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1 Convex Optimization

We’ve played around with optimization problems before in this class, but we’ll briefly review some concepts
before proceeding. A generic optimization problem has the following form

min
x
f0(x)

subject to

fi(x) ≤ 0, i = 1, · · · , k
hj(x) = 0, j = 1, · · ·m

where f0 is called the objective function, fi are the inequality constraint functions and hj are the equality
constraint functions. The set X = {x : fi(x) ≤ 0, hj(x) = 0} is called the feasible set of the problem, and it
is the set of all x that satisfy the constraints of the problem. Every such point is called a feasible point. The
optimization problem then seeks to find a feasible point at which the value of the objective function is minimum.

A subset S ⊆ Rn is called convex if for every x, y ∈ S, the line segment connecting x and y is also fully
contained in S. Precisely, we must have

tx+ (1− t)y ∈ S for all t ∈ (0, 1)

A function f : Rn → R is called convex if for every x, y ∈ Rn, we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all t ∈ (0, 1)

and it is called strictly convex if the above inequality is strict. Intuitively, this condition states that the line
connecting (x, f(x)) and (y, f(y)) in Rn+1 always lies above the graph of f , which is a way of formalizing the
notion that convex functions are ”bowl shaped”.

An optimization problem is convex if the objective function and the inequality constraint functions are all
convex, and the equality constraints are affine. Equivalently, a convex optimization problem is one that seeks
to minimize a convex function over a convex feasible set. Convex optimization problems are nice, since we are
guaranteed that any local optimum is also a global optimum.

For our purposes, it will suffice to note that convex problems are easy to solve and there exists software out
there that will solve them for us. We will concern ourselves with two classes of convex optimization problems:
linear programs (LP) and quadratic programs (QP). If we can re-write a given optimization problem in one of
these forms, then we can easily solve it using convex optimization solvers. Popular choices in Python include
cvxpy and casadi.

1.1 Linear programs

A linear program is one where the objective function is linear, and so are the equality and inequality constraints.

min
x
c>x

subject to

Ax ≤ b
Dx = e

where A ∈ Rk×n is the stacked matrix of inequality constraints and D ∈ Rm×n is the stacked matrix of equality
constraints. Here, the inequality Ax ≤ b is understood to be element-wise.
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1.2 Quadratic programs

A quadratic function is a function f : Rn → R of the form

f(x) = x>Qx+ b>x+ c

where Q ∈ Rn×n, b ∈ Rn, c ∈ R. b>x is called the linear term. When Q is positive semi-definite, f is a convex
function (regardless of what b, c are). When Q is positive definite, f is strictly convex.

A quadratic program is an optimization problem where the objective function is a convex quadratic and the
inequality and equality constraints are linear.

min
x
x>Qx+ b>x+ c

subject to

Ax ≤ b
Dx = e

Once again, the inequality above is element-wise.

Problem 1

1. Show that the problem of finding the minimum norm solution of a linear equation Ax = b can be written
as a quadratic program.

2 Grasping

2.1 Wrenches

A wrench is a generalized force acting on a rigid body consists of a linear component (pure force) and an angular
component (pure moment) acting at a point. A wrench is a 6D vector F that specifies the force and torques
acting at the center of a particular reference frame. It is the inertial analogue of a twist. A wrench is specified
as F = (fx, fy, fz, τx, τy, τz), where f = (fx, fy, fz) is the force acting at a point and τ = (τx, τy, τz) is the torque
vector about that point.

2.2 Grasp map

We can define a contact as
Fci = Bcifci

Where B is the contact basis, or the directions in which the contact can apply force, and f is a vector in that
basis. F is the wrench which the contact applies. In our case, we use a soft contact model, which has both
lateral and torsional friction components, so the basis is

Bci =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1


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However, in the real world, friction is not infinite. For the contact to resist a wrench without slipping, the
contact vector must lie within the friction cone, which is defined

FCci = {f ∈ R4 :
√
f21 + f22 ≤ µf3, f3 > 0, |f4| ≤ γf3}

However, we want the wrenches that a contact point can resist in the world frame, not the contact frame.
So we define

Gi :=

[
Roci 0
p̂oci Roci

]
Bci = AdT

g−1
oci

Bci

A grasp is a set of contacts, so we define the wrenches (in the world frame) a grasp can resist as:

Fo = G1fc1 + · · ·+Gkfck =
[
G1 · · · Gk

]  fc1
...
fck

 = Gf

The resulting compound matrix G above is called the grasp map.

2.3 Force closure

A grasp is in force closure when finger forces lying in the friction cones span the space of object wrenches

G(FC) = R6

Essentially, this means that any external wrench applied to the object can be countered by the sum of
contact forces (provided the contact forces are high enough).

For a two-contact soft-fingered grasp, we also have the following theorem which makes it very easy to check
when a grasp is in force closure. This is theorem 5.7 from MLS.

Theorem. A spatial grasp with two soft-finger contacts is force-closure if and only if the line connecting
the contact point lies inside both friction cones.

2.4 Discretizing the Friction Cone

Checking that f ∈ FC can be difficult. Often when evaluatin grasps, we will write down an optimization
problem that has f ∈ FC as a constraint.

FCci =


√
f21 + f22 ≤ µf3

f3 > 0

|f4| ≤ γf3

We can approximate the (conical) friction cone as a pyramid with n vertices. The level sets of the friction cone
are circles, but the level sets for this convex approximation are n sided polygons circumscribed by the circle.
Thus, the interior of this convexified friction cone is a conservative approximation of the friction cone itself.

Figure 1: Approximations of the friction cone. From section 5.3 of MLS.

Any point in the interior of this pyramid can be described as a sum of

f = α0f0 +

n∑
i=1

αifi = Fα

where fi are the edges of the pyramid and f0 a straight line in z, and the weights α are all non-negative. Here,
we can write a composite matrix F with the fi vectors as its columns. This lets us more easily characterize any
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f in the friction cone. We make the approximation that f ∈ FC if and only if there exists a non-negative vector
α such that f = Fα. Note that here we have also not made explicit how to incorporate the torque component
f4 into our friction cone, but that is an easy extension, and one you will need to implement for your project.

With this approximation, the condition that f ∈ FC is equivalent to the pair of linear constraints {f =
Fα, α ≥ 0} (where this inequality is understood to be element-wise).

Problem 2
Let w be a given wrench. Let a two-contact grasp be given to you with contact grasp maps G1 and G2. We

wish to find the input force f ∈ FC with the smallest norm that can resist the wrench w applies at the center
of mass of the object being grasped. Using the polyhedral approximation of the friction cone, write this as a
quadratic program.

Problem 3
Consider the box grasped by 2 soft-finger contacts shown in figure 2. Find the grasp map. Assume the

object is a cube of side-length 2.

Figure 2: Two finger grasp.
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