1. In total, you tweak
three sets of PD gains.

This corresponds to the mantra of test flight engineers: aviate, navigate, communicate. Aviate means staying
alive — controlling thrust and roll. Navigate means you go where you want to go — controlling the position.
And lastly, communicate means telling other aircrafts where you are.

2.2.2 A quick introduction to non-linear control

In non-linear control, you’re interested in controlling non-linear affine systems (like the quadrotor).

In the SISO (single input, single output case: input u and output y with state x) these are the default
parameters:

ẋ = f(x) + g(x)u, x ∈ R
y = h(x), y ∈ R

x =

x1

x2

...
xn

 , f(x) =

f1(x))
f2(x)

...
fn(x)

 , g(x) =

g1(x))
g2(x)
...

gn(x)

A lot of systems are non-linear, which it does not need to be. If for example, we want to control y (let if
follow a ydes(t) and we have sensors measuring all the x’s and an input u. The approach is to differentiate y
w.r.t. t. y(x) is a function of time because x(t). By convention, a derivative is always a row vector as shown.

y(t) = h(x(t))
d
dty(t) =

d
dth(x(t)) =

dh(x)
dx ẋ =

[
∂h
∂x1

∂h
∂x2

· · · ∂h
∂xn

]
ẋ

Replacing xdot with its definition gives us the end expression for the derivative of the output y along
trajectories of the control system.

d
dty(t) =

[
∂h
∂x1

∂h
∂x2

· · · ∂h
∂xn

]
ẋ =

[
dh(x)
dx

] [
f(x) + g(x)u

]
ẏ = dh(x)

dx f(x) + dh(x)
dx g(x)u

This terms in ydot have names. The first term is called the Lie derivative of h w.r.t. f or how much h

2-4 Lecture 2A: Introduction to Control - Stability, Lyapunov Methods

Figure 2.1: The model with non-linear control

changes in the f direction. The second term is the Lie derivative of h w.r.t. g or how much h changes in
the g direction. A shorthand notation is Lfh(x) and Lgh(x)

If in this equation Lgh(x) ̸= 0, then one should choose a control law u:

u = 1
Lgh(x)

(−Lfh(x) + v)

Putting this into the expression for ẏ, (non-linear) terms cancel out:

y = Lfh(x) + Lgh(x)
1

Lgh(x)
(−Lfh(x) + v)

With v being a new auxiliary input.

This gives the following expression with every Lie derivative cancelling out until ydot = v.

In summary, what you have done here can be shown the following diagram. u is the input, y is the output.
You can measure all x’es, which is fed into a computed non-linear control law from above. This control law
asks for a new auxiliary input v. The result is fed into the plant as u.

This is a non-linear control system with a new input v. There is now a transfer function from v to y. This
is therefore called an input/output linearization of this first order system.

To tack ydes(t), we set v to be:

v = ẏdes(t) + k1(ydes − y)

This guarantees that the error goes to 0 exponentially.

e = ydes − y
ė+ k1e = 0, e → 0 exponentially

To do this, we set u in the composite controller to the following:

u = 1
Lgh(x))

[−Lfh(x) + ẏdes(t) + k1(ydes − y)]

2.2.3 Non-linear control (continued)

What if Lgh(x) = 0 ?

ẏ = Lfh(x) + Lgh(x)u = Lfh(x)
ÿ = d

dt [ẏ] =
d
dt [Lfh(x)]

Lecture 2A: Introduction to Control - Stability, Lyapunov Methods 2-5

ÿ = d
dx [Lfh(x)] · [f(x) + g(x)u]

ÿ = d
dx [(Lfh(x))f(x)] +

d
dx [(Lfh(x))g(x)u]

ÿ = Lf (Lf (h(x)) + Lg(Lfh(x))u
ÿ = L2

fh(x) + Lg(Lfh(x))u

If LgLfh(x)! = 0,
u = 1

LgLfh(x)
[−L2

fh(x) + v]

ÿ = v

Here we managed turn our nonlinear control into a 2nd order linear system.

If we want y → ydes :

v = ¨ydes + k1(˙ydes − ẏ) + k2(ydes − y)
= ¨ydes + k1(˙ydes − Lfh(x)) + k2(ydes − h(x))

Now we would set u:

u = 1
LgLfh(x)

[−L2
fh(x) + ¨ydes(t) + k1[

Terminology: r is the relative degree which is the number of times you need to differentiate y to get the
input u to show up.

