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1.1 General Announcements and Admin

1. HW1 released.

(a) Due Wednesday, Feb 2nd.

2. Project 1A released.

(a) Recommended to go through the spec before lab section this week.

3. Friday Lab 11-2 is oversubscribed, consider switching to Friday 2-5.

4. Discussions start this week.
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1.2 Overview

This lecture provides an overview of dynamics and covers the topics of modeling, linearization, stability,
and control. Throughout the lecture, these concepts will be tied to several real-world systems examples,
including the quadrotor, spring mass system, and the pendulum.

It starts with a review of controls using a slide deck from UPENN GRASP lab (see the slide links on the
course website)

1.3 Dynamics and Modeling

1.3.1 Quadrotor Model

We begin by modelling the quadcopter. Quadcopters work with four rotors, two rotors spinning counter-
clockwise and two clockwise. For each rotor, the spin is the opposite of the rotor on the opposite end.

The forces can be modelled as shown below, where each motor produces a force in proportional to the square
of its rotational speed:

1.3.2 Newton-Euler Equations for Quadrotor

Writing this in Newton-Euler equations, with the standard rotation matrix, we have:
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Note: there are notational conventions that are different what we are used to, where ω1 is p, ω2 is called
q, and ω3 is called r. Additionally, the reference frame designation is different, where AωB gives how the B
frame transforms to the A frame

There are two sets of inputs: u1 which designates the forces and a vector of inputs u2 which has three inputs
for a total of 4 inputs. We can re-arrange the equations to matrix format:

And combining the input matrix, we have:
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1.3.3 State Space

You can define state by:

x =


x1

x2

...
xn

 (1.1)

For robotic systems, q typically describes the position and q̇ describes the velocity

The state is described by Ordinary Differential Equations (ODEs)

Example: Planar Quadrotor

For a planar quadrotor, the state variables can be chosen as follows:
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For the quadrotor, the state matrix maps to the following:

Note that the state derivative ẋ is a function of state x and input u

1.4 Building a state space model

Professor’s note: the modelling of rotorcraft or physical systems is not trivial, it is a critical and difficult
part of the process

In order to build the state space model, write the system dynamics in matrix form where ẋ is a function of
state x and input u

A system is Linear Time-invariant (LTI) if it can be written in the form ẋ = Ax+Bu

Most robotic systems are non-linear, however, they can be linearized for computational purposes.

1.4.1 LTI Example: Spring Mass System

The following system is Linear:
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1.4.2 Non-linear Example: Pendulum

The following system is non-linear, however it can be linearized with the constraint ẋ = f(x) = 0

1.5 Stability

Stability is an important concept in control, as we often want to implement controllers for robotic systems
such that they operate near an equilibrium state. In this section, we will learn how to analyze the stability
of systems by examining their behavior around equilibrium points.

1.5.1 Equilibrium

A system is at static equilibrium if ẋ = f(x) ≡ 0. We say that a configuration qe is at static equilibrium if
x(t0) = qe ⇒ x(t > t0) = qe. In other words, at equilibrium, the state of the system is unchanging, as the
derivative of its state is 0.

We are interested in analyzing the behavior of systems around these equilibrium points. However, this
behavior is not always easy to analyze for nonlinear systems, so we can simplify our analysis by linearizing
our system around equilibria.
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1.5.2 Linearization

The goal of linearization is that given a nonlinear system ẋ = f(x, u), x, f ∈ ℜn, u ∈ ℜm we want to derive
an approximate linear system ẋ = Ax+Bu about an equilibrium point (xe, ue).

We achieve this by taking the Taylor series expansion around the equilibrium point:

f(xe +∆x, ue +∆u) = f(xe, ue) +
[
∂f
∂x

]
xe,ue

+
[
∂f
∂u

]
xe,ue

(1.2)

ẋ+∆ẋ ≈ f(xe, ue) +
[
∂f
∂x

]
xe,ue

+
[
∂f
∂u

]
xe,ue

(1.3)

∆ẋ = A∆x+B∆u (1.4)

We redefine ∆x ≜ x and ∆u ≜ u to yield ∆ẋ = Ax+Bu where

Anxn =
[
∂f
∂x

]
xe,ue

=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn


(xe,ue)

(1.5)

and

Bnxm =
[
∂f
∂u

]
xe,ue

=


∂f1
∂u1

. . . ∂f1
∂un

...
. . .

...
∂fn
∂u1

. . . ∂fn
∂un


(xe,ue)

(1.6)

1.5.3 Stability in the Sense of Lyapunov (i.s.L)

An equilibrium point xe of the system ẋ = f(x) is stable in the sense of Lyapunov if for any ϵ > 0 there
exists a value δ(t0, ϵ) > 0 such that if ||x(t0, x0) − xe|| < δ then ||x(t; t0, x0) − xe|| < ϵ for all t ≥ t0. An
interpretation of this statement is that configurations starting within a certain distance from the equilibrium
will remain within a distance from it forever.
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Some properties of Lyapunov Stability are the following:
An equilibrium point is unstable if it is not stable i.s.L
The equilibrium point is uniformly stable i.s.L if δ = δ(ϵ)

While stability i.s.L provides bounds on the system near the equilibrium points, it does not answer the
questions of whether the system will actually reach the equilibrium point, or will the system stay at exactly
the equilibrium point for all future times. For this, we expand our analysis to a few other types of stability.

1.5.4 Stability Analysis

We now introduce some stronger statements of stability. The first is asymptotic stability. We say that an
equilibrium point is asymptotically stable i.s.L if it is:
1. Stable (i.s.L)
2. Convergent: x(t; t0, x0) → xe as t → inf
Note that convergence alone does not imply asymptotic stability, as a system can be convergent, but not

bounded around the equilibrium point. Also, asymptotic stability does not answer the question of how fast
the system converges to equilibrium.
Another statement of stability is exponential stability. We say that an equilibrium point xe = 0 is exponen-
tially stable if there exists coefficient m ≥ 0 and rate a ≥ 0 such that ||x(t)|| ≤ ||x0||me−a(t−t0) for all x0 in
some ball around xe = 0. This statement of stability provides an analysis of both how bounded the system
is around the equilibrium point, as well as the rate at which it converges.

So far, these are all just local definitions of stability around an equilibrium point, as we were free to choose
small δ in order to start our system at a state x0 that is sufficiently close to xe. A stronger statement of
stability is that an equilibrium point xe is globally stable if it is stable for all initial conditions x0.

1.5.5 Stability of Linear-Time Invariant (LTI) Systems

A Linear-Time Invariant system is defined as
ẋ = Ax (1.7)

ẋ = Ax (1.8)

x ∈ Rn (1.9)

A ∈ Rnxn, constant (1.10)
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An LTI system is asymptotically stable if and only if all the eigenvalues of A have strictly negative real parts.

For LTI systems, asymptotic stability ⇔ exponential stability.

The system is marginally stable if and only if all the eigenvalues of A have nonpositive real parts, at least
one has zero real part, and every eigenvalue with zero real parts has its algebraic multiplicity equal to it’s
geometric multiplicity. Algebraic multiplicity refers to the number of times an eigenvalue is a root of the
characteristic polynomial, while geometric multiplicity refers to the number of eigenvectors associated with
an eigenvalue. The concept of marginally stable is used to define systems that will not give an unbounded
output given an impulse of finite magnitude input.

1.6 Control

1.6.1 First Order System Control

Linear control problems can be framed in the context of a state x and an input u. x and u are related by
some model–for example, the kinematic model

ẋ = u (1.11)

where x is a position description and u is a velocity input.

Based on some input of u, we then wish to follow some trajectory xdes(t). The general approach to solving
a control problem like this is to define an error between our desired state xdes(t) and our actual state x(t).
Mathematically, we can express this as

e(t) = xdes(t)− x(t) (1.12)

which we then want to converge exponentially to 0.

A strategy we can use to solve this is to choose u such that

ė+Kpe = 0 (1.13)

This is a differential equation, and if Kp > 0, then our solution becomes

e(t) = exp (−Kp(t− t0))e(t0). (1.14)

Our desired input u(t) is given by
u(t) = ẋdes(t) +Kpe(t) (1.15)
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where the first term on the right is called the ”feedforward” term and the second is called the ”feedback”
term.

This type of control is known as proportional (P) control.

1.6.2 Second Order System Control

If our input is acceleration instead of velocity, our kinematic model is second order (ẍ = u). Our strategy
then is to find an appropriate input u for some solution to the error equation:

e(t) = xdes(t)− x(t) (1.16)

ë+Kdė+Kpe = 0 (1.17)

We can pick some Kp,Kd > 0 such that

u(t) = ẍdes(t) +Kdė(t) +Kpe(t) (1.18)

This control strategy is known as proportional-derivative (PD) control. TheKpe(t) term is the ”proportional”
term (which you may notice was present in the previous first-order proportional control strategy), and the
Kdė(t) is the ”derivative” term.

1.6.3 Control for Trajectory Tracking

PID control is a further variation on PD control, via addition of an ”integral term”. This term is added to
make steady state error go to 0, and accounts for model error or disturbances:

u(t) = ẍdes(t) +Kdė(t) +Kpe(t) +Kl

∫ t

0

e(τ) dτ (1.19)

PID is a commonly used control strategy across many applications.

1.6.4 Control Gains

The values that we choose for Kd,Kp,Kl change our system response (Figure 1.1). These values are called
the ”gains” of the system.

In the second order system example on Figure 1.2, Kp and Kd can be chosen such that a desired damping
ratio is achieved. The system can be modeled as

ë+Kdė+Kpe = 0 (1.20)

and rewritten to express its eigenvalues as

ë+ 2ζωnė+ ωn
2e = 0 (1.21)

λ = −ωn(ζ ± i
√

1− ζ2) (1.22)

In this example, we see that choosing a ζ value of 0.7 is an optimal value for the system.

In general, the time it takes for a system to respond to disturbances and return to a steady state can be
measured as one indicator of the quality of the system.
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Figure 1.1: The position-time graphs of a stable system, a marginally stable system, and an unstable system.

Figure 1.2: The response curves of a system with different ζ values.


