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Problem 1 - Lyapunov’s Indirect Method: Modified Van Der Pol Oscillator

Consider the following model for an oscillator with nonlinear damping.

ẍ+ µ(1− x2)ẋ+ x = 0 (0.1)

where µ is a scalar damping coefficient.

1. By choosing a good set of state variables, write the above model in state space form.
We will use x1 = x, x2 = ẋ as our system state. We get[

ẋ1
ẋ2

]
=

[
x2

−x1 − µ(1− x21)x2

]
in state-space form. The RHS of the above is the required function f(x).

2. Find all equilibria of this system.
We must equate the RHS of the state space representation to zero and solve for x.

x2 = 0

−x1 − µ(1− x21)x2 = 0

From the first equation, we immediately get x2 = 0. Substituting this in the bottom equation, we get
x1 = 0, implying that the only equilibirum of the system is the origin, x = (0, 0)>.

3. Linearize the system about the equilibria. Using the indirect method of Lyapunov, comment on the
stability of the equilibria for the cases where µ > 0 and µ = 0.
To linearize the equation near the origin, we need to approximate the system ẋ = f(x) as a linear system
ẋ = Ax near the origin. Using a Taylor expansion near 0, we can write

f(x) ≈ f(0) +
∂f

∂x

∣∣∣∣
x=0

x+ · · ·

where the · · · hide higher order terms. Since f(0) = 0, we find that the approximation we seek is f(x) = Ax
where

A =
∂f

∂x

∣∣∣∣
x=0

which is the Jacobian of f evaluated at x = 0. We first compute the derivative

∂f

∂x
=

[
0 1

−1 + 2µx1x2 −µ(1− x21)

]
Substituting x = (0, 0)>, we get

A =
∂f

∂x

∣∣∣∣
x=0

=

[
0 1
−1 −µ

]
We can now examine the stability of the equilibrium of the nonlinear system by studying the stability
of the linearized system. We can compute the eigenvalues of the linear system by forming the quadratic
charecteristic polynomial and finding its roots. We find that the two eigenvalues are

λ1 =
−µ−

√
µ2 − 4

2

λ2 =
−µ+

√
µ2 − 4

2

First, let’s consider the case where µ > 0. There are two options
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(a) µ2−4 < 0. In this case, both eigenvalues are complex, and the real part of both eigenvalues is −µ/2,
which is negative.

(b) µ2 − 4 > 0. In this case, both eigenvalues are real. In this case, λ1 < 0 clearly, since it is a negative
number minus a positive number. We can also conclude that λ2 < 0. Note that when the discriminant
is positive, the term

√
µ2 − 4 has smaller magnitude than µ, and hence −µ+

√
µ2 − 4 < 0.

In either case, the eigenvalues lie in the open left-half-plane, and hence the linearized system is exponen-
tially stable. By the indirect method of Lyapunov, we can conclude that the equilibrium of the original
nonlinear system is locally asymptotically stable.

In the case where µ = 0, note that both eigenvalues of the linearized system lie on the imaginary axis. As
such, we cannot conclude anything about the stability of the nonlinear system from the indirect method
of Lyapunov alone. However, when µ = 0, the dynamics of the system are in fact the linear dynamics of
a harmonic oscillator

ẍ = −x

which is easily seen to be stable in the sense of Lyapunov enumerate

Problem 2 - Lyapunov’s Direct Method: Unicycle Model Robot

Consider the following model for a unicycle model robot. The state is (x, y, θ) which represents the position
of the center of the robot relative to some fixed origin along with its current heading. The control inputs
are the linear velocity v and the angular velocity ω.ẋẏ

θ̇

 =

v cos θ
v sin θ
ω

 (0.2)

In this problem, we will explore a technique called point-offset control for controlling unicycle model robots
like the Turtlebot. Consider a point p attached rigidly to the robot at a distance δ from the center, in
front of the robot (see figure 0.7). So, the position of p is given by:[

px
py

]
=

[
x+ δ cos θ
y + δ sin θ

]
(0.3)

Now consider the problem of driving the turtlebot to some neighbourhood of the origin. Instead of driving
the turtlebot directly, we will instead attempt to control the robot so that the point p goes to the origin.
Then, the turtlebot will be in a neighbourhood of radius δ around the origin. In the next few problems,
we will develop a control law to drive p to the origin, and prove its stability.

(a) Let the body frame axes of the turtlebot be bx = (cos θ, sin θ)T and by = (− sin θ, cos θ)T , as shown
in figure 0.7. Show that

ṗ = vbx + δωby (0.4)

By directly differentiating equation 0.3, we get[
ṗx
ṗy

]
=

[
ẋ− δθ̇ sin θ

ẏ + δθ̇ cos θ

]
=

[
v cos θ − δω sin θ
v sin θ + δω cos θ

]
= vbx + δωby

(b) Say we apply the following feedback control law on the robot:

v = −bTx p, ω = −1

δ
bTy p (0.5)

Using the Lyapunov function

V =
1

2
pT p (0.6)
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show that the point p converges asymptotically to the origin. Is the stability global?
Under this control law, we find that

ṗ = vbx + δωby = −((b>x p)bx + (b>y p)by)

Now note that b>x p and b>y p are simply the projections of p onto the body-frame axes of the robot.
So, the above expression in fact states that

ṗ = −p

i.e. the point p has linear dynamics under the given control law. Now, we can differentiate the given
candidate Lyapunov function (which is easily seen to be positive definite) to get

V̇ = p>ṗ = −p>p

which is negative definite (i.e. V̇ < 0 whenever p 6= 0). Hence the equilibrium p = 0 is asymptotically
stable under the given control law. Since V satisfies the required conditions globally, and is radially
unbounded (V →∞ as ‖p‖ → ∞) we can also conclude that the stability is global.

(c) Is it exponentially stable? If so, is the stability global?
By the form of V̇ , it is clear that V̇ = −V , and so the stability is also globally exponential.

(0.7)


