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Abstract

The kinematics of contact describe the motion of a point of
contact over the surfaces of two contacting objects in response
to a relative motion of these objects. Using concepts from
differential geometry, I derive a set of equations, called the
contact equations, that embody this relationship. I employ the
contact equations to design the following applications to be
executed by an end-effector with tactile sensing capability: (1)
determining the curvature form of an unknown object at a
point of contact; and (2) following the surface of an unknown
object. The contact equations also serve as a basis for an
investigation of the kinematics of grasp. I derive the relation-
ship between the relative motion of two fingers grasping an
object and the motion of the points of contact over the object
surface. Based on this analysis, we explore the following
applications: (1) rolling a sphere between two arbitrarily
shaped fingers ; (2) fine grip adjustment (i.e., having two
fingers that grasp an unknown object locally optimize their
grip for maximum stability).

1. Introduction

A kinematic relation describes the dependence of one
set of motion parameters on another such set due to
the geometry and mechanics of the physical world.
One prominent example of a kinematic relation is that
of the kinematic chain, which is discussed in most
texts on robotics, including Craig (1986). A kinematic
chain is a coordinate transformation that relates the

position and orientation of an end-effector to the joint
angles and displacements of the attached manipulator.

Another example of a kinematic relation is the grip
Jacobian defined in Salisbury (1982). This linear
transformation calculates the velocity of an object in
the grasp of the fingers of a hand given the velocities of
the joints of the fingers.

In this paper I discuss the kinematics of rigid bodies
that maintain contact while in relative motion. In

particular, I examine the kinematic relation between
the relative motion of two objects and the motion of a
point of contact over the surfaces of these objects.
Investigations of this kinematic relation have pre-
viously put simplifying restrictions on the shapes of
the objects (e.g., flat, spherical, or two-dimensional)
and/or the type of relative motion (pure sliding or
pure rolling) (e.g., see Cai and Roth 1986; Kerr and
Roth 1986; Bajcsy 1984; Mason 1981). A general de-
scription of this kinematic relation has been derived
by myself (Montana 1986) and, independently, by Cai
and Roth (1987). Using methods from differential
geometry, I provide a formulation and solution of the
kinematics of contact that is more mathematically
rigorous and concise.
The contact equations are the equations that I derive

which encapsulate this kinematic relation. Based on
the contact equations, I investigate two tasks for a
single end-effector with tactile sensing capability.
(Tactile sensing is needed because it allows us to mea-
sure the position of a point of contact on the end-ef-
fector surface [Fearing and Hollerbach 1985J.) First, I
describe how such an end-effector can determine the
curvature form of an unknown object at a point of
contact by performing rotational probes and measur-
ing the motion of the point of contact across its own
surface. The curvature form of the object is estimated
as that which fits these measurements in a least-

squares way. Second, I show how to have such an
end-effector follow the surface of an unknown object.
Tactile data is used to close a loop around the kine-
matics of contact and steer the point of contact as
desired on the end-effector surface. This contour-fol-

lowing algorithm adapts to the unknown and changing
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curvature of the object. A contour-following scheme
based on the kinematics of contact is also presented in
Cai and Roth (1987). However, there it is assumed
that the curvature of the object is already known, and
they are therefore solving a different (and easier) prob-
lem.

I also use the contact equations to investigate the
kinematics of grasp. This is the problem of manipulat-
ing an object with a number of independent end-effec-
tors, usually the fingers of a hand. Most research on
mechanical hands has focused on particular hands
and/or particular applications (Hanafusa and Asada
1977; Okada 1982). A general theory of manipulation
was formulated in Salisbury (1982). Assuming station-
ary points of contact, Salisbury’s grip Jacobian deter-
mines the finger joint velocities needed to produce a
given velocity of the grasped object relative to the
palm. In Kerr and Roth (1986), Salisbury’s analysis is
extended to allow rolling contact. However, the kine-
matic relation of interest is still the same. Allowing the
points of contact to move just provides extra freedom
in how to choose the joint motions to produce a de-
sired object motion. Like Kerr and Roth, I examine
grasps with rolling contact, but I derive the kinematic
relation between the relative motion of two fingers
grasping an object and the motion of the points of
contact on the object surface. To do this, I apply the
contact equations at each point of contact and perform
suitable coordinate transformations to combine the
two sets of equations into one.

I use this kinematic relation to investigate a couple
of tasks for two fingers. First, I examine the problem of
rolling a spherical object between two arbitrarily
shaped fingers. This problem reduces to choosing a
relative motion of the fingers such that the two points
of contact remain diametrically opposed on the object
surface. I also investigate the task of fine grip adjust-
ment, showing how two fingers grasping an unknown
object can locally optimize their respective points of
contact with the object to achieve maximum stability.
This is done by iterating on the following two steps:
(1) determine the local geometry (position, surface
orientation, and curvature) of the object at each point
of contact, and (2) move the points of contact to new
positions on the object surface so as to improve a cer-
tain grip stability criterion.

2. Mathematical Background

In this section I discuss concepts concerning rigid-body
motion (Craig 1986) and the geometry of curves and
surfaces (Spivak 1979).

NOTATION 1 Let CS, and CS2 be two coordinate
frames, where si and s2 are arbitrary subscripts. Then,
PS2S1 and RS2sJ denote the position and orientation of
Cs, relative to CS2. Furthermore, VS2S1 = R ZS, and ilS2st =
R 2S,Rs2s, are the translational velocity and rotational
velocity of Cf, relative to CSZ . The vector form of an-
gular velocity is denoted by (J)S2S¡ . For instance, P21,
R21, V2,, and -Q2, describe the motion of a frame
named C, relative to a frame named C2. Similarly,
Path, Ra,b5 vu,b, and S2Q,6 are the motion parameters of
Cb relative to Cat’

PROPOSITION 1 Consider three coordinate frames C¡,
C2, and C3. The following relation exists between their
relative velocities:

Equivalently, in terms of the vector form of angular
velocity, we have

Proof: The positions and orientations are composed
according to

Hence, the translational and rotational velocities can
be expressed as
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Definition 1.

A coordinate patch ,So for a surface S c m3 is an
open, connected subset of S with the following
property: There exists an open subset U ofm2 and
an invertible map f: U - So C m3 such that the
partial derivatives f,,(u) and fv(u) are linearly inde-
pendent for all u = (u, v} E U. The pair (f, U) is
called a coordinate system for So . The coordinates
of a point s E So are (u, v) = f -’(s). A 2-manifold
embedded in m3 (which we henceforth call a man-
ifold) is a surface S c m3 that can be written S =
u7=t I Si, where the S,’s are coordinate patches for
S. The set {S¡}7-1 is called an atlas for S.

Definition 2. -

A Gauss map (or normal map) for a manifold S is
a continuous map g : S - S2 C R3 such that for

every s E S, g(s) is perpendicular to S at s. (Recall
that ,S~ is the unit sphere.) An orientable manifold
S is one for which a Gauss map exists. When S is
the surface of a solid object, we call the Gauss
map that points outward the out ward normal map
and the one that points inward the inward normal
map.

Definition 3.

Consider a manifold S with Gauss map g, a coor-
dinate patch So for S, and a coordinate system { f,
U) for Sn. The coordinate system (f U) is orthog-
onal iff,,(u) - £(u) = 0 for all u E U. When { f, U)
is orthogonal, we can define the normalized
Gauss frame at a point u C U as the coordinate
frame with origin at f (u) and coordinate axes

Note that the coordinate axes are functions map-
ping U to fi3. We call an orthogonal coordinate
system ( f, U) right-handed if its induced normal-
ized Gauss frame is everywhere right-handed.

NOTE 1 1. For any coordinate patch with an asso-
ciated Gauss map there exists a right-handed, orthogo-
nal coordinate system.

2. The normalized Gauss frame is an example of
what Cartan called a moving frame (Cartan 1946).
Cartan used moving frames to define the curvature
form and torsion form, and we now adapt his defini-
tions into the present context.

Definition 4.

Consider a manifold S with Gauss map g, coordi-
nate patch Sa, and orthogonal coordinate system
( f, U). At a points E So, the curvaturc form K is
defined as the 2 X 2 matrix

where u =,f -’(s~. The torsion form T at s is the
1 X 2 matrix

We define the metric M at s as the 2 X 2 diagonal
matrix

Our metric is the square root of the Riemannian
metric (Spivak 1979).

EXAMPLE 1 Consider the set

and the map .

for some R > 0. Let So =f(U). The reader can verify
that ( f, U) is a coordinate system for So. Let S be the,
sphere of radius R. Then So is a coordinate patch for
S. The coordinates u and v are known as the latitude

and longitude, respectively. We can define another map

Let 5’0 = f ( U). Then (So, SO) is an atlas for S. Hence,
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Fig. 1. The coordinate
frames at time t (with r> 0).

S is a manifold. If we view the sphere as the surface of
a ball, then the outward normal map is

With this normal map, ( f, U) is right-handed. It can
be shown that ( f, U) is an orthogonal coordinate sys-
tem. Therefore, the normalized Gauss frame exists for
all u = (u, v) E U. Its coordinate vectors are

On the spherical surface of the earth, the x-, y , and
z-directions are called north, west, and up, respec-
tively. The curvature form, torsion form, and metric are

3. The Kinematics of Contact

We now consider two rigid objects that move while
maintaining contact with each other. Rigid bodies will
generally make contact at isolated points rather than
over areas of their surfaces. In this section we investi-

gate the motion of one of these points of contact
across the surfaces of the objects in response to a rela-
tive motion of the objects.

Call the objects obj 1 and obj 2. Choose reference
frames Cr¡ and Cr2 fixed relative to obj 1 and obj 2,
respectively. Let S, C ~3 and S2 C ~3 be the embed-
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dings of the surfaces of obj 1 and obj 2 relative to Crl
and Cr2’ respectively. Surfaces S, and S2 are orientable
manifolds. Let g, and g2 be the outward normal maps
for S, and S2. Choose atlases {SIJ7~1 and {S2).Î~1 for
S, and S2 . Let (fl,, VI) be an orthogonal, right-handed
coordinate system for SI, with normal map gl. Simi-
larly, let ( f2~, U2;) be an orthogonal, right-handed coor-
dinate system for S2~ with g2 .

Let CI(t) E S, and c2(t) E S2 be the positions at time
t of the point of contact relative to Cr. and Crz, respec-
tively. In general, c,(t) will not remain in a single coor-
dinate patch of the atlas {SIJ7~1 for all time, and like-
wise for cz(t) and the atlas {S2).Î’;’I’ Therefore, we
restrict our attention to an interval I such that

ci (t) E S,; and c2(t) c S2 for all t E I and some i and j.
The coordinate systems (ft., Ul,) and (f2~, U2~) induce
a normalized Gauss frame at all points in Si and S2~ .
We define the contact frames, Cc~ and CC2 as the coor-
dinate frames that coincide with the normalized Gauss
frames at c,(t) and c2(t), respectively, for all t E I. We
also define a continuous family of coordinate frames,
two for each t E I, as follows. Let the local frames at
time t, C<<(t) and Cl2(t), be the coordinate frames fixed
relative to C~, and C~Z, respectively, that coincide at
time t with the normalized Gauss frames at el(t) and
c2(t) (see Fig. 1).
We now define the parameters that describe the 5

degrees of freedom for the motion of the point of con-
tact. The coordinates of the point of contact relative to
the coordinate systems ( fi, , VI) and (f2 I., U2.) are given
by ui(t) =.f i;’(c~(t)) E U1/ and u2{t) =f2j E U2; ~
These account for 4 degrees of freedom. The final
parameter is the angle of contact V(t), which is defined
as the angle between the x-axes of C,, and C~~ . We
choose the sign of y/ so that a rotation of C,, through
angle - y/ around its z-axis aligns the x-axes.
We describe the motion of obj 1 relative to obj 2 at

time t, using the local coordinate frames C~~(t) and
CI2(t). Let vx, v,, and vz be the components of transla-
tional velocity of C11(t) relative to C/2(t) at time t. Simi-
larly, let cc~, coy, and Wz be the components of rota-
tional velocity. Then vx, vy, vn Ct~, Wy, and Wz provide
the 6 degrees of freedom for the relative motion be-
tween the objects (see Fig. 2).
The symbols K, , T, , and M, represent, respectively,

the curvature form, torsion form, and metric at time t
at the point cl(t) relative to the coordinate system

Fig. 2. Sliding contact. ,

(ft;, VI). We can analogously define KZ, T2, and M2.
We also let

Note that R~, is the orientation of the x- and y-axes of
CCI relative to the x- and y-axes of CC2’ Hence, K2 is
the curvature of obj 2 at the point of contact relative
to the x- and y-axes of CCI . Call K1 + K2 the relative
curvature form.

THEOREM 1 At a point of contact, if the relative cur-
vature form is invertible, then the point of contact and
angle of contact evolve according to 

’

Proof: Recall the notation introduced in Notation 1.
Since Cl,(t) is fixed relative to C,, , the velocity at time
t of C,,(t) relative to C,, is given by v,..,, = 0 and
L2,,I~ = 0. Therefore, according to Proposition 1,

Similarly, we find that

At time t the position and orientation of CCI relative to
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Ci,(t) are rl,~, = 0 and Rllcl = I. Hence, Proposition 1
states that

Since p,,,, = 0, according to Proposition 1,

Combining Eqs. (21- 24) yields

We now find the values of each of the quantities in
Eqs. (25) and (26) in terms of the contact parameters
and motion parameters. To start, we observe that

By the definition for vx, vy, Vz, cvx, c.vy, and coz we
gave above,

To examine the motion of C,, relative to C~, , let
Xl(ul), yl(u~), and zl(u,) be the coordinate vectors of
the normalized Gauss frame for obj 1 at the point
U, E U,; . Then,

We similarly find that

Substituting Eqs. (27), (28), (30), (33), and (34) into
Eqs. (25) and (26) and equating components, we get

After some algebraic manipulation, we can write Eqs.
(35 - 38) in the form given in Eqs. (17-20).

We call Eqs. (17)-(19) the first, second, and third
contact equations respectively. We call Eq. (20) the
kinematic constraint of contact because it expresses the
constraint on the relative motion necessary to main-
tain contact.

NOTE 2 For some of the applications discussed
below, obj 2 will be an object of unknown shape.
Hence, we will not be able to choose a coordinate
system for it. We therefore now re-express the second
contact equation in a form that is independent of the
coordinate system chosen for obj 2. (The first contact
equation is already in such a form.) Define S2 =

Ry¡M2U2’ Then, 3r2 is the rate at which the point of
contact traverses arc length across the surface of obj 2
as measured relative to the x- and y-axes of the local
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Fig. 3. Rolling without slip-
ping.

coordinate frame of obj 1. This quantity is indepen-
dent of the coordinate system chosen for obj 2. Substi-
tuting into the second contact equation gives

EXAMPLE 2 Let obj 1 be an object whose surface has
a planar coordinate patch. Choosing a Cartesian coor-
dinate system for this coordinate patch yields K1 = 0,
T, = 0, and M, = I at all points. Let obj 2 be a unit
ball. Using the coordinate patch investigated in Exam-
ple 1 gives values for the curvature form, torsion form,
and metric of K2 = I, T2 = [0, -tan u], and M2 =
diag( 1, cos u). Let obj 1 and obj 2 be oriented so that
at time to the x-axis of Ci, (1) coincides with the x-axis
of C’2(t). Then at time ta, R~ = diag( 1, -1 ), and the
contact equations are

When there is sliding contact, rox = Wy = co~, = 0.
Therefore, Eq. (40) becomes

This motion is pictured in Fig. 3.
When the relative motion is rolling without slipping,

Vx = vy 
= co, = 0. Hence, Equation (40) is

This motion is pictured in Fig. 4.
When the relative motion is rotation around the

normal, cox = coy = Vx = vy = 0. Then Eq. (40) becomes

For such motion the point of contact is fixed on both
surfaces, and only the angle of contact changes.
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Fig. 4. The coordinate
frames at time t.

4. Application 1: Finding Curvature

Let obj 1 be a tactile sensor attached to a manipulator,
and let obj 2 be an object of unknown shape. Assume
that there is a single point of contact between them.
We now discuss how to determine K2, the curvature
form of the unknown object at the point of contact,
through a series of experiments. The ith experiment
consists of rotating the sensor without slippage relative
to the object through a small angle [eex;, eey;, O]T.
Assume that the point of contact remains in one coor-
dinate patch for the experiments. Then the tactile
sensor can measure the resulting change in the coordi-
nates of the point of contact on its surface Aut . Since
the inverse of the relative curvature form is symmet-
ric, we can write it as

Because the shape of the sensor and the chosen coor-

dinate system are known and the coordinates of the

point of contact on the sensor surface can be mea-
sured, we can compute M1 and K, .

PROPOSITION 2 Consider n such rotational probes.
The values of kr~, kr2’ and kr3 that minimize the sum of
the squares of the errors in the measurements of
Mj Aul, are given by

where A and B are defined as
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Proof: According to the first contact equation,

where e; is the error in the measurement of M1L1U1..
This can be rewritten as 

’

Combining the results of all n experiments gives

The value of [kr~ , k,2, kT3]T that minimizes the square
of the error term is as shown in Eq. (44) (Campbell
and Meyer 1979).
Given the inverse of the relative curvature form, we

can solve for the curvature form of the unknown ob-

ject as

5. Application 2: Contour Following

Take obj 1 to be an end-effectar attached to a manip-
ulator. Let obj 2 be some arbitrary object of unknown
shape fixed relative to the base of the manipulator. We
assume that the two objects meet at a single point of
contact. We specify that the end-effector has tactile-
sensing capability. With tactile sensing it is possible to
measure the position of the point of contact on the
surface of the end-efI&dquo;ector. We also assume that we
have proprioceptive sensors to measure the velocity of
the end-effector relative to its base and hence relative
to the fixed object.

In this section, we describe a closed-loop servosys-
tem that drives the end-effector to steer the point of
contact to some desired location on its own surface
while following the surface of the unknown object. The

main problem in designing such a servosystem is that
the contact equations depend on the curvature form
of the object whose shape is unknown. Our servosys-
tem adapts to the changing shape of the unknown
object and provides a partial estimate of its curvature
form.
We start by choosing one coordinate patch on the

surface of the end-effector in which we try to maintain
the point of contact. (For human fingers, this coordi-
nate patch would be the fingertip.) This allows us to
always specify the position of the point of contact on
the end-effeetor by its coordinates in this coordinate
patch.
We assume that we can command the manipulator

to produce any desired values for vx vy, wx, ~vY, and
wZ . Let the velocity parameter C be an arbitrarily cho-
sen two-vector. Choose the set point u, to be a two-
vector, which is the coordinates of some point in the
selected coordinate patch for the end-effector. Define

Let (e,)m, (22)m, and (ez),~ be the measured values of
el, e2, and ë2, respectively.
PROPOSITION 3 IfKj == 0 and C == 0 (i.e., K, and C
are quasi-static), then the control law CLI,

with a, and a2positive constants, will steer el to zero.

Proof: Differentiating the expression for el in Eq.
(50) gives

This is a proportional-integral (PI) system, which is
known to steer e1 to zero.

PROPOSITION 4 IfM,, KJ, K~, u,, and ej are all
quasi-static, then the control law CL2,
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Fig. 5. Closed-loop contour
following.

with bi, b2, and b3 positive constants, steers e2 to zero.

Proof: The first contact equation can be written as

Differentiating Eq. (54) gives

This is a proportional-integral-derivative (PID) system,
which is known to steer e2 to zero.

Combining Propositions 3 and 4 gives the following
theorem.

THEOREM 2 Assume that M¡, K1, K2, C, and Us are
all quasi-static and that the time scale for control law
CLI is small enough compared to that for CL2 so that
CLI appears to always be in steady state from the
viewpoint of CL2. Then the control law obtained by
combining CLI and CL2 steers el and e2 to zero.

The quasi-static assumptions need not hold at all
times. Any deviation from these assumptions causes a
disturbance on the system that, if not too large, is
compensated by the closed-loop control.
The control scheme of Theorem 2 is pictured in Fig.

5. The time scale of the lower loop is smaller than that
of the upper loop. The free parameters in this system
are C, Up and wZ’ This contour-following algorithm is
discussed further in Montana (1986). There it is
shown how we can vary these free parameters in order
to have the point of contact follow a line of curvature
on the object surface. Also described in Montana
( 1986) is an initial implementation of this control
scheme.
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Fig. 6. Manipulation without
slippage as an input-output
system.

6. The Kinematics of Grasp

In this section we examine the problem of manipulat-
ing a rigid object with two end-effectors, which we
refer to as fingers. We assume that the object has ex-
actly one point of contact with each finger. We require
that the fingers constantly grasp the object so as not to
risk dropping it. Therefore, at each point of contact,
the finger is constrained to roll without slipping so
that static friction can be maintained.
We take the finger to be obj 1 and the object to be

obj 2 at both points of contact. We refer to the two
fingers as finger a and finger b. All symbols with sub-
script a refer to the point of contact between the object
and finger a, and similarly for subscript b. The various
coordinate frames are pictured in Fig. 6. The con-
straint that the fingers must roll without slipping can
thus be expressed as Vxa = vya = Wza = 0 and vxb i vyb =

Wzb = 0. To avoid the long subscripts induced by No-
tation 1, we let p~, Rf, v~, and wfbe the motion param-
eters of C’IlJt) relative to C’lb(t) at time t. Then pf, Rf,
vf, and wfdescribe the relative motion of the two
fingers at time t.

DEFINITION 5 We say that the two points of contact
form a grip if

where xs is the static coefficient of friction (Mason
1982). (When the points of contact form a grip, the
fingers can exert opposing forces and thus grasp the
object.)

DEFINITION 6 We define the addition of velocities
map Y( p f, R j) as

THEOREM 3 If the position and orientation of finger
a relative to finger b are pfand Rfand finger a and
finger b roll without slipping relative to the object with
angular velocity components a), ,,,, Wya, cob, and coyb,
then the velocity of finger a relative to finger b i.s
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Fig. 7. The contact equations
as an input-output system.

Furthermore, if the points of contact form a grip, then
V(pf, Rf) is an injective map.

Proof: From Proposition 1 we find that

Since the object is a rigid body, i

Hence, Proposition 1 states that

According to the statement of the theorem,

Equations (59)-(62) can be combined to yield

which is equivalent to Eq. (58).
As to the injectivity of the addition of velocities

map, let P1= [pfz, Pz , pfz] . Then,

We thus deduce that px > 0. From Eq. (63) we find that

Therefore,

From Eq. (63) we observe that

Combining the logical implications of Eqs. (66) and
(67) gives

So, the kernel of Ij(p f, Rf) is zero-dimensional.

Since V(p~, Rf) is injective, Y(pf, Rf){~R4) is four-di-
mensional. Therefore, there exist two independent
six-vectors a, and a2 such that
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if and only if

We call these conditions on the relative velocity of the
sensors the kinematic constraints of no slippage. We
can further conclude that there exists a linear map

We call Y ’(pf, Rf) the inverse addition of velocities
map. In physical terms, it calculates the motion of
each sensor relative to the object in response to a rela-
tive motion between the sensors that satisfies the kine-
matic constraints of no slippage.
The relationship between the relative motion of the

fingers and the motion of the points of contact is as
shown in Fig. 7. Importantly, this relation can be in-
verted. Given desired values for the velocities of the
points of contact on the surfaces of the objects, u~
and Ú2b, we can find the unique relative velocity
(v f, w f} that produces these velocities for the points of
contact and satisfies the slippage constraints.

7. Application 3: Rolling a Sphere

Consider two fingers grasping a sphere of radius R
with one point of contact for each finger. Assume that,
to start, the points of contact are diametrically op-
posed. Recall the coordinate system for a subset of the
sphere described in Example 1. Embed the sphere in
m3 so that in this coordinate system the two points of
contact have ~c coordinates (latitudes) equal to zero
(i.e., lie on the equator). If the points of contact move
on the surface of the sphere according to Ù2a =
Ù2b = [0, v]T, then they will remain on the equator
diametrically opposed. Hence, a grip is maintained.
When the points of contact move thus and when both

fingers rotate without slipping relative to the sphere,
we say that the fingers are rolling the sphere.

PROPOSITION 5 The unique velocity offinger a rela-
tive to finger b that satisfies the kinematic constraints
of no slippage and produces velocities for the points of
contact of U2a = U2b = [0, v]T is

where

Proof: Since there is no slippage, Vxa = vya = vxb =

vyb 
= 0. Hence, the second contact equation yields

Observe that the position and orientation of finger a
relative to finger b are given by

After substituting Eqs. (73)-(75) into Eq. (58) and
performing algebraic simplification, we get Eq. (711).
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8. Application Four: Fine Grip Adjustment

In this section we examine the problem of controlling
two fingers with tactile-sensing capability to actively
adjust their grip so as to locally optimize some crite-
rion rating possible grips. The criterion we choose is as
follows. Let f#b = COS-’(10, 0, - I ] pf) and ~Q =
cos 1(- [0, 0, 1 ]RfTpf). Then the smaller the value of
max(1)a, ~b) the better is the grip. To see why, recall
from Eq. (56) that two-fingered grips are characterized
by the condition max(1)a, ~b) < tan-I(Ks)’ Hence the
smaller the value of max (1)a, ~6), the larger is the
error required for the grip to be lost.
We now investigate how 0,, and ~b depend on the

motion of the points of contact. Let na(t) and nb(t) be
the inward normals to the object at the points of con-
tact at time t. Let dba(t) be the vector from the point of
contact b to the point of contact a. Relative to C/1b(t),
the local coordinate frame for finger b, these vectors are

So, Ob = COS-1(Ob . dba) and í/Ja = cos-’(-n,, - daQ).
Over the time interval A t the points of contact traverse
small arc lengths Os~ and .1S2b across the surface of
the object. To first-order approximation, relative to the
coordinate frame Cl,b(t),

Since dot products are invariant under coordinate
frame transformation,

where naCt + At), nb(t + At), and dba(t + At) are as
given in Eqs. (77) and (78). We can think of 0,(t + At)
and cPb(t + At) as functions of OsZa and ~ls~b. Thus, we
define the function

which is a rating of the grip obtained from the present
one by motion of the points of contact across the sur-
face of the object through arc lengths &eth;-S 2a and J1.s 2b .
We further observe that, according to the second

contact equation (as given in Eq. (39)), the angles of
rotation needed to produce the arc length traversals
~s2Q and ~s~ are

We can then define the function

which is a measure of the size of the motion of the

fingers.
We can perform a hill-climbing search to locally

optimize the grip based on the following iterative step.

1. Use tactile sensing to measure the position of
the points of contact on the two fingers. With
proprioceptive sensing, determine the positions
and orientations of the fingers. Based on these
measurements, compute pfand Rf, the relative
position and orientation of the local coordi-
nate frames, and K,Q and Klb, the curvature
forms of the fingers.

2. Perform curvature experiments to find K~ and
K2b, the curvature forms of the object at each
point of contact (recall Section 4). Curvature
experiments involve only motions of the finger
relative to the object such that the finger is
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rolling without slipping. Hence, they can be
performed while grasping the object based on
the analysis of Section 6.

3. Find the values of /),52a and Os2b, such that
fi{Osza, ~Szb) ~ ~, that minimize};(/),s2a’ /),5Zb)’
The parameter 6 > 0 is the maximum step
size. If there are multiple sets of /),52a and Aszb
that provide a minimum forfl(Ag2,,, Ag2b),
choose one that minimizes f2(Ag2,,, A92b),

4. (optional) If, for the chosen values of Osza and
/),52b,J;(0, 0) - f, (A 92,,, /),52b) < E, where E > 0
is an appropriately chosen parameter, then
stop the iteration and maintain the present grip.

5. Move the points of contact through arc lengths
OSZa and A92b across the surface of the object
by rotating the fingers without slipping relative
to the object through angles ~BQ and /)’8b as
given in Eq. (82). Substituting into Eq. (58)
gives the unique relative motion of the fingers
that accomplishes this.

6. Repeat.

9. Conclusion

Using concepts from differential geometry, I have
derived a set of equations, called contact equations,
that are a general description of the kinematics of
contact between two rigid bodies. Because of their
generality, the contact equations are potentially a
powerful tool for analyzing any task that involves
contact evolving in time. Based on these equations, I
have examined the following applications for a single
end-effector: (1) determining the curvature form of an
unknown object at a point of contact, and (2) follow-
ing the surface of an unknown object. I have also used
the contact equations to examine the kinematics of
grasp. Based on this analysis, I have investigated these
applications for two end-effectors: (1) rolling a sphere
between two arbitrarily shaped fingers, and (2) fine
grip adjustment (i.e., having two fingers that grasp an
object locally optimize their grip for maximum stabil-
ity).
Experimental work to corroborate the theory has

been hampered by lack of resources, although there

have been some preliminary but promising experi-
ments performed. I have implemented a contour-fol-
lowing algorithm similar to that examined in this
paper. Its performance is detailed on Montana (1986).
Also described is a set of experiments investigating the
effect of compliance on the kinematics of contact (the
theory of which is discussed in Montana (1986) but
not here).
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