
Homework 3

EECS/BioE C106B/206B
Robotic Manipulation and Interaction

Due: February 28, 2022

Note: This assignment contains a programming component. You should submit the python
file you are asked to fill in to the Gradescope assignment Homework 3 (Code). A portion
of your grade will be determined by an autograder. As always, you should also submit a
PDF with your solutions to the non-programming parts of this assignment to the Gradescope
assignment Homework 3.

Problem 1. Optimization-Based Motion Planning

In this problem, you will implement an optimization based path planner which will also serve
as part of your submission for project 2. You will be using a non-linear optimization library
called CasADi (link). Make sure you are using Python 3. To install CasADi, you can simply
do pip3 install casadi.

Before you begin your implementation, you should familiarize yourself with CasADi by read-
ing the documentation (link). Of particular interest to us are the sections titled ”Symbolic
framework”, the section on nonlinear programming, and the section titled ”Opti stack”.

For this problem, you’ll be converting the path planning problem into the following nonlinear
optimization problem:

q∗, u∗ = argmin
N∑
i=1

(
(qi − qgoal)>Q(qi − qgoal) + u>i Rui

)
+ (qN+1 − qgoal)>P (qN+1 − qgoal)

s.t. qmin ≤ qi ≤ qmax, ∀i
umin ≤ ui ≤ umax, ∀i
qi+1 − F (qi, ui) = 0, ∀i ≤ N

(xi − obsjx)
2 + (yi − obsjy)

2 ≥ obs2jr , ∀i, j
q1 = qstart

qN+1 = qgoal

Here, we discretize the problem over N + 1 timesteps, with the first indicating the current
time, and the last indicating the time at which we intend to reach the goal. q is an array of

1

https://web.casadi.org
https://web.casadi.org/docs/


N + 1 states (x, y, θ, φ) with qi = (xi, yi, θi, φi) for i = 1, ..., N + 1, and u is an array of N
inputs (v, ω). We don’t have an input at the last state. obs is an array of obstacles. In order
to simplify computation, we assume that all obstacles are circles with center (x, y) and radius
r. We also assume that our robot is circular, and that its radius has been incorporated into
the radii of all obstacles. F (q, u) is the discrete dynamics of our system, qk+1 = F (qk, uk).
We use a standard quadratic cost function here, though you could choose any appropriate
cost function.

You will be filling in the file optimization planner casadi.py. Once you are done, you
should submit the completed python file to the Gradescope assignment Homework 3 (Code).
The autograder will run your planner against a hidden environment. Answer the following
questions.

(a) Our cost function here is quadratic. Why do we need to use a nonlinear optimizer?

(b) Work through the list of constraints and explain what each does in common English.
Feel free to use a little math if needed.

(c) Which constraints of the ones listed make this a non-convex problem?

(d) In order to do path planning with an optimizer, we need to discretize our dynamics.
In order to do this, we’ll use an Euler (first order) discretization:

q(t+ δt) = q(t) + q̇(t)δt

While we could use an integral, a first order approximation is accurate if δt is small,
and requires much less computation time than an integral. Since the optimizer will be
running this on the order of hundreds of thousands of times (or more), speed is very
important.

Complete the function bicycle robot model to implement the discretized dynamics
of a bicycle-modeled robot.

(e) The seed or initial condition of our optimizer is very important. A good seed can
make the optimization faster, and a bad seed can make the optimization much, much
slower. Ideally, we would initialize the optimizer with a feasible path to the goal,
but we have no way of easily generating one. So we’ll be doing the next best thing,
and initializing the path as a straight line in configuration (state) space, with evenly
distributed waypoints. Even though our system’s nonholonomic constraints make this
infeasible, the gradients on these constraints are very clear and the solver can pull itself
out more easily than other potential initializations.

For the input initialization, we’ll set everything to zeros to hopefully bias the solver
into finding a local optima with low inputs.

Complete the function initial cond to implement these initializations. The numpy

linspace and zeros functions will likely be useful.

2



(f) We’re using a standard quadratic cost function for this problem with three cost matrices
P , Q, and R. Q and R collectively make up the stage cost, the cost at every timestep. Q
penalizes the distance from the goal of the system at every timestep, while R penalizes
the input at each timestep. P is called the terminal cost, and it penalizes the distance
from the goal of the last timestep. This cost isn’t actually necessary in our case,
since we have a constraint that the last state be the goal. However, sometimes this
constraint isn’t possible to fulfill (we haven’t given the system enough time or the state
isn’t reachable). In this case, we can remove that constraint and rely on our P cost to
get us as close as possible. Usually P is set as Q or some scalar multiple of it.

Complete the function objective func to implement the cost function.

(g) Finally, we need to program the constraints. The Opti framework in CasADi provides
a very intuitive, friendly way to input constraints into the optimization. Complete the
function constraints to implement the constraints of the optimization problem. Look
over the main functions to see how we are setting up the optimization problem, and
compare it to the documentation in the ”Opti stack” section of the CasADi docs, if you
would like a better idea of what is going on. The constraints function should return
a list of MX expressions, each of which corresponds to one of the constraints of our opti-
mization problem. These will then be added to the problem with an opti.subject to

call.

(h) Now we can run the optimization. Run optimization planner casadi.py to run the
path planning problem with a couple randomly-defined obstacles. If you’ve defined
your constraints properly, your final path should look something like figure (1).

Submit all three displayed plots to Gradescope with the rest of your assignment. Sub-
mit the file optimization planner casadi.py to the Gradescope assignment Homework
3 (Code).

Figure 1: Expected output of the optimization planner. The planned path is in green.

3



Problem 2. Nonholonomic Kinematics

(a) Suppose that we have the following model of a turtlebot:

Figure 2: Unicycle model of a car.

The dynamics of the system are given by:

ẋ = v cos(θ) (1)

ẏ = v sin(θ) (2)

θ̇ = ω (3)

Suppose we can control the speed of the car v and the yaw rate ω.

(i) Find the Pfaffian constraints w(q, q̇)q̇ = 0 and rewrite the dynamics in the form
of

q̇ = g1(q)u1 + g2(q)u2

(ii) Use Lie brackets to find the Lie algebra of the system. What’s the highest order
of the Lie bracket you need to use? Is this system nonholonomic?

(iii) Are any of the Pfaffian constraint(s) integrable? If so, what are the integrated
constraints?

(iv) The presence of a holonomic constraint indicates that the system can be repre-
sented by a smaller set of state variables (thus eliminating the constraint). If
this system is holonomic, what’s the minimum number of state variables needed?
What are the dynamics of the system in those state variables?

4



(b) Suppose we have the following model of a cart:

Figure 3: Model of a cart.

The dynamics of the system are given by:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = 0

Suppose we can control the speed of the cart v but not the angle θ.

(i) Find the Pfaffian constraints w(q, q̇)q̇ = 0 and rewrite the dynamics in the form
of

q̇ = g1(q)u1 + g2(q)u2

(ii) Use Lie brackets to find the Lie algebra of the system. What’s the highest order
of the Lie bracket you need to use? Is this system nonholonomic?

(iii) Are any of the Pfaffian constraint(s) integrable? If so, what are the integrated
constraints?

(iv) The presence of a holonomic constraint indicates that the system can be repre-
sented by a smaller set of state variables (thus eliminating the constraint). If
this system is holonomic, what’s the minimum number of state variables needed?
What are the dynamics of the system in those state variables?

5



(c) Suppose we have the following model of a car:

Figure 4: Bicycle model of a car.

The dynamics of the system are given by:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ =
v

l
tanφ

where l is the length of the car, and φ is the steering angle of with respect to the car
body. Suppose we can control the speed of the car v, and the steering velocity φ̇.

(i) Find the Pfaffian constraints w(q, q̇)q̇ = 0 and rewrite the dynamics in the form
of

q̇ = g1(q)u1 + g2(q)u2

Note: this is a bit hairy. The constraints are reasonably easy to define, but rep-
resenting them in terms of (x, y, θ, φ) and constants like l takes a fair amount of
algebra.

(ii) Use Lie brackets to find the Lie algebra of the system. What’s the highest order
of the Lie bracket you need to use? Is this system nonholonomic?

(iii) Are any of the Pfaffian constraint(s) integrable? If so, what are the integrated
constraints?

(iv) The presence of a holonomic constraint indicates that the system can be repre-
sented by a smaller set of state variables (thus eliminating the constraint). If
this system is holonomic, what’s the minimum number of state variables needed?
What are the dynamics of the system in those state variables?

6



Problem 3. Short Problems

(a) An important part of the steering with sinusoids proof is the fact that sinusoids with
integrally related frequencies are orthogonal. This means that

〈sin(ωt), sin(nωt)〉 =

∫ 2π
ω

0

sin(ωt) sin(nωt)dt = 0

for any integer n. Prove that this is true. Hint: One of these might be useful

(b) When would you use a sampling-based planner over an optimization-based planner?
When would you use the optimization-based planner? Can you combine the two ap-
proaches?

Problem 4. Research Comprehension

CHOMP and TrajOpt are two major implementations of optimization-based motion planning
for high-DOF robots (like arms). Skim both papers, and answer the following questions.
CHOMP is a very long paper, and both are quite dense, so remember the paper reading
techniques you’ve learned. If you try to read these papers like textbooks or novels, you’ll be
spending too much time on this question.

(a) Both papers spend quite a lot of space discussing their treatment of obstacles. In our
optimization-based planner above, we deal with the obstacles with a single (rather
simple) constraint. What makes this problem different to CHOMP and TrajOpt?

(b) How does each paper parameterize their paths?

(c) In our optimization-based path planner above, we assume that all our waypoints are
close enough together that we don’t need to check if the paths between them collide
with obstacles. How do CHOMP and TrajOpt handle this problem?

(d) How do CHOMP and TrajOpt differ in their optimization methods?

7

http://hyperphysics.phy-astr.gsu.edu/hbase/trid.html
https://www.ri.cmu.edu/pub_files/2013/5/CHOMP_IJRR.pdf
http://joschu.net/docs/trajopt-paper.pdf

