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Problem 1 - Matrix Exponential and Linear ODEs

Recall that the exponential of a square matrix A ∈ Rn×n is defined by the following infinite series:

eA =

∞∑
n=0

An

n!
(0.1)

1. Let Y (t) = eAt. By differentiating the series representation, show that Ẏ (t) = AeAt.
We can write

Y (t) = eAt =

∞∑
n=0

An

n!
tn (0.2)

Now differentiate with respect to t to get

Ẏ (t) =

∞∑
n=0

An

n!
ntn−1 =

∞∑
n=1

An

(n− 1)!
tn−1 (0.3)

Now from the above series we can factor out an A in two ways:

Ẏ (t) = A

( ∞∑
n=1

An−1

(n− 1)!
tn−1

)
= AeAt (0.4)

Ẏ (t) =

( ∞∑
n=1

An−1

(n− 1)!
tn−1

)
A = eAtA (0.5)

(0.6)

as needed.

2. Show that (eA)−1 = e−A

Consider two square matrices A and B. If two square matrices commute, i.e. AB = BA, then we can
write

eAeB = eA+B (0.7)

Because A and −A always commute,

eAe−A = eA+(−A) = e0 = I (0.8)

Therefore

(eA)−1 = e−A (0.9)

3. Show that x(t) = eAtx0 is the unique solution to the differential equation ẋ = Ax with initial condition
x(0) = x0, for x(t) ∈ Rn and A ∈ Rn×n.
Hint: Do this by first considering the function y(t) = e−Atx(t). What is the time derivative of y(t)?

Consider the time derivative ẏ. Using the chain rule, we can write

ẏ(t) = e−Atẋ(t)−Ae−Atx(t)

= e−AtAx(t)−Ae−Atx(t)

= (e−AtA−Ae−At)x(t)

= 0
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since ẏ is uniformly 0 and y is clearly differentiable, y must be some constant vector c ∈ Rn. So we have
e−Atx(t) = c → x(t) = eAtc. By substituting t = 0, it is clear that c = x(0) = x0, giving us the unique
solution for x(t) = eAtx0 as needed.

Problem 2 - Rigid Body Potpourri

1. Write the expressions for the velocity of the point p (ie. ṗ(t)) when attached to both the revolute and
prismatic joints in Fig. 1. Assume that ω ∈ R3, ||ω|| = 1, and q ∈ R3 is some point along the axis of ω.

For the revolute joint: Recall that ωr produces the linear velocity of a point rotating about axis ω with
radius r. But in the null space of ω̂ is any vector along the axis of ω. So we may replace r with any vector
that can be written as r + c · ω. This leads us to the expression ṗ(t) = ω × (p(t)− q).
For the prismatic joint: Not having any rotation simplifies things severely! We just consider our linear
component and have ṗ(t) = v.

2. Find ξ̂ to complete the following expression of ṗ(t) in homogeneous coordinates for a revolute joint.

We can expand out our expression for linear velocity to get

ṗ = ω̂p− ω̂q (0.10)

Factor terms into a matrix-vector expression to get the desired result.[
ṗ
0

]
=

[
ω̂ −ω × q
0 0

]
︸ ︷︷ ︸

=: ξ̂

[
p
1

]

Hint: Recall the skew symmetric matrix ŵ of w:

ω = [ω1 ω2 ω3]T ; ŵ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (0.11)

3. Find ξ̂ to complete the following expression of ṗ(t) in homogeneous coordinates for a prismatic joint.

We see that hte velocity does not depend on ṗ, so the only part of the ξ̂ matrix which becomes non-zero
is the additive component. [

ṗ
0

]
=

[
0 v
0 0

]
︸ ︷︷ ︸

=: ξ̂

[
p
1

]

4. Write the general solution to the differential equation ˙̄p = ξ̂p̄. Then, make use of the fact that ||ω|| = 1
to reparameterize t to be θ. Specifically, find the expression for p(θ) in terms of p(0).

We make use of hte matrix exponential to solve our linear matrix differential equation. ||ω|| = 1 means
that we have a unit angular velocity, so we can say that radians = seconds. This allows us to make a
direct substitution for θ = t.

p̄(t) = eξ̂tp̄(0)

p̄(θ) = eξ̂θp̄(0)

Recall that a screw motion S consists of an axis l, a pitch h, and a magnitude M . The transformation g
corresponding to S has the following effect on a point p

gp = q + eω̂θ(p− q) + hθω (0.12)

Convert this transformation to homogeneous coordinates.

g

[
p
1

]
=

[
eω̂θ (I − eω̂θ)q + hθω
0 1

] [
p
1

]
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Problem 3 - Forward Kinematics

Fig. 2 shows the initial configuration of a robot arm whose first joint is a screw joint of pitch h. The other
two joints are revolute

1. Write down the 4× 4 initial end effector configuration of the manipulator gsb(0)

By direct inspection we can write

gsb(0) =


0 −1 0 0
1 0 0 L2 + L4

0 0 1 L3

0 0 0 1


2. Find the twists ξ1, ξ2, ξ3 corresponding to each of the joints of the manipulator, and hence write down an

expression for the forward kinematics map gsb(θ). You may leave your answer in terms of the exponentials
of known matrices.

The first joint is a screw joint, and the others are standard revolute joints. So for the first joint we have
v1 = −ω1 × q1 + hω1

q1 = [0, 0, 0]T , ω1 = [0, 0, 1]T , v1 = [0, 0, h]T , ξ1 = [0, 0, 2, 0, 0, 1]T

For every other joint, we just have vi = −ωi × qi

q2 = [0, 0, L1]T , ω2 = [0, 1, 0]T , v2 = [−10, 0, 0]T , ξ2 = [−10, 0, 0, 0, 1, 0]T

q3 = [0, 5, 5]T , ω3 = [1, 0, 0]T , v3 = [0, 5,−5]T , ξ3 = [0, 5,−5, 1, 0, 0]T

Then the FK map is simply

gsb(θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3gst(0)

Problem 4 - Inverse Kinematics

Consider a manipulator where we have the forward kinematics map

gst(θ) : θ → SE(3) (0.13)

1. Use the gst map to explain what it means for the manipulator to have multiple IK solutions for some end
effector configuration.

If the manipulator has multiple IK solutions, that means for some end effector configuration g ∈ SE(3),
there exist two distinct vectors of joint angles θ1, θ2, θ1 6= θ2 of appropriate dimension such that

gst(θ1) = gst(θ2) = g (0.14)

2. Why can multiple IK solutions be good? Bad?

Good: We have more flexibility when reaching goals for our manipulator (ie. We need our manipulator to
hold a cup, but also need to ensure that the manipulator’s elbow doesn’t hit a table. Multiple IK solutions
means that it’s more likely that we have a joint angle configuration for our robot where the elbow is not
in contact with the table).

Bad: Path planning becomes harder when certain IK solutions for the same end effector configuration
may put the manipulator in an awkward position for further manipulator even when there exists an IK
solution with the desired manipulator configuration.
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Figure 1: a) A revolute joint and b) a prismatic joint.

Figure 2: A 3DOF manipulator


