
Lab 0: Review of Robot Operating System (ROS)∗

Spring 2022

Goals

This lab draws from various parts of Labs 1 - 4 and Lab 7 from 106A. For a deeper look at the material, please refer
to these documents.

By the end of this lab you should be able to:

• Set up a new ROS environment, including creating a new workspace and creating a package with the appropriate
dependencies specified

• Use the catkin tool to build the packages contained in a ROS workspace

• Run nodes using rosrun

• Use ROS’s built-in tools to examine the topics, services, and messages used by a given node

• Write a new node that interfaces with existing ROS code

• Use the ar_track_alvar package to identify AR tags

• Connect to the lab robots and control them using the MoveIt! package

Note: Much of this lab is borrowed from the official ROS tutorials. We picked out the material you will find most
useful in this class, but feel free to explore other resources if you are interested in learning more.

Contents

1 Initial configuration 2

2 Creating ROS Workspaces and Packages 3
2.1 Creating a workspace . 3
2.2 Creating a New Package . 3
2.3 Building a package . 4
2.4 File System Tools . 4
2.5 Anatomy of a package . 4

3 Understanding ROS nodes 5
3.1 Running roscore . 6
3.2 Running turtlesim . 6

4 Understanding ROS topics 6
4.1 Using rqt graph . 6
4.2 Using rostopic . 7
4.3 Examining ROS messages . 7

∗Developed by Valmik Prabhu, Spring 2018. Extended by Valmik Prabhu and Chris Correa, Spring 2019. Compiled heavily from labs
written by Aaron Bestick and Austin Buchan, Fall 2014, and Valmik Prabhu, Philipp Wu, Ravi Pandya, and Nandita Iyer, Fall 2018.
Further developed by Tiffany Cappellari and Amay Saxena, Spring 2020. Additional edits and changes made by Jaeyun Stella Seo and
Josephine Koe, Spring 2022.

1

http://www.ros.org/wiki/ROS/Tutorials

5 Understanding ROS services 8
5.1 Using rosservice . 9
5.2 Calling services . 9

6 Understanding ROS Publishers and Subscribers 9

7 Writing a controller for turtlesim 10

8 AR Tags 11
8.1 Webcam Tracking Setup . 11
8.2 Visualizing results . 12

9 Connecting to the Robot 13

10 Using MoveIt 14
10.1 Using the MoveIt GUI . 14

11 Typo Reporting 15

1 Initial configuration

The lab machines you’re using already have ROS and the Baxter robot SDK installed, but you’ll need to perform a
few user-specific configuration tasks the first time you log in with your class account.

Open the .bashrc file, located in your home directory (denoted “ ~ ”), in a text editor. (If you don’t have a
preferred editor, we recommend Sublime Text, which is preinstalled on lab computers and can be accessed using
subl <filename>. Append the following to the contents (copying from the pdf will not insert newlines, copy from
the example bashrc link below)

#######################

Sourcing the Robots

#######################

If you are working with the Baxter or Sawyer packages, uncomment the line below

to source the .bashrc file that sets up ROS with the Baxter and Sawyer packages:

source /scratch/shared/baxter_ws/devel/setup.bash

Otherwise, uncomment the line below to source the .bashrc file

that sets up ROS without the Baxter and Sawyer packages:

source /opt/ros/kinetic/setup.bash

##############################

Configuring the IP Address

##############################

Run the following command on a terminal:

cat /etc/hosts

to see the list of IP addresses for the workstations and robots.

If you are working on a workstation in the lab, uncomment the line

below to automatically set the ROS hostname as the current workstation IP address:

export ROS_HOSTNAME=$(hostname --short).local

Uncomment the line below with the correct IP address for the robot that you will be using.

For example, export ROS_MASTER_URI=http://192.168.1.111:11311 to work with Black Turtlebot.

export ROS_MASTER_URI=http://[IP_ADDR_OF_ROBOT]:11311

You can see an example of what the bashrc will look like on a lab computer by examining this file.

2

https://www.sublimetext.com/
https://drive.google.com/file/d/1HgRVBGx9BZXXhkV_ubPThYOqErAM886y/view?usp=sharing

Save and close the file when you’re done editing, then execute the command

source ~/.bashrc

to update your environment with the new settings.

The “source /scratch/shared/baxter_ws/devel/setup.bash” line does two things. Firstly, it tells Ubuntu to
run a ROS-specific configuration script every time you open a new terminal window. This script sets several environ-
ment variables that tell the system where the ROS installation is located. Secondly, it edits the $ROS_PACKAGE_PATH

environment variable.

This variable is particularly important, as it tells ROS which directories to search for software packages. Any code
you want to run with ROS must be located beneath one of the directories specified in the list. By default, ROS’s
setup.bash file adds the directories for all of ROS’s built-in packages to the package path. However, the Baxter SDK
contains additional packages that we want to be able to run, so we must add its directory to the package path as well.
The SDK is located in the /scratch/shared directory.

The “source /opt/ros/kinetic/setup.bash” line sets all the path variables to use the ROS built-in packages,
but it does not clutter your workspace with the things associated with the Baxter SDK.

When you create your own workspaces, you will need to run a workspace specific setup.bash file to ensure that
your packages are located on the ROS path (we will discuss this in more detail in Section 2).

After you source the robots, we must configure the IP addresses of the workstations and the robots so they can
communicate with each other. The ROS_HOSTNAME should be set to the IP address of the workstation. This is done for
you.

Additionally, if you are using any of the Turtlebots, you will need to set the $ROS_MASTER_URI to the IP address
of the robot. This variable effectively tells nodes where to look for the master node.

2 Creating ROS Workspaces and Packages

You’re now ready to create your own ROS package. To do this, we also need to create a catkin workspace. Since all
ROS code must be contained within a package in a workspace, this is something you’ll do frequently.

2.1 Creating a workspace

A workspace is a collection of packages that are built together. ROS uses the catkin tool to build all code in a
workspace, and do some bookkeeping to easily run code in packages. Each time you start a new project you will want
to create a new catkin workspace.

For this lab, begin by creating a directory for the workspace. Create the directory lab0_ws in your home
ros_workspaces folder. The directory “ros_workspaces” will eventually conatin several project-specific workspaces
(named proj1, proj2, etc.) Next, create a folder src in your new workspace directory (lab0_ws).

After you fill src with packages, you can build them by running “catkin_make” from the workspace directory
(lab0_ws in this case). Try running this command now, just to make sure the build system works. You should
notice two new directories alongside src: build and devel. ROS uses these directories to store information related
to building your packages (in build) as well as automatically generated files, like binary executables and header files
(in devel).

2.2 Creating a New Package

Let’s create a new package. From the src directory, run

catkin_create_pkg lab0_turtlesim rospy roscpp std_msgs geometry_msgs turtlesim

Our package is called lab0_turtlesim, and we add rospy, roscpp, std_msgs, geometry_msgs, and turtlesim

as dependencies. rospy and roscpp allow ROS to interface with code in Python and C++, and std_msgs and
geometry_msgs are both message libraries. Messages are data structures that allow ROS nodes to communicate.
You’ll learn more about them in Section 3.

3

2.3 Building a package

Now imagine you’ve added all your resources to the new package. The last step before you can use the package with
ROS is to build it. This is accomplished with catkin_make. Run the command again from the lab0_ws directory.

catkin_make

catkin_make builds all the packages and their dependencies in the correct order. If everything worked, catkin_make
should print a bunch of configuration and build information for your new package “lab0_turtlesim” with no errors.
You should also notice that the devel directory contains a script called “setup.bash.” “Sourcing” this script will
prepare your ROS environment for using the packages contained in this workspace (among other functions, it adds
“~/ros_workspaces/lab0_ws/src” to the $ROS_PACKAGE_PATH). Run the commands

echo $ROS_PACKAGE_PATH

source devel/setup.bash

echo $ROS_PACKAGE_PATH

and note the difference between the output of the first and second echo.

Note: Any time that you want to use a non-built-in package, such as one that you have created, you will need to
source the devel/setup.bash file for that package’s workspace.

2.4 File System Tools

When working with ROS, you will invariably be working with many packages stored in many places. ROS provides a
collection of tools to navigate. Some of the most useful are rospack, rosls, and roscd. Type

rospack find baxter_examples

This should return the directory at which the baxter_examples package is located. What do you think the others
do? Note that these commands only work on packages in the $ROS_PACKAGE_PATH, so make sure to source the relevant
workspace before using these commands.

2.5 Anatomy of a package

cd into /scratch/shared/baxter_ws/src/baxter_examples. The baxter_examples package contains several exam-
ple nodes which demonstrate the motion control features of Baxter. The folder contains several items:

• /src - source code for nodes

• package.xml - the package’s configuration and dependencies

• /launch - launch files that start ROS and relevant packages all at once

• /scripts - another folder to store nodes

Other packages might contain some additional items:

• /lib - extra libraries used in the package

• /msg and /srv - message and service definitions which define the protocols nodes use to exchange data

Open the package.xml file with the command subl package.xml. It should look something like this:

<?xml version="1.0"?>

<package>

<name>baxter_examples</name>

<version>1.2.0</version>

<description>

Example programs for Baxter SDK usage.

</description>

4

<maintainer email="rsdk.support@rethinkrobotics.com">

Rethink Robotics Inc.

</maintainer>

<license>BSD</license>

<url type="website">http://sdk.rethinkrobotics.com</url>

<url type="repository">

https://github.com/RethinkRobotics/baxter_examples

</url>

<url type="bugtracker">

https://github.com/RethinkRobotics/baxter_examples/issues

</url>

<author>Rethink Robotics Inc.</author>

<buildtool_depend>catkin</buildtool_depend>

<build_depend>rospy</build_depend>

<build_depend>xacro</build_depend>

<build_depend>actionlib</build_depend>

<build_depend>sensor_msgs</build_depend>

<build_depend>control_msgs</build_depend>

<build_depend>trajectory_msgs</build_depend>

<build_depend>cv_bridge</build_depend>

<build_depend>dynamic_reconfigure</build_depend>

<build_depend>baxter_core_msgs</build_depend>

<build_depend>baxter_interface</build_depend>

<run_depend>rospy</run_depend>

<run_depend>xacro</run_depend>

<run_depend>actionlib</run_depend>

<run_depend>sensor_msgs</run_depend>

<run_depend>control_msgs</run_depend>

<run_depend>trajectory_msgs</run_depend>

<run_depend>cv_bridge</run_depend>

<run_depend>dynamic_reconfigure</run_depend>

<run_depend>baxter_core_msgs</run_depend>

<run_depend>baxter_interface</run_depend>

</package>

Along with some metadata about the package, the package.xml specifies 11 packages on which baxter_examples

depends. The packages with <build_depend> are the packages used during the build phase and the ones with
<run_depend> are used during the run phase. The rospy dependency is important - rospy is the ROS library
that Python nodes use to communicate with other nodes in the computation graph. The corresponding library for
C++ nodes is roscpp.

3 Understanding ROS nodes

We’re now ready to test out some actual software running on ROS. First, a quick review of some computation graph
concepts:

• Node: an executable that uses ROS to communicate with other nodes

• Message: a ROS datatype used to exchange data between nodes

• Topic: nodes can publish messages to a topic as well as subscribe to a topic to receive messages

Now let’s test out some built-in examples of ROS nodes.

5

3.1 Running roscore

First, run the command

roscore

This starts a server that all other ROS nodes use to communicate. Leave roscore running and open a second terminal
window (Ctrl+Shift+T or Ctrl+Shift+N).

As with packages, ROS provides a collection of tools we can use to get information about the nodes and topics
that make up the current computation graph. Try running

rosnode list

This tells us that the only node currently running is /rosout, which listens for debugging and error messages published
by other nodes and logs them to a file. We can get more information on the /rosout node by running

rosnode info /rosout

whose output shows that /rosout publishes the /rosout_agg topic, subscribes to the /rosout topic, and offers the
/set_logger_level and /get_loggers services.

The /rosout node isn’t very exciting. Let’s look at some other built-in ROS nodes that have more interesting
behavior.

3.2 Running turtlesim

To start additional nodes, we use the rosrun command. The syntax is

rosrun [package_name] [executable_name]

The ROS equivalent of a “hello world” program is turtlesim. To run turtlesim, we first want to start the
turtlesim_node executable, which is located in the turtlesim package, so we open a new terminal window and
run

rosrun turtlesim turtlesim_node

A turtlesim window should appear. Repeat the two rosnode commands from above and compare the results. You
should see a new node called /turtlesim that publishes and subscribes to a number of additional topics.

4 Understanding ROS topics

Now we’re ready to make our turtle do something. Leave the roscore and turtlesim_node windows open from the
previous section. In a yet another new terminal window, use rosrun to start the turtle_teleop_key executable in
the turtlesim package:

rosrun turtlesim turtle_teleop_key

You should now be able to drive your turtle around the screen with the arrow keys.

4.1 Using rqt graph

Let’s take a closer look at what’s going on here. We’ll use a tool called rqt_graph to visulize the current computation
graph. Open a new terminal window and run

rosrun rqt_graph rqt_graph

This should produce an illustration like Figure 1. In this example, the teleop_turtle node is capturing your
keystrokes and publishing them as control messages on the /turtle1/cmd_vel topic. The /turtlesim node then
subscibes to this same topic to receive the control messages.

Note: The rqt_graph package has been known to behave erratically. If you don’t see the exact same graph,
everything’s probably fine.

6

Figure 1: Output of rqt plot when running turtlesim.

4.2 Using rostopic

Let’s take a closer look at the /turtle1/cmd_vel topic. We can use the rostopic tool. First, let’s look at individual
messages that /teleop_turtle is publishing to the topic. We will use “rostopic echo” to echo those messages. Open
a new terminal window and run

rostopic echo /turtle1/cmd_vel

Now move the turtle with the arrow keys and observe the messages published on the topic. Return to your
rqt_graph window, and click the refresh button (blue circle arrow icon in the top left corner). You should now see
that a second node (the rostopic node) has subscribed to the /turtle1/cmd_vel topic, as shown in Figure 2.

Figure 2: Output of rqt graph when running turtlesim and viewing a topic using rostopic echo.

While rqt_graph only shows topics with at least one publisher and subscriber, we can view all the topics published
or subscribed to by all nodes by running

rostopic list

For even more information, including the message type used for each topic, we can use the verbose option:

rostopic list -v

4.3 Examining ROS messages

Inter-node communication is done via messages, so understanding how to examine already-existing messages is an
essential skill. Let’s take a deep dive into the turtlesim command messages. Your rostopic list should produce the
following output:

7

/rosout

/rosout_agg

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

We’ll be looking at the /turtle1/cmd_vel topic. Type

rostopic info /turtle1/cmd_vel

As you can see, the message “Type” is geometry_msgs/Twist. Here Twist is the name of the message, and it’s
stored in the package geometry_msgs. ROS also has utility methods for messages, in addition to those for packages
and topics. Let’s use them to learn more about the Twist message. Type

rosmsg show geometry_msgs/Twist

Your output should be

geometry_msgs/Vector3 linear

float64 x

float64 y

float64 z

geometry_msgs/Vector3 angular

float64 x

float64 y

float64 z

What do you think this means? Remember that a ROS message definition takes the following form:

<< data_type1 >> << name_1 >>

<< data_type2 >> << name_2 >>

<< data_type3 >> << name_3 >>

...

(Don’t include the << and >> in the message file.)
Each data_type is one of

• int8, int16, int32, int64

• float32, float64

• string

• other msg types specified as package/MessageName

• variable-length array[] and fixed-length array[N]

and each name identifies each of the data fields contained in the message.
Keep the turtlesim running for use in the next section.

5 Understanding ROS services

Services are another way for nodes to pass data between each other. While topics are typically used to exchange
a continuous stream of data, a service allows one node to request data from another node, and receive a response.
Requests and responses are to services as messages are to topics: that is, they are containers of relevant information
for their associated service or topic.

8

5.1 Using rosservice

The rosservice tool is analogous to rostopic, but for services rather than topics. We can call

rosservice list

to show all the services offered by currently running nodes.
We can also see what type of data is included in a request/response for a service. Check the service type for the

/clear service by running

rosservice type /clear

This tells us that the service is of type std_srvs/Empty, which means that the service does not require any data as
part of its request, and does not return any data in its response.

5.2 Calling services

Let’s try calling the /clear service. While this would usually be done programmatically from inside a node, we can
do it manually using the rosservice call command. The syntax is

rosservice call [service] [arguments]

Because the /clear service does not take any input data, we can call it without arguments

rosservice call /clear

If we look back at the turtlesim window, we see that our call has cleared the background.
We can also call services that require arguments. Use rosservice type to find the datatype for the /spawn service.

The query should return turtlesim/Spawn, which tells us that the service is of type Spawn, and that this service type
is defined in the turtlesim package. Use rospack find turtlesim to get the location of the turtlesim package
(hint: you could also use “roscd” to navigate to the turtlesim package), then open the Spawn.srv service definition,
located in the package’s srv subfolder. The file should look like

float32 x

float32 y

float32 theta

string name

string name

This definition tells us that the /spawn service takes four arguments in its request: three decimal numbers giving
the position and orientation of the new turtle, and a single string specifying the new turtle’s name. The second portion
of the definition tells us that the service returns one data item: a string with the new name we specified in the request.

Now let’s call the /spawn service to create a new turtle, specifying the values for each of the four arguments, in
order:

rosservice call /spawn 2.0 2.0 1.2 "newturtle"

The service call returns the name of the newly created turtle, and you should see the second turtle appear in the
turtlesim window.

6 Understanding ROS Publishers and Subscribers

Our starter code for this lab can be found at https://github.com/ucb-ee106/lab0 starter.git. You can clone it by
running

git clone https://github.com/ucb-ee106/lab0_starter.git

9

https://github.com/ucb-ee106/lab0_starter.git

Inside, you will find a package called chatter. Move this to the src directory in your lab0_ws workspace, build it
using catkin_make, and source the workspace.

Now, examine the files in the src directory inside chatter. example_pub.py and example_sub.py are both Python
programs that run as nodes in the ROS graph. The example_pub.py program generates simple text messages and
publishes them on the /chatter_talk topic, while the example_sub.py program subscribes to this same topic and
prints the received messages to the terminal.

Close your turtlesim nodes from the previous section, but leave roscore running. In a new terminal, type

rosrun chatter example_pub.py

This should produce an error message. In order to run a Python script as an executable, the script needs to have the
executable permission. To fix this, run the following command from the directory containing the example scripts:

chmod +x *.py

Now, try running the example publisher and subscriber in different terminal windows and examine their behavior.
Study each of the files to understand how they function. Both are heavily commented.

7 Writing a controller for turtlesim

Let’s replace turtle_teleop_key with a new controller, and learn how to interact with previously existing ROS code.
Go back to the starter code and put controller.py into the src folder inside the lab0_turtlesim package you
created earlier.

We need controller.py to have the following functionality:

• Accept a command line argument specifying the name of the turtle it should control (e.g., running

rosrun lab0_turtlesim controller.py turtle1

will start a controller node that controls turtle1).

• Publish velocity control messages on the appropriate topic whenever the user presses certain keys on the keyboard,
as in the original turtle_teleop_key. (It turns out that capturing individual keystrokes from the terminal is
slightly complicated — it’s a great bonus if you can figure it out, but feel free to use raw_input() and the WASD
keys instead.)

Your first step is to figure out what topic to which to publish and which message type to use. Once you’ve figured
that out, edit lines 15 and 29 accordingly. Then edit the “Your Code” section starting at line 38 to query the user for
a command, process it, and set it as a variable of the correct message type.

Checkpoint 1

Submit a check off request at this link. Be prepared to answer the following questions:

1. What is the difference between a topic and service?

2. What does roscore do?

3. Demonstrate your turtlesim teleop controller.

10

https://docs.google.com/forms/d/e/1FAIpQLSc7fLv6cyOEn1zTV2x8aptI1gxEXtWSJasOnVe8C_MTJFc5WA/viewform

Figure 3: Example AR Tags

8 AR Tags

AR (Augmented Reality) Tags have been used to support augmented reality applications to track the 3D position of
markers using camera images. An AR Tag is usually a square pattern printed on a flat surface, such as the patterns
in Figure 3. The corners of these tags are easy to identify from a single camera perspective, so that the homography
to the tag surface can be computed automatically. The center of the tag also contains a unique pattern to identify
multiple tags in an image. When the camera is calibrated and the size of the markers is known, the pose of the tag can
be computed in real-world distance units. There are several ROS packages that can produce pose information from
AR tags in an image; we will be using the ar_track_alvar 1 tutorial.

In EE 106A we used the webcams in the lab to track AR tags, and we will do so again in this lab. In much of the
rest of the course, however, we will be using Baxter or Sawyers’s hand cameras, since we can get the pose of the AR
tag relative to the robot. You will learn how to use AR tracking with Baxter and Sawyer in future labs.

8.1 Webcam Tracking Setup

1. Clone the ar_track_alvar package to the src directory of your lab0_ws workspace.

git clone https://github.com/ros-perception/ar_track_alvar.git

Then cd into the ar_track_alvar folder and type

git checkout kinetic-devel

Next go back to the src directory of your workspace and install usb_cam

git clone https://github.com/ros-drivers/usb_cam.git

2. In the starter, you will find a package called ar_tracking_pkg. Move it to the src directory of your lab0_ws
workspace.

3. Next, we need to make sure we have access to the camera calibration parameters for our Logitech webcams.
Move the camera_info folder present in the resources folder into your ~/.ros directory:

mv camera_info ~/.ros

4. If any other parameters have changed, such as the name of the webcam, make sure they are consistent in the
launch file (i.e., ensure that you are properly using either the Microsoft or the Logitech parameters).

5. Run catkin_make from the workspace (this may take a while).

6. Find or print some AR Tags. There should be a class set in Cory 105. If you are having difficulty finding them,
please ask your Lab TA or a Lab Assistant. Please only use these for testing and leave them unmodified so
others can use them. The ar_track_alvar documentation has instructions for printing more tags that you can
use in your projects.

11

Figure 4: RQT Graph using AR Tags

8.2 Visualizing results

Once the tracking package is installed, you can run tracking by launching the webcam_track.launch file. Launch
files allow you to run multiple nodes at once and pass parameters to the parameter server (like the camera_info_url
parameter you just edited). Do this by typing:

roslaunch ar_tracking_pkg webcam_track.launch

Using rostopic list, you should see topics /visualization_marker and /ar_pose_marker being published.
They are only updated when a marker is visible, so you will need to have a marker in the field of view of the camera to
get messages. Running rqt_graph at this point should produce something similar to Figure 4. As this graph shows,
the tracking node also updates the /tf topic to have the positions of observed markers published in the TF Tree.

Figure 5: Tracking AR Tags with webcam

To get a sense of how this is all working, you can use RViz to overlay the tracked positions of markers with camera
imagery. With the camera and tracking node running, start RViz with:

rosrun rviz rviz

From the Displays panel in RViz, add a “Camera” display. Set the Image Topic of the Camera Display to the
appropriate topic (/usb_cam/image_raw for the starter project), and set the Global Options Fixed Frame to usb_cam.
(Note: you may need to place an AR tag in the field of view of the camera to cause the usb_cam frame to appear
and for the Camera display to show an image.) You should now see a separate docked window with the live feed of
the webcam. Finally, add a TF display to RViz. At this point, you should be able to hold up an AR Tag to the
camera and see coordinate axes superimposed on the image of the tag in the camera display. Figure 5 shows several
of these axes on tags using the lab webcams. Making the marker scale smaller and disabling the Show Arrows option
can make the display more readable. This information is also displayed in the 3D view of RViz, which will help you
debug spatial relationships of markers for your project. Alternatively, you can display the AR Tag positions in RViz
by adding a Marker Display to RViz. This will draw colored boxes representing the AR Tags.

1http://wiki.ros.org/ar_track_alvar

12

http://wiki.ros.org/ar_track_alvar

Checkpoint 2

Submit a check off request at this link. Be prepared to answer the following questions:

1. Show RViz with AR tracking.

2. Walk through and explain various aspects of webcam_track.launch.

9 Connecting to the Robot

Most of the work in this class will be done on a Baxter or Sawyer robot, so we will now teach you how to connect them.
Close all running ROS nodes and terminals from the previous part, including the one running roscore, before you
begin. Additionally, ensure that you have been trained by the course instructors in the proper safety
procedures (including use of the e-stop button) and etiquette for running Baxter/Sawyer.

Navigate to the root folder of your workspace (~/ros_workspaces/lab0_ws), and make a symbolic link to the
Baxter environment script
/scratch/shared/baxter_ws/baxter.sh using the command

ln -s /scratch/shared/baxter_ws/baxter.sh ~/ros_workspaces/lab0_ws/

Note: The baxter.sh file works for Sawyer as well as Baxter.

Now run ./baxter.sh [name-of-robot].local (where [name-of-robot] is either asimov, ayrton, archytas,
ada, or alan) in your folder to set up your environment for interacting with Baxter/Sawyer. This clears the
$ROS_PACKAGE_PATH, so you’ll need to run source devel/setup.bash again.

Baxter and Sawyer have different interface packages (baxter_interface and intera_interface, respectively),
but they are virtually identical. The main difference is the obvious one: Sawyer only has one arm! This means that
whenever you try to move an arm on Sawyer, it must be the right one. On Baxter, you may use either arm.

To test that the arms work, we’ll run Baxter’s tuck_arms script. This script is a good test to run, and places the
arms in a reasonably-useful configuration. First, enable the robot with:

rosrun baxter_tools enable_robot.py -e

on Baxter or

rosrun intera_interface enable_robot.py -e

on Sawyer. (Baxter/Sawyer may already be enabled, in which case this command will do nothing.)
Next, echo the tf transform between the robot’s base and end effector frames by running

rosrun tf tf_echo base [gripper]

where [gripper] is right_gripper_tip if working with Sawyer, or left_gripper or right_gripper if working with
Baxter. If the robot does not have gripper attached use right_wrist instead.

With the joints enabled, grasp the sides of Baxter/Sawyer’s wrist, placing the arm in a gravity-compensation mode,
where it can be moved easily by hand. (Note: If you have never used gravity compensation mode and are having
trouble manipulating the robot, ask an instructor for assistance. You shouldn’t have to use much force to move
the robot around!)

You should see the transformation that tf returns changing as you move the arm. The tf package is an incredibly
useful utility, which you will likely use quite often. Now we’ll run tuck arms. On Baxter, run

rosrun baxter_tools tuck_arms.py -u

Sawyer does not have a tuck_arms example, but it does have a head wobble. Run

rosrun intera_examples head_wobbler.py

13

https://docs.google.com/forms/d/e/1FAIpQLSc7fLv6cyOEn1zTV2x8aptI1gxEXtWSJasOnVe8C_MTJFc5WA/viewform

10 Using MoveIt

MoveIt is a useful path planning package that abstracts the intreraction between third-party planners, controllers, and
your code. Its path planning functions are accessible via ROS topics and messages, and a convenient RViz GUI is
provided as well. In this section, we’ll just look at the GUI. For more practice, look at labs 5 and 7 from EECS 106A.

10.1 Using the MoveIt GUI

In this section, you’ll use MoveIt’s GUI to get a basic idea of what types of tasks path planning can accomplish. Make
sure you have run the baxter.sh script in each terminal window you use. First run Baxter’s joint trajectory controller
with the command

rosrun baxter_interface joint_trajectory_action_server.py

or Sawyer’s using

rosrun intera_interface joint_trajectory_action_server.py

Next, in a new window, start MoveIt with

roslaunch baxter_moveit_config demo_baxter.launch right_electric_gripper:=true

left_electric_gripper:=true

for Baxter, or

roslaunch sawyer_moveit_config sawyer_moveit.launch electric_gripper:=true

for Sawyer, omitting the last argument(s) if your robot does not have a gripper. On Baxter, the command above may
fail depending on the types of attached grippers; if so, try

roslaunch baxter_moveit_config baxter_grippers.launch

instead.
The MoveIt GUI should appear with a model of the Baxter or Sawyer robot. In the Displays menu, look under

”MotionPlanning” =⇒ ”Planning Request.” Under ”Planning Request” check the “Query Goal State” box to show
the specified end states (while you can query the start state as well, we’re currently connected to the robot, and the
robot’s current state is the default start state). You can now set the goal state for the robot’s motion by dragging the
handles attached to each end effector. When you’ve specified the desired states, switch to the “Planning” tab, and
click “Plan.” The planner will compute a motion plan, then display the plan as an animation in the window on the
right. In the Displays menu, under ”Motion Planning” =⇒ ”Planned Path.” If you select the “Show Trail” option,
the complete path of the arm will be displayed. The “Loop Animation” option might also be useful for visualizing the
robot’s motion.

When you’re satisfied with the motion you see in the simulation, click “Execute.” MoveIt will send the plan to a
controller, which will execute it. Remember that when running the robot, the EStop should always be within reach.

Note: Never use the “Plan and Execute” option in the MoveIt GUI. Always examine the path visually before
hitting execute to ensure safety.

Checkpoint 3

Submit a check off request at this link. Be prepared to answer the following questions:

1. Move the Baxter/Sawyer arm using the MoveIt! GUI.

2. Show your Lab TA that you got all questions correct on the Robot Usage Quiz.

3. Show that you have submitted a .txt file with your SID to the Lab Paper Questions assignment on Gradescope.

14

https://docs.google.com/forms/d/e/1FAIpQLSc7fLv6cyOEn1zTV2x8aptI1gxEXtWSJasOnVe8C_MTJFc5WA/viewform

11 Typo Reporting

Twelve pages is a lot of text, and our tex editor doesn’t even do spell check. If you notice any typos or things in this
document or the starter code which you think we should change, please let us know by telling your Lab TA or a Lab
Assistant. It’s really easy to miss things, so please help us out and make the course better for the next generation of
students.

15

	Initial configuration
	Creating ROS Workspaces and Packages
	Creating a workspace
	Creating a New Package
	Building a package
	File System Tools
	Anatomy of a package

	Understanding ROS nodes
	Running roscore
	Running turtlesim

	Understanding ROS topics
	Using rqt_graph
	Using rostopic
	Examining ROS messages

	Understanding ROS services
	Using rosservice
	Calling services

	Understanding ROS Publishers and Subscribers
	Writing a controller for turtlesim
	AR Tags
	Webcam Tracking Setup
	Visualizing results

	Connecting to the Robot
	Using MoveIt
	Using the MoveIt GUI

	Typo Reporting

