Discussion 7 : Two-View Geometry

7.1 Question 1: Fundamental Matrix

Let:

$$
F=\left[\begin{array}{lll}
f_{1} & f_{4} & f_{7} \\
f_{2} & f_{5} & f_{8} \\
f_{3} & f_{6} & f_{9}
\end{array}\right]
$$

and let $\mathbf{f}=\left[f_{1}, \ldots, f_{9}\right]$. Show that the epipolar constraint can be represented as the following inner product:

$$
a\left(x_{i}, x_{i}^{\prime}\right) \mathbf{f}=0
$$

where $a\left(x_{i}, x_{i}^{\prime}\right)$ is a row vector that depends only on the coordinates of the point x_{i} and x_{i}^{\prime}
Note: $x_{i}^{\prime} F x_{i}=0$

Answer 1 If we let $\mathbf{x}_{i}=\left[\begin{array}{lll}x_{i} & y_{i} & 1\end{array}\right]^{T}$ and $\mathbf{x}_{i}^{\prime}=\left[\begin{array}{lll}x_{i}^{\prime} & y_{i}^{\prime} & 1\end{array}\right]^{T}$, by expanding (1) we obtain:

$$
\left(x_{i}^{\prime} x_{i}\right) f_{1}+\left(y_{i}^{\prime} x_{i}\right) f_{2}+x_{i} f_{3}+\left(x_{i}^{\prime} y_{i}\right) f_{4}+\left(y_{i}^{\prime} y_{i}\right) f_{5}+y_{i} f_{6}+x_{i}^{\prime} f_{7}+y_{i}^{\prime} f_{8}+f_{9}=0
$$

that, in vector form can be written as:

$$
\left[\begin{array}{lllllllll}
x_{i}^{\prime} x_{i} & y_{i}^{\prime} x_{i} & x_{i} & x_{i}^{\prime} y_{i} & y_{i}^{\prime} y_{i} & y_{i} & x_{i}^{\prime} & y_{i}^{\prime} & 1
\end{array}\right] \boldsymbol{f}
$$

Hence we conclude that:

$$
\boldsymbol{a}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right)=\left[\begin{array}{llllllll}
x_{i}^{\prime} x_{i} & y_{i}^{\prime} x_{i} & x_{i} & x_{i}^{\prime} y_{i} & y_{i}^{\prime} y_{i} & y_{i} & x_{i}^{\prime} & y_{i}^{\prime}
\end{array}\right]
$$

7.2 Question 2: Fundamental Matrix Details

Answer the following questions, providing an adequate justification.

1. How many degrees of freedom does the fundamental matrix F have?
2. How many independent equations do we need to estimate f? Why?
3. Explain how the system of equations can be written in matrix form as $\mathrm{Af}=0$. What are the dimensions of A ? Write explicitly A.
4. How would you estimate f via constrained least squares?

Answer 2 Note how most of the considerations are very similar to those we made in order to estimate an homography.

- Since the constraint (1) holds in the projective space, F is defined up to a scale factor and therefore there are only 8 independent ratios. Moreover the rank of the matrix is 2 (i.e. the determinant is zero). Hence the fundamental matrix has 7 degrees of freedom.
- Since F has 7 degrees of freedom we need at least 7 points (plus two extra constraints that will fix the scale and enforce the rank condition). Note that the algorithm that we are developing is called 8 points algorithm and it uses at least 8 points, since the rank condition is not enforced explicitly.
- The set of equations for N point pairs can be written in matrix form as:

$$
A \boldsymbol{f}=\left[\begin{array}{c}
\boldsymbol{a}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}^{\prime}\right) \\
\boldsymbol{a}\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}^{\prime}\right) \\
\vdots \\
\boldsymbol{a}\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{N}^{\prime}\right)
\end{array}\right] \boldsymbol{f}=0
$$

where $A \in \mathbb{R}^{N \times 9}$.

- Similarly to what we did for homographies, we need to solve the constrained least square problem:

$$
\hat{\boldsymbol{f}}=\underset{\boldsymbol{f} \in \mathbb{R}^{9},\|\boldsymbol{f}\|=1}{\operatorname{argmin}}\|A \boldsymbol{f}\|
$$

7.3 Question 3: One more Time - Fundamental Matrix

Recall that the fundamental matrix can be written as $F=\hat{e^{\prime}} K^{\prime} R K^{-1}$. Show that $e^{\prime} \times x^{\prime}=F x$.

Answer 4:

$$
\begin{aligned}
F \mathbf{x} & =\left[\mathbf{e}^{\prime}\right]_{\times} K^{\prime} R K^{-1} \mathbf{x} \\
& =\left(\text { since } \mathbf{x}=P_{\mathbf{1}} \mathbf{X}\right) \\
& =\left[\mathbf{e}^{\prime}\right]_{\times} K^{\prime} R K^{-1} K\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \mathbf{X} \\
& =\left[\mathbf{e}^{\prime}\right]_{\times} K^{\prime} R\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \mathbf{X} \\
& =\left[\mathbf{e}^{\prime}\right]_{\times} K^{\prime}\left[\begin{array}{ll}
R & \mathbf{0}
\end{array}\right] \mathbf{X}
\end{aligned}
$$

We are almost there. Following the suggestion we recall that in Question 2 we showed that $\mathbf{e}^{\prime}=K^{\prime}$ t and that the cross product of a vector with itself is zero. Therefore we have that:

$$
\begin{aligned}
F \mathbf{x} & =\left[\mathbf{e}^{\prime}\right]_{\times} K^{\prime}\left[\begin{array}{ll}
R & \mathbf{0}
\end{array}\right] \mathbf{X} \\
& =\left[\mathbf{e}^{\prime}\right]_{\times} K^{\prime}\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \mathbf{X} \\
& =\left[\mathbf{e}^{\prime}\right]_{\times} \mathbf{x}^{\prime} \\
& =\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}
\end{aligned}
$$

7.4 Question 4: Homographies

Let p correspond to a point on one image and let p correspond to the same point in the scene, but projected onto another image. Write a general equation for how a homography matrix H maps points from one image to another. How would H be restricted if it must describe an affine transformation?

The mapping is of the form $H p=p^{\prime}$. The affine transform is a subset of homographies where the third row of H is $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$. Your linear equation for a single point correspondence takes the following form:

$$
\left[\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]
$$

Note that we are using homogeneous coordinates in this case, but our point correspondences are in image coordinates. In the affine homography case, $w=1$.

7.5 Question 5: Homographies

How many points do you need to calculate a homography and why?

$$
\begin{gathered}
\text { Lets assume } x=\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right) \text { and } x^{\prime}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \text { in homogeneous coordinates } \\
\text { and } H=\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right) \\
\qquad c\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
\end{gathered}
$$

By eliminating c we can formulate the above equation in the form

$$
A h=0
$$

where $A=\left(\begin{array}{ccccccccc}-x & -y & -1 & 0 & 0 & 0 & u x & u y & u \\ 0 & 0 & 0 & -x & -y & -1 & v x & v y & v\end{array}\right)$ and $h=\left(\begin{array}{lllllllll}h_{1} & h_{2} & h_{3} & h_{4} & h_{5} & h_{6} & h_{7} & h_{8} & h_{9}\end{array}\right)^{T}$

When there are more than 4 points it would be an over-determined case and hence we have to use least square solution to find h

$$
\min _{h}\|A h\|_{2} \operatorname{rank}(\mathrm{~A})=3
$$

