Discussion \#1

Author: Amay Saxena, Jay Monga, Neha Hudait

Problem 1 - Matrix Exponential and Linear ODEs

Recall that the exponential of a square matrix $A \in \mathbb{R}^{n \times n}$ is defined by the following infinite series:

$$
\begin{equation*}
\dot{X}=A X, \quad \underbrace{A}=\sum_{n=0}^{A t} \frac{A^{n}}{n!} \quad \quad A(0) \quad+(A t) \tag{0.1}
\end{equation*}
$$

1. Let $Y(t)=e^{A t}$. By differentiating the series representation, show that $\dot{Y}(t)=A e^{A t}$.
2. Show that $\left(e^{A}\right)^{-1}=e^{-A}$

$$
e^{A t}=\sum_{n=0}^{\infty} \frac{(A t)^{n}}{n!}
$$

$A, B-A+B$
when
A, B conure
,

$$
A \sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}=A e^{A t}
$$

3. Show that $\bar{x}(t)=e^{A t} x_{0}$ is the unique solution to the differential equation $\mathscr{x}_{x}=A x$ with initial condition $x(0)=x_{0}$, Hor $x(t) \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$.
Hint: Do this by first considering the function $y(t)=e^{-A t} x(t)$. What is the time derivative of $y(t)$?

Problem 2 -Rigid Body Potpourri

1. Write the expressions for the velocity of the point p (ie. $\dot{p}(t))$ when attached to both the revolute and prismatic joints in Fig. 1. Assume that $\omega \in \mathbb{R}^{3},\|\omega\|=1$, and $q \in \mathbb{R}^{3}$ is some point along the axis of ω.
2. Find $\widehat{\xi}$ to complete the following expression of $\dot{p}(t)$ in homogeneous coordinates for a revolute joint.

$$
\left[\begin{array}{c}
\dot{p} \\
0
\end{array}\right]=\underbrace{[}_{=: \widehat{\xi}}]\left[\begin{array}{c}
p \\
1
\end{array}\right]
$$

Hint: Recall the skew symmetric matrix \widehat{w} of w :

$$
\omega=\left[\begin{array}{lll}
\omega_{1} & \omega_{2} & \omega_{3}
\end{array}\right]^{T} ; \quad \widehat{w}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \tag{0.2}\\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

3. Find $\widehat{\xi}$ to complete the following expression of $\dot{p}(t)$ in homogeneous coordinates for a prismatic joint.

4. Write the general solution to the differential equation $\dot{\bar{p}}=\widehat{\xi} \bar{p}$. Then, make use of the fact that $\|\omega\|=1$ to reparameterize t to be θ. Specifically, find the expression for $p(\theta)$ in terms of $p(0)$.
5. Recall that a screw motion S consists of an axis l, a pitch h, and a magnitude M. The transformation g corresponding to S has the following effect on a point p

$$
\begin{equation*}
g p=q+e^{\hat{\omega} \theta}(p-q)+h \theta \omega \tag{0.3}
\end{equation*}
$$

Convert this transformation to homogeneous coordinates.

$$
\begin{aligned}
& \frac{A^{n} t^{n}}{n!}=\frac{A^{n}}{(n-1)!} t^{n-1}=A \cdot \underbrace{\frac{A^{n-1}}{(n-1)!} t^{n-1}}_{1} \\
& \text { constant } \\
& \frac{n}{n!}=\frac{1}{(n-1)!} \quad \begin{array}{l}
\begin{array}{l}
(n-1)^{t n} \\
\text { term of } \\
\text { the sum }
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A \cdot-A=-A \cdot A \\
& e^{A} e^{-A}=e^{A-A}=e^{0}=I
\end{aligned}
$$

$$
\begin{aligned}
\dot{y}(t) & =-A e^{-A t} x(t)+e^{-A t} \cdot(A x(t)) \\
& =-A e^{-A t} x(t)+A e^{-A t} x(t) \\
& =0 \\
y(t) & =e^{-A t} x(t)=x_{0}, x(t)=e^{A t} x_{0} \\
y(t) & =x(0)=x_{0}
\end{aligned}
$$

$$
\begin{array}{lc}
\dot{x}=A x & A=\hat{w}, \quad \hat{w}=\left[\begin{array}{ccc}
0 & -w_{3} & w_{2} \\
w_{1} & 0 & w_{1} \\
w_{2} & w_{1} & 0_{1}
\end{array}\right] \\
x(t)=e^{A t} x_{0} & \hat{\lambda} \\
w=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{3}
\end{array}\right]
\end{array}
$$

Aris of rotution

$$
\begin{aligned}
& \hat{\omega} \in \operatorname{son}(3) \\
& e^{\omega t}=R \in S O(3)
\end{aligned}
$$

$$
\begin{array}{ll}
\xi \in \mathbb{R}^{b}, \xi \in \operatorname{se}(3) \quad \xi & =\left[\begin{array}{l}
v \\
w
\end{array}\right] \\
e^{\hat{\xi}^{\text {secial orth }} t}=g \in S E(3]
\end{array} \quad \hat{\xi}=\left[\begin{array}{ll}
\hat{\omega} & v \\
0 & 0
\end{array}\right]
$$

${ }^{\wedge}$ Lie Algebra

Problem 3 -Forward Kinematics
Fig. 2 shows the initial configuration of a robot arm whose first joint is a screw joint of pitch h. The other two joints are revolute

1. Write down the 4×4 initial end effector configuration of the manipulator $g_{s b}(0)$
2. Find the twists $\xi_{1}, \xi_{2}, \xi_{3}$ corresponding to each of the joints of the manipulator, and hence write down an expression for the forward kinematics map $g_{s b}(\theta)$. You may leave your answer in terms of the exponential of known matrices.

Problem 4-Inverse Kinematics
Consider a manipulator where we have the forward kinematics map

$$
\begin{equation*}
g_{s t}(\theta): \theta \rightarrow S E(3) \tag{0.4}
\end{equation*}
$$

1. Use the $g_{s t}$ map to explain what it means for the manipulator to have multiple IK solutions for some end effector configuration.
2. Why can multiple IK solutions be good? Bad?

$$
g_{3 t}\left(\theta_{1}\right)=g_{\partial t}\left(\theta_{2}\right)=g_{J}
$$

Figure 1: a) A revolute joint and b) a prismatic joint.

Figure 2: A 3DOF manipulator

