Discussion \#1

Author: Amay Saxena, Jay Monga, Neha Hudait

Problem 1 - Matrix Exponential and Linear ODEs

Recall that the exponential of a square matrix $A \in \mathbb{R}^{n \times n}$ is defined by the following infinite series:

$$
\begin{equation*}
e^{A}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!} \tag{0.1}
\end{equation*}
$$

1. Let $Y(t)=e^{A t}$. By differentiating the series representation, show that $\dot{Y}(t)=A e^{A t}$.
2. Show that $\left(e^{A}\right)^{-1}=e^{-A}$
3. Show that $x(t)=e^{A t} x_{0}$ is the unique solution to the differential equation $\dot{x}=A x$ with initial condition $x(0)=x_{0}$, for $x(t) \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$.
Hint: Do this by first considering the function $y(t)=e^{-A t} x(t)$. What is the time derivative of $y(t)$?

Problem 2-Rigid Body Potpourri

1. Write the expressions for the velocity of the point p (ie. $\dot{p}(t)$) when attached to both the revolute and prismatic joints in Fig. 1. Assume that $\omega \in \mathbb{R}^{3},\|\omega\|=1$, and $q \in \mathbb{R}^{3}$ is some point along the axis of ω.
2. Find $\widehat{\xi}$ to complete the following expression of $\dot{p}(t)$ in homogeneous coordinates for a revolute joint.

Hint: Recall the skew symmetric matrix \widehat{w} of w :

$$
\omega=\left[\begin{array}{lll}
\omega_{1} & \omega_{2} & \omega_{3}
\end{array}\right]^{T} ; \quad \widehat{w}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \tag{0.2}\\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

3. Find $\widehat{\xi}$ to complete the following expression of $\dot{p}(t)$ in homogeneous coordinates for a prismatic joint.

4. Write the general solution to the differential equation $\dot{\bar{p}}=\widehat{\xi} \bar{p}$. Then, make use of the fact that $\|\omega\|=1$ to reparameterize t to be θ. Specifically, find the expression for $p(\theta)$ in terms of $p(0)$.
5. Recall that a screw motion S consists of an axis l, a pitch h, and a magnitude M. The transformation g corresponding to S has the following effect on a point p

$$
\begin{equation*}
g p=q+e^{\hat{\omega} \theta}(p-q)+h \theta \omega \tag{0.3}
\end{equation*}
$$

Convert this transformation to homogeneous coordinates.

Problem 3-Forward Kinematics

Fig. 2 shows the initial configuration of a robot arm whose first joint is a screw joint of pitch h. The other two joints are revolute

1. Write down the 4×4 initial end effector configuration of the manipulator $g_{s b}(0)$
2. Find the twists $\xi_{1}, \xi_{2}, \xi_{3}$ corresponding to each of the joints of the manipulator, and hence write down an expression for the forward kinematics map $g_{s b}(\theta)$. You may leave your answer in terms of the exponentials of known matrices.

Problem 4 - Inverse Kinematics

Consider a manipulator where we have the forward kinematics map

$$
\begin{equation*}
g_{s t}(\theta): \theta \rightarrow S E(3) \tag{0.4}
\end{equation*}
$$

1. Use the $g_{s t}$ map to explain what it means for the manipulator to have multiple IK solutions for some end effector configuration.
2. Why can multiple IK solutions be good? Bad?

Figure 1: a) A revolute joint and b) a prismatic joint.

Figure 2: A 3DOF manipulator

