
EECS C106B / 206B Robotic Manipulation and Interaction Spring 2022

Lecture 19: Hand Dynamics and Control
Scribes: Michael Equi, Zach Tam

19.1 Grasp Statics

We can model a grasp with the mathematical group (G,FC). We define G as the matrix that defines how the
frictional force FC are applied when the point contact makes a connection with the surface. Each column
of G is represented in the contact frame as a 6-dimensional wrench where the z-axis points directly out from
the contact point into the object.

In order to get the force imparted on the object by the point contact we transform the wrench into the world
frame using the adjoint. An example of this on a frictionless point contact is shown below. Frictionless
implies that the contact point only has a single wrench applied along the z-axis.

Fo =

[
Rci 0
p̂ciRci Rci

]

0
0
1
0
0
0

xi =
[

nci
pci × nci

]
, xi ≥ 0 (19.1)

Since frictionless contacts are quite limiting and are required to be in large numbers as to provide adequate
force closure we can extend the G matrix of each contact point and have xi be a vector describing the friction

19-1

19-2 Lecture 19: Hand Dynamics and Control

applied in each of the frictioned axes. The following represents a model for a soft finger that provides friction
in the x and y axis of the contact frame as well as resists rotational motion around the z axis of the contact
frame.

Fi =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

xi, xi ∈ FCi (19.2)

In order to solve for a functional grasping position we can now need for find a vector xi such that the total
forces applied to the object is the desired Fo and each element of xi corresponding to z-axis of the contact
frame is positive. This leads to the definition of force closure.

A grasp (G,Fc) is Force Closure if ∀Fo ∈ Rp,∃x ∈ FC, s.t. Gx = Fo. This leaves us with the following
three problems we need to solve in order to execute a grasp. (1) Determine if (G,FC) is force closure, (2)
given Fo find x ∈ FC s.t. Gx = Fo, and (3) satisfy (2) such that we additionally optimize for criterion Φ(x).

x is considered an Internal Force xN if xN ∈ FC and GxN
= 0. Using this definition for xN we can state

the following property 3; (G,FC) is force closure iff G(FC) = Rp and ∃xN ∈ ker(G) s.t. xN ∈ int(FC).
Here int(FC) denotes the interior region of the space defined by FC.

Property 4 describes equivalent statements about G that may be useful computationally for understanding
force closure and performing the necessary optimization in order to solve for a xi that solves for the desired
Fo. Let G = G1, G2, ..., Gk, then the following are equivalent:

1. (G,FC) are force closure

2. The columns of G span Rp

3. The convex hull of Gi contains neighborhood of the origin

4. There does not exist a vector v ∈ Rp, v ̸= 0 s.t. ∀i = 1, ..., k v ·Gi ≥ 0

19.2 Kinematics of Contact

19.2.1 Motivation

Often in robotics, it is necessary to deal with deformable objects such as towels (in folding) and organs
(in surgery).

Force closure is the simplest grasp, but it is limited as it serves only to immobilize the object. However,
multifingered hands are designed to be more versatile than this, and should be capable of in-hand manip-
ulation. For example, in surgery, fine motions are required for blunt dissection (separating folds of skin),
separating the bile duct from the liver duct when removing the gallbladder, and cauterizing/cutting. Even
though the surgeon remains in control, the robot would need to manipulate the objects. As a result, we need
to be able to model how moving the fingers causes the grasped object to move relative to the fingers.

To some extent, manipulability is the dual of grasping: there is an inherent tradeoff between manipulability
and tightness of any grasp.

Lecture 19: Hand Dynamics and Control 19-3

19.2.2 Surface Model

In order to model the surface contacts between fingers and grasped objects, we first need to be able to model
surfaces.

To this end, we first define fixed planar Cartesian coordinates u and v in R2 as shown in the figure. We then
map a subset U of the plane onto the surface we wish to model by using the map c:

c : U ⊂ R2 → R3, c(U) ⊂ S

cu =
∂c

∂u
∈ R3

cv =
∂c

∂v
∈ R3

(19.3)

c(u, v) covers the whole surface using all the points in U . Note that there are singularities in the partial
derivatives at corners and edges.

For convenience, we define the first fundamental form Ip as:

Ip =

[
cu

T cu cu
T cv

cv
T cu cv

T cv

]
(19.4)

Under the assumption of Orthogonal Coordinates Chart, cu
T cv = 0 and thus:

Ip =

[
||cu||2 0

0 ||cv||2
]

(19.5)

We define the metric tensor Mp to be the matrix square root of Ip under this assumption:

Mp =

[
||cu|| 0
0 ||cv||

]
(19.6)

The Gauss Map defines a normal to the surface at each point. s2 is the surface of the unit sphere (defines
a direction in 3D space).

19-4 Lecture 19: Hand Dynamics and Control

N : S → s2N(u, v) =
cucv

||cucv||
:= n (19.7)

Using the normal defined by the Gauss map, we can define the second fundamental form IIp as follows:

IIp =

[
cu

Tnu cu
Tnv

cv
Tnu cv

Tnv

]
, nu =

∂n

∂u
, nv =

∂n

∂v
(19.8)

We then define the curvature tensor Kp:

Kp =Mp
−T IIpMp

−1 =

[
cu

Tnu

||cu||2
cu

Tnv

||cu||||cv||
cv

Tnu

||cu||||cv||
cv

Tnv

||cv||2

]
(19.9)

The surface coordinates compose the Gauss Frame:

[
x y z

]
=

[
cu

||cu||
cv

||cv|| n
]

(19.10)

Thus, we can reparameterize Kp as:

Kp =

[
xT

yT

] [
nu

||cu||
nv

||cv||

]
(19.11)

We can also define the torsion form Tp as:

Tp = yT
[

xu

||cu||
xv

||cv||

]
(19.12)

The reason for all of this definition is to define (Mp,Kp, Tp) which is a geometric parameter for
the surface at each point.

19.2.3 Example: Geometric parameters of a sphere in R3

Let u be the angle of inclination, traditionally π
2 − ϕ in spherical coordinates, and let v be the angle of

azimuth, traditionally θ. The radius of the sphere is ρ.

U = {(u, v)| − π

2
≤ u ≤ π

2
,−π ≤ v ≤ π} (19.13)

Using trigonometry and the definition of spherical coordinates, we have:

c(u, v) =

ρ cos(u) cos(v)ρ cos(u) sin(v)
ρ sin(u)

 (19.14)

We can differentiate to calculate cu and cv:

Lecture 19: Hand Dynamics and Control 19-5

cu =

−ρ sinu cos v−ρ sinu sin v
ρ cosu

 , cv =

−ρ cosu sin vρ cosu cos v
0

 (19.15)

Notice that cu
T cv = 0. Using the formulas above, we thus calculate K, M , and T as functions of u and v:

K =

[1
ρ 0

0 1
ρ

]
,M =

[
ρ 0
0 ρ cosu

]
, T =

[
0 tan v

ρ

]
(19.16)

19.2.4 Velocity of Contact Points

For a given Gauss Frame, we can define the body velocity of any surface point relative to the fixed frame
of the object. Let α(t) be an arbitrary coordinate pair (u, v). c(α(t)) is the associated point surface point
(relative to the fixed frame of the object). Thus, we can calculate goc(t) ∈ R3 and the components of V b

oc as
shown below. Note the use of the chain rule in calculating ẋ, ẏ, ż, and ˙poc. Remember also that z = n.

19-6 Lecture 19: Hand Dynamics and Control

19.2.5 Contact Kinematics

For analyzing contacts, we define two Gauss frames, one for the finger (F) and one for the object (O). At the
point of contact, the two Gauss frames’ z axes are antiparallel. The angle of contact, the angle between
their x axes, is ϕ (this is equivalent to the angle between their y axes).

Thus, we have:

Rcocf =

 cosϕ − sinϕ 0
− sinϕ − cosϕ 0

0 0 −1

 , pcocf = 0 ∈ R3 (19.17)

Let αo = (uo, vo) and αf = (uf , vf), the contact points on each object in Uo and Uf respectively. We
parameterize a contact as η = (αo, αf , ϕ).

19.2.6 Montana Equations of Contact

At any given contact point, the velocity can be parameterized by 5 free parameters: ωx, ωy, ωz, vx, and vy.
The velocity of the contact point into/out of either object, vz, is 0 for rigid objects. ωx and ωy describe
rolling velocities while vx and vy describe sliding velocities.

Let us first define the curvature of O relative to Cf as K̃o = RϕKoRϕ, where

Rϕ =

[
cosϕ − sinϕ
− sinϕ − cosϕ

]
(19.18)

Kf + K̃o is termed relative curvature. Note that K, M , and T are defined independently as above for each
Gauss Frame. Be aware also that ϕ and ψ are used interchangeably in the slides.

Lecture 19: Hand Dynamics and Control 19-7

We can then derive the Montana Equations of Contact:

α̇f =Mf
−1(Kf + K̃o)

−1(

[
−ωy

ωx

]
− K̃o

[
vx
vy

]
)

α̇o =Mo
−1Rϕ(Kf + K̃o)

−1(

[
−ωy

ωx

]
+Kf

[
vx
vy

]
)

ϕ̇ = ωz + TfMf α̇f + ToMoα̇o

vz = 0

(19.19)

We can reformat the results of these equations into the form of a standard nonholonomic system, with ωx

and ωy as the inputs: 
u̇f
v̇f
u̇o
v̇o
ϕ̇

 = η̇ = g1(η)ωx + g2(η)ωy (19.20)

19.3 Introduction to Hand Kinematics

19.3.1 Hand Jacobian

Ideally, we want equations relating motions of the grasped object to motions of the hand. We can consider
k fingers manipulating an object as k robots working on the same object O. The robot joint angles to
end-effector position/velocity relationship is given by the Jacobian for each finger; we will combine these
Jacobians into a Hand Jacobian for the full system. There is also the important constraint that contact
must be maintained, i.e. the normal force must be positive.

We first use the coordinate frames of the fingers and contacts to derive a relationship between the velocity
of the object and the velocities of the fingers.

For this example, we consider point contacts without friction (PCWF), i.e. Bi = e3 ∈ R6×1. We might
encounter PCWF in the case of flat finger pads interacting with round, convex objects. By the fourth
Montana Equation of Contact, we have:

19-8 Lecture 19: Hand Dynamics and Control

This leaves us with the following relation, where the velocities of the fingers can be calculated using their
individual manipulator Jacobians. Note that, unconventionally, θi refers to the vector of joint angles for the
ith finger, rather than the joint angle of the ith joint.

Stacking the relations for each finger into a single vectorized expression gives the following definition and
interpretations/usages of the Hand Jacobian Jh:

Knowing this Jacobian, we can define a multifingered grasp as Ω = (G,FC, Jh).

19.3.2 Alternative Methods

While this math is the solution in principle, it is incredibly complicated. As the number and complexity of
fingers increases, it eventually may make sense to resort to deep learning methods.

