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Preface

The Fall 2018 graduate-level EE221A Linear Systems Theory course, offered by Professor Yi Ma
in the Department of Electrical Engineering and Computer Sciences (EECS) at the University
of California, Berkeley, included content largely drawn from the following sources:

• Tomlin, Claire. Lecture Notes on Linear Systems Theory [10].

• Ma, Yi. Lectures Notes on Linear System Theory [7].

• Callier, Frank and Desoer, Charles. Linear System Theory [4].

• Sastry, Shankar. Nonlinear Systems: Stability, Analysis, and Control [9]

• Liberzon, Daniel. Calculus of Variations and Optimal Control, A Concise Introduction
[6]

• Yung, Chee-Fai. Linear Algebra, 3rd Edition. [11]

• Yung, Chee-Fai. Lecture Notes on Mathematical Control Theory. [12]

The following collection of notes represents my attempt to organize this ensemble of
linear systems-related material into a friendly introduction to the subject of linear systems. The
chapters contain collections of lectures in Professor Claire Tomlin’s Lecture Notes on Linear
Systems Theory [10], presented in roughly the same order, with the exception of Lecture 11
(Linear Quadratic Regulator), which has been relocated to the end of the text. Chapter 1
contains content from Lecture 1, which gives an introduction to linear systems. Chapter 2
includes material from Lectures 2-6, and primarily reviews concepts in linear algebra, such as
fields, vector spaces, linear independence and dependence, linear maps and matrix representations,
norms, orthogonality, inner product spaces, adjoint maps, projection, least squares optimization,
and the singular value decomposition. Chapter 3 was organized from Lectures 7-10, and
formally introduces dynamical systems and their properties, beginning with the Fundamental
Theorem of Differential Equations, particular classes of dynamical systems (linear, non-linear,
time-invariant, time-varying), and concluding with properties of the matrix exponential and an
inverted pendulum example. Chapter 4, compiled from material in Lectures 12-15, discusses
notions of stability, as well as necessary and sufficient conditions for these different definitions
of stability. Chapter 5, which spans Lectures 16-22, defines controllability, observability,
stabilizability, and detectability, and explores different criteria that different types of systems
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must satisfy in order to be controllable, observable, stabilizable, and/or detectable. Chapter 6
discusses the Linear Quadratic Regulator, the subject of Lecture 11, as well as the Hamilton-
Jacobi-Bellman Equation, as discussed in Chapter 2 of [6]. Finally, appendices including the
Basic Lypaunov Theorem and other stability theorems for non-linear systems, among other
material, have been added, partly for completeness, and partly to interest readers in more
advanced topics in control theory. This material originates largely from Chapter 5 of [9].

These notes have several possible shortcomings. To minimize the reader’s confusion, I
have attempted to unify the notation used in the references cited above, and correct most of the
typos in the text. Nevertheless, it is inevitable that minor errors or inconsistencies in notation
remain scattered throughout the notes (Readers have discovered such mistakes are welcome to
contact me at chihyuan chiu@berkeley.edu). Regarding the material itself, Professors Yi Ma
and Claire Tomlin often gave useful remarks in their lectures that were not included in their
written notes. Although I have added as many of these comments into the notes as possible, it is
certain that I have missed many others. Moreover, some supplementary material from the Fall
2017 EE221 Linear Systems Theory course were omitted, since I found the material to be similar
to content already included. (e.g. Somil Bansal’s ”Special Lecture on the Linear Quadratic
Regulator,” which discusses dynamic programming solutions to the finite LQR problem, and
Dr. Jerry Ding’s ”Alternative Derivation of Linear Quadratic Regulator,” which describes how
the Pontryagin Minimum Principle can be applied to solve the linear quadratic optimization
problem.) My inexperience with the subject of linear systems may also have contributed towards
errors in the notes. Nonetheless, it is my hope that the text remains a useful, introductory
reference to readers studying linear systems theory for the first time.

It is an honor for me to dedicate these notes to the following individuals. Naturally,
without the carefully prepared lectures and handouts given by Professor Yi Ma, and the
painstakingly detailed notes and figures organized by Professor Claire Tomlin, this work would
not exist. I would also like to acknowledge Professors Shankar Sastry, author of ”Nonlinear
Systems: Stability, Analysis, and Control” [9], and Professor Daniel Liberzon, author of
”Calculus of Variations and Optimal Control, A Concise Introduction” [6], for their time and
effort into compiling these works, which serve as the foundation of most of the material in the
last chapter and appendix. Somil Bansal, the Graduate Student Instructor for this course in
the Fall semester of 2018, deserves gratitude not only for meticulously preparing the discussion
notes included in this text, but also for taking the extra effort to arrange office hours, and
organize midterm and final discussion sessions. My appreciation extends to Professor Chee-Fai
Yung, who first sparked my interest in control theory, and who graciously allowed me to use
sections of his lectures notes in this work. I would also like to acknowledge my fellow classmates
in this course, many of whom provided helpful suggestions throughout the semester. Lastly, I
would like to thank my parents for their unending support and encouragement.

Chih-Yuan Chiu
University of California, Berkeley

Department of Electrical Engineering and Computer Sciences
December 2018



Notation

The following notation will be employed throughout this text:
N : Set of all positive integers
Z : Set of all integers’
Q : Set of all rational numbers
R : Set of all real numbers, i.e. the real line
C : Set of all complex numbers
C− : Set of all complex numbers with a (strictly) negative real part
C− : Set of all complex numbers with a non-positive real part
C0 : Set of all purely imaginary numbers
C+ : Set of all complex numbers with a (strictly) positive real part
C+ : Set of all complex numbers with a non-negative real part
∈: Is an element of (Is contained in)
∀: For each (for all)
∃: There exists
∃!: There exists a unique
∃?: Does there exist
3: Such that
A⇒ B: A implies B
B ⇐ A: B implies A
A⇔ B: A and B are equivalent
In: Identity matrix of dimension n× n
On: Zero matrix of dimension n× n
◦: Composition of Functions
1X : Identity map from X to X
S1 ⊂ S2: The set S1 is a subset of the set S2

W ≤ V : The vector space W is a subspace of the vector space V
W ⊕ V : The direct sum of W and V .

W
⊥
⊕ V : The orthogonal direct sum of W and V .

| · |: Norm of a vector
‖ · ‖: Norm of a matrix or operator
X(s): Unilateral Laplace transform of x(t)

(If the time-domain argument is capitalized, e.g. X(t), a hat is used, e.g. X̂(s)).
ust(t): Unit step function
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LTI: Linear time-invariant
LTV: Linear time-variant
SISO: Single-input-single-output
MIMO: Multiple-input-multiple-output



Chapter 1

Introduction

1.1 Lecture 1

Goals of Lecture 1:

1. An introduction to the broad concepts of modeling and analysis of engineering systems—
Modeling, Analysis and control, Verification, Simulation, Validation

2. An overview of the course

The difference between science and engineering is sometimes expressed in terms of interaction
with a physical phenomenon. Physical sciences study the phenomenon, while the engineering
disciplines design, manipulate, and control the phenomenon. Simply put, scientists describe
while engineers control.

The main purpose of control is to choose an input u(t) to a system such that some
pre-defined reward or cost is optimized.

9



10 CHAPTER 1. INTRODUCTION

1. Modeling:

The same physical system may have different models, the best choice depends on the
problem at hand:

• MEMS Device:

• Hubble Space Telescope:

Which model makes the most sense to use to move the telescope from one altitude
to another?

The utility of a model is in its predictive power: the ability to use it to forecast what
the system will do. For example, if, while modeling a system, you notice that input ui
produces output yi for each i = 1, · · · ,m, then a model will be judged by what it predicts
the outcome will be when the input is other than u1, · · · , un.

A basic tenet of science and engineering is that it is of value to find compact, abstract
principles which serve as models rather than an exhaustive listing of rules. The principle
is that abstraction saves time and effort. Models can then be analyzed, starting from
abstract representations.

In the current age of artificial intelligence (AI) and machine learning (ML), it has become
possible to construct more complicated models, and extend (generalize) models to accommodate
an infinite number of possible inputs.

In general, dynamical systems can be categorized by their temporal evolution, linearity,
and time invariance.
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(a) Temporal Evolution:

t is a ”privileged” variable representing the progression of time. The reason t
is ”privileged” is for its uni-directionality of evolution. However, there are many
models for the evolution of time.

• Continuous time:
t ∈ R

• Discrete time, synchronous:

t ∈ {nT |n ∈ Z}
• Discrete time, asynchronous:

t ∈ {ti|i ∈ N}, or t ∈ Z,
i.e. ei represents events in a processor when it receives packets from a bus:

(b) Linear models, Nonlinear models:

Suppose the system can be in a finite number of ”states.” When this ”state
space” is finite, the system is usually modeled by a finite state automation:

Here, it is understood that u causes the system to transition from state q1 to state q2,
and so on.

Example. A packet transmitting node transmits a packet and then waits for up to T
seconds (timeout) before responding. If an acknowledgement is received, it sends another
packet if one is available.
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Here, there is no notion of linearity or nonlinearity explicitly (though we can have
finite state spaces which have linear structure). When the state space has a vector space
structure, we can talk about linearity or non-linearity.

Analysis of linear models is much easier than that of nonlinear models (see EECS 222,
Spring Semester).

2. Analysis and Control:

Control, broadly speaking, is pervasive; consider the following list of applications:

• Autopilots on aircraft and spacecraft

• Air Traffic Control

• Chemical Process Control

• Mechatronic:

Control of ELectromechanical devices, e.g. robots, MEMS, spacecraft, disk drives

• Power Systems—Generators, turbines, power networks

• Communication Networks:

Control of queues, flow control at the network level (congestion management)
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• Quantum Chemistry:

Bond-selective chemistry, e.g. breaking strong bonds and retaining weak bonds

• Biological motor control:

How we organize control of our musculo-skeletal systems

• Telepresence:

Projecting your influence to a remote location

• Computational biology:

Understanding developmental biology

Indeed, some factors that have contributed to a renaissance in control techniques include:

• Cheap processing ability

• CAD tools for inexpensive prototyping new controller designs

• The need to take systems—designed in an era in which suboptimal operation was
adequate—to a level of greater performance, e.g. power systems, highways, air traffic,
and even the Internet

3. Verification:

Here, one applies control laws or analysis techniques to a possibly more detailed model
of the system than the one it was based on to see if one can analytically verify or prove
that the control law does what is advertised. For example, if you want to regulate some
system variables, you shoudl try to prove stability of the system. If you know that a
certain region of the state space is unsafe, you need to prove that you can keep the
trajectory out of that region.

4. Simulation:

Sometimes, one does not have a clear sense of how all the different parts of the system
behave when one focuses on simplified models and objectives. Simulation helps one to
get an overall sense of the system design, as well as a sense of how the controller behaves
on a model closer to the true system.

5. Validation:

Validation, usually through extensive testing, refers to the act of trying out a design
on teh true system and testing if requirements (safety, performance) are met. Since
the true system is different from the model, which has gone through several levels of
simplification, it is important that the design be robust, i.e. its performance degrades
continuously (”gently”) with changes in the model. A major difficulty lies in the fact that
in simulations, only a finite number of states can be sampled at any given time.

In particular, in the field of adaptive control, controllers are designed to adapt to a
control system with parameters that vary.
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Chapter 2

Linear Algebra Review

Note. In the following, aside from Professor Claire Tomlin’s notes [10], we will also make use
of definitions, theorems, and examples from Professor Chee-Fai Yung’s text on linear algebra
[11].

2.1 Lecture 2

Goals of Lecture 2:
Review of Linear Algebra

1. Functions:

Injective, surjective, bijective, left inverse, right inverse

2. Field, ring

3. Vector space, subspace

4. Linear independence and dependence

5. Basis, coordinates

Note (Reference). Callier and Desoer (C;D), Appendix A (A.1 - A.3)

The purpose of abstraction is to describe mathematical, scientific, or engineering concepts
that share properties with familiar mathematical objects (Z,R,, etc.)

The following chart describes how linear algebraic concepts are used in the description
and analysis of linear systems:

1. Linear (vector) space:

State space, input space, output space

2. Linear maps:

Reachability map Lr, Observability map Lo

15



16 CHAPTER 2. LINEAR ALGEBRA REVIEW

3. Normed spaces:

Stability analysis

4. Inner product, Adjoint:

”Adjoint” linear systems, controllability Grammians, observability Grammians

Recall the notations used for the complex numbers, real numbers, and their subsets
(N,Z,Q,R,C), the set of quantifiers (∈, 6∈, ∀, ∃,∃!,∃?,3), and implications (=⇒,⇐=,⇐⇒)

Definition 2.1 (Cartesian Product). Given two sets X and Y, the Cartesian product X ×Y
is the set of all ordered pairs (x, y) such that x ∈ X and y ∈ Y:

X × Y ≡ {(x, y)|x ∈ X , y ∈ Y}

The set of all ordered n-tuples of real (complex) numbers is denoted by Rn (Cn).

Definition 2.2 (Functions). Given two sets X and Y, by f : X → Y, we mean that for each
x ∈ X , we assign a unique f(x) ∈ Y. In this case, we say that f maps the domain X into
the codomain (or image domain) Y, and we say that:

f(X ) = {f(x)|x ∈ X}

is the range of f .

Definition 2.3 (Injective Function). A function f : X → Y is called injective (or one-
to-one, or 1-1) if f(x1) = f(x2) for any x1, x2 ∈ X , then x1 = x2. In other words:

f is injective⇐⇒ f(x1) = f(x2)⇒ x1 = x2

⇐⇒ x1 6= x2 ⇒ f(x1) 6= f(x2)

Definition 2.4 (Surjective Function]). A function f : X → Y is called surjective if, for
each y ∈ Y, there exists some x ∈ X such that y = f(x); in other words:

f is surjective⇐⇒ ∀y ∈ Y ,∃x ∈ X 3 y = f(x)

⇐⇒ f(X ) = Y
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Definition 2.5 (Bijective Function, Bijection). A function f : X → Y is called bijective,
or a bijection, if it is both injective and surjective; in other words:

f is bijective⇐⇒ ∀y ∈ Y ,∃!x ∈ X 3 y = f(x)

Definition 2.6 (Left and Right Inverse). Consider f : X → Y, and let 1X be the identity
map on X . We define the left inverse of f , if it exists, as the map gL : Y → X such that

gL ◦ f = 1X ,

where gL ◦ f : X → X , the composition of gL and f , is defined by (gL ◦ f)(x) ≡ gL(f(x)).
Similarly, we define the right inverse of f as the map gR : Y → X such that f◦gR = 1Y .
If X = Y, and the left and right inverses of f : X → X exist, then they are identical

(Exercise). This mapping is called the inverse of f and is denoted as f−1.

Theorem 2.7. A function f : X → Y has a left inverse gL ⇐⇒ f is injective.

Proof.

”⇐ ” If f is injective, then for each distinct x1, x2 ∈ X , we have f(x1) 6= f(x2). Construct
a function gL : f(X ) → X such that gL(f(x)) = x for each x ∈ X . (This is a well-defined
function, due to the injectivity of f). By definition:

∵ (gL ◦ f)(x) = gL(f(x)) = x, ∀x ∈ X
∴gL ◦ f = 1X

If f has a left inverse g′L, then by definition of left inverse, g′L(f(x)) = x for each x ∈ X , so
g′L = gL. This demonstrates the uniqueness of the left inverse.

” ⇒ ” Suppose f : X → Y has a left inverse gL, and let x1, x2 ∈ X be given such that
f(x1) = f(x2). Then:

x1 = gL(f(x1)) = gL(f(x2)) = x2

�

Exercise. Prove that f : X → Y has a right inverse gR ⇐⇒ f is surjective.
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Definition 2.8 (Field). A field is a composed of a set F of scalars (numbers), on which the
two operations addition ” + ” and multiplication ” · ” are defined. These two operations satisfy
the properties below:

1. Closure of +, · —For each a, b ∈ F, a+ b ∈ F, and a · b (often simplified as ab) ∈ F

2. Commutativity over +, ·—For each a, b ∈ F, a+ b = b+ a and ab = ba.

3. Associativity—For each a, b, c ∈ F, (a+ b) + c = a+ (b+ c) and (ab)c = a(bc).

4. Distributivity—For each a, b, c ∈ F, a(b+ c) = ab+ ac.

5. Unit Elements—There exist scalars 0, 1 ∈ F, where 0 6= 1, such that for each a ∈ F,
a+ 0 = 0 + a = a and 1 · a = a · 1 = a. (It is possible to prove that 0 and 1 are unique).

6. Additive Inverse—For each a ∈ F, there exists a scalar b ∈ F such that a+b = b+a = 0.
(It is not difficult to show that b is unique. b is said to be the additive inverse of a, and
is often denoted as −a).

7. Multiplicative Inverse—For each a ∈ F, where a 6= 0, there exists some c ∈ F such that
ac = ca = 1. (It is possible to prove that c is unique. c is said to be the multiplicative
inverse of a, and is often denoted as 1/a or a−1).

Remark. A motivation for not allowing the additive identity 0 to have a multiplicative inverse
is to render the additive and multiplicative identities distinct. In other words, if 0 has a
multiplicative inverse, then 0 = 1.

Example. Recall that R,C are the set of real and complex numbers, respectively. Define:

R(s) ≡ the set of rational functions in swith coefficients in R
C(s) ≡ the set of rational functions in swith coefficients in C
R[s] ≡ the set of polynomials in swith coefficients in R

Rp,o(s) ≡ the set of strictly proper rational functions

Note that R,C,R(s),C(s) are fields, while R[s],Rp,o(s) are not (Not all elements in the latter
two sets have multiplicative inverses).

Furthermore, the subtraction of two scalars a, b ∈ F (i.e. a− b) is defined as the addition
of a to the additive inverse of b, i.e. −b. Similarly, the division of two scalars a, b ∈ F (i.e. a

b
),

where b 6= 0, is defined as the multiplication of a to the multiplicative inverse of b, i.e. b−1.
Below, we introduce several categories of algebraic structures which share properties

with the field. The last of these, the vector space, is the most important.

Definition 2.9 (Ring, Commutative Ring). A ring is a set that shares all characteristics
of a field, except:

1. It may not be commutative under ·
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2. It may not have an inverse under · for non-zero elements.

Rings that are commutative under · are known as commutative rings; rings that are not are
called non-commutative rings.

Example. Examples of commutative rings include:

Z,R[s],C[s],Rp,o(s),Rp(s)

Examples of non-commutative rings include:

Rn×n,Cn×n,Rn×n[s],Cn×n[s],Rn×n(s),Cn×n(s),Rn×n
p (s)

Definition 2.10 (Vector Space). Let there be a set V and a field F. If there exist two
operations, vector addition + : V × V → V and scalar multiplication · : F× V → V (For
a ∈ F, x ∈ V, a · x is often written as ax) that satisfy the following axioms, V is said to be a
vector space over the field F:

1. For each x,y ∈ V, x + y = y + x.

2. For each x,y, z ∈ V, (x + y) + z = x + (y + z).

3. There exists an element 0 ∈ V such that for each x ∈ V, x + 0 = 0 + x = x.

4. For each x ∈ V, there exists a y ∈ V such that x + y = y + x = 0 (y is called the
additive inverse of x).

5. For each x ∈ V and a, b ∈ F, a(bx) = (ab)x.

6. For each x, y ∈ V and a ∈ F, a(x + y) = ax + by

7. For each x ∈ V and a, b ∈ F, (a+ b)x = ax + bx

8. For each x ∈ V, 1 · x = x.

A vector space V defined over the field F is often denoted as (V ,F), or simply FV ; it is
also common to remove the ”F” and simply say that V is a vector space. The elements of V
are known as vectors, while the elements of F are known as scalars. When F = R (or C), V is
said to be a real vector space (or respectively, complex vector space).

The definition of the operator + : V × V → V indicates that V must be closed under
vector addition, that is, for each x, y ∈ V , x + y ∈ V . Similarly, the definition of the operator
· : F × V → V indicates that V must be closed under scalar multiplication, that is, for each
x ∈ V and a ∈ F, ax ∈ V . The first four axioms in Definition 2.5 are related to vector
addition, while the latter four are related to scalar multiplication. The first and second axioms
respectively describe the commutative and associative properties of vector addition. Similarly,
the fifth axiom describes the associative property of scalar multiplication. The third axiom
explains that each vector space consists of at least one vector—the zero vector. The fourth
axiom declares that an additive inverse exists for each vector in a vector space. The sixth and
seventh axioms describe the distributive properties of scalar multiplication. The eighth and last
axiom (identity), may appear trivial at first glance, but will later be revealed to have great
significance.



20 CHAPTER 2. LINEAR ALGEBRA REVIEW

Example. Examples of vector spaces include:

1. (Fn,F): The space of n-tuples in F over the field F. Common examples include (Rn,R)
and (Cn,C).

2. Consider the function space F (D, V ) of all functions which map D to V , where (V, F ) is
a vector space, D is a set (e.g. R,Rn, etc.), and each f, g ∈ F (D, V ), d ∈ D satisfy:

(a) Addition— (f + g)(d) = f(d) + g(d)

(b) Scalar multiplication— (αf)d = αf(d).

Then (F(D, V ),F) is a vector space.

Examples include:

1. (C ([t0, t1],Rn),R)— The set of all continuous functions on [t0, t1]→ Rn

2. (C k([t0, t1],Rn),R)— The set of all k-times differentiable functions on [t0, t1]→ Rn

Definition 2.11 (Subspace). Let (V ,F) be a vector space, and let W be a subset of V. Apply
the vector addition and scalar multiplication operations of V are applied to W. If W then
becomes a vector space itself, then W is said to be a subspace of V.

How can one determine whether or not a subset of V is a subspace? The theorem below
describes a simple method for determining the basic properties of a subspace.

Theorem 2.12. Let (V ,F) be a vector space, and let W be a subset of V. Then (W ,F) is a
vector subspace of (V ,F) if and only if:

1. 0 ∈ W

2. For each x, y ∈ W, x + y ∈ W

3. For each x ∈ W and a ∈ F, ax ∈ W

where 0 is the zero vector of V.

Proof.

Necessity: Suppose W is a subspace of V . From the closure of vector addition and
scalar multiplication, conditions 2 and 3 must be true. Since W is a vector space, the third
axiom of vector spaces implies that there exists in W a zero vector 0′ ∈ W ⊂ V , such that for
each x ∈ W , x + 0’ = 0’ + x = x. But for each x ∈ V , x + 0 = 0 + x = x, so x + 0’ =
x + 0 . From the Cancellation Law of Vector Addition, 0′ = 0. In other words, the zero vector
0’ ∈ W and the zero vector 0 ∈ V are the same.

Sufficiency: Suppose W is some subset of V satisfying the above three conditions. A
careful observation of the axioms of the vector field reveals that besides Axiom 4, all axioms
that are valid in V will naturally also be true in W . In fact, Axiom 4 is also valid in W: For
each x ∈ W , its additive inverse in V is −x = (−1)· x ∈ W . �



2.1. LECTURE 2 21

Definition 2.13 (Linear Dependence and Linear Independence). Let (V ,F) be a vector
space, and let S be a subset of V. Then:

1. If there exist a finite number of vectors x1,x2, · · · ,xn, and corresponding scalars a1, a2, · · · an ∈
F, not all zero, such that:

a1x1 + · · ·+ anxn = 0

then S is said to be a linearly dependent subset of S (or simply, S is linearly
dependent). Likewise, the elements of S are said to be linearly dependent.

2. If S is not linearly dependent, it is said to be a linearly independent subset of V (or
simply, S is linearly independent). Likewise, the elements of S are said to be linearly
independent.

From the above definition, it is clear that S is linearly independent if and only if, for
each finite subset of arbitrary vectors x1, · · · ,xn in S:

a1x1 + · · ·+ anxn = 0

implies a1 = a2 = · · · = an = 0. Equivalently, S is linearly independent if and only if the only
linear combination of elements of S that generates the zero vector 0 is:

0 = 0x1 + · · ·+ 0xn

Definition 2.14 (Basis). Let V be a vector space, and let B be a subset of V. If:

1. B is a linearly independent subset,

2. B is a spanning subset,

then B is said to be a basis for V.

Theorem 2.15. Let V be a vector space, and let B be a subset of V. Then B is a basis for V
if and only if each element of V can be expressed as a unique linear combination of elements of
B.

The unique linear combination of a vector x with respect to B is called the set of
coordinates of x with respect to B. The coordinate transformation of x from the basis B
to a different basis B′, is left as an exercise.
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2.2 Lecture 3

This lecture concerns a review of linear transformations and linear operators.

Definition 2.16 (Linear Transformation). Let (U ,F) and (V ,F) be two vector spaces. If a
mapping L: U → V satisfies the following two conditions:

1. For each x, y ∈ U, L(x + y) = Lx + Ly.

2. For each x ∈ U and each a ∈ F, L(ax) = aLx.

then L is said to be a linear map or linear transformation. If U = V, the linear
transformation is also called a linear operator.

In the following text, the field F is often omitted when it is clear that I and V are
constructed from the same field.

This property can clearly be extended to any number of coefficients, i.e. for any linear
transformation L : U → V given α1, · · · , αn ∈ F and v1, · · · , vn ∈ (V ,F), we have:

L

(∑
i=1

αivi

)
=

n∑
i=1

αiL(vi)

Example. Consider the mapping:

L : as2 + bs+ c −→
∫ s

0

(bt+ a)dt

Then, with respect to the basis B = {s2, s, 1}, the representation of the mapping can be
described as follows:

(a, b, c) −→
(

1

2
b, a, 0

)
Clearly, L is linear.

Example. If we modify the linear mapping shown above to:

L′ : as2 + bs+ c −→
∫ s

0

(bt+ a)dt+ 5

Then this is no longer a linear map, since the zero vector 0 is no longer mapped to itself.
However, since L′ − 5 is a linear map, L′ can be considered the composition of a linear map
and a translation. Such maps are known as affine maps.
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Definition 2.17 (Range, Null Space). Let a linear map L : U → V be given.

1. The range, or image, of L is the subspace defined by:

R(L) = {v|v = L(u), u ∈ U} ≤ V

2. The null space, or kernel, of L is the subspace defined by:

N(L) = {u|L(u) = 0} ≤ U

It is not immediately obvious from their definitions that the range and null spaces of a
linear map are subspaces; this must be explicitly proved.

The range and null space are critical in the analysis of the injectivity and surjectivity of
a linear map. Given a system of linear equations characterized by:

Lu = b,

where b ∈ V is given, the solution exists if L is surjective and is unique if L is both injective
and surjective (i.e. if L is bijective).

Theorem 2.18 (Dimension Theorem). Let U ,V be vector spaces, where where dimU = n <
∞, and let L ∈ L(U ,V). Then:

nullity(L) + rank(L) = dimU . (2.1)

Proof. Exercise. �

Below, we discuss the matrix representations of linear mappings. Let U ,V be finite-
dimensional vector spaces, and let a linear mapping L : U → V be given. Let BU = {uj}nj=1 and
BV = {vi}mi=1 be bases for U and V , respectively. In affect, the task of finding the image, under
L, of an infinite number of elements in U can be reduced to find the image of each element in
the finite set {uj}nj=1. First, we associate U with V as follows:

L(uj) =
m∑
i=1

aijvi

Then, given any linear combination of {uj}nj=1, e.g. x =
∑n

j=1 ξjuj, we have:

L(x) =
n∑
j=1

ξjL(uj) =
n∑
j=1

ξj

m∑
i=1

aijvi

=
m∑
i=1

(
n∑
j=1

aijξj

)
vi =

m∑
i=1

ηivi

where we have defined ηi ≡
∑n

j=1 aijξj. In other words:

η = Aξ
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where η = (η1, · · · , ηm), ξ = (ξ1, · · · , ξn), and A = [aij]m×n, i.e.:


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


We conclude that the linear map is uniquely defined by the matrix A. We say that A is the
matrix representation of L with respect to U and V ; this is denoted by:

A = [L]VU

The following is useful to remember—The jth column of the matrix A contains the coordinates
of the vector A(uj) ∈ V expressed with respect to {vi}mi=1.

Suppose, given some linear operator L : Rn → Rn, there exists a b ∈ Rn such that:

BV = {b, Lb, · · · , Ln−1b}

forms a basis for V . Then, since Lnb ∈ V , one can find coordinates α1, · · · , αn such that:

Lnb = −αnb− αn−1Lb− · · · − α1L
n−1b

In this case, the coordinate representation of b and the matrix representation A of L, both with
respect to BV , are:

b =


1
0
...
0

 , A =



0 0 0 · · · 0 −αn
1 0 0 · · · 0 −αn−1

0 1 0 · · · 0 −αn−2

...
...

...
. . .

...
...

0 0 0 · · · 0 −α2

0 0 0 · · · 1 −α1


This is often helpful in the analysis of linear systems (e.g. characterized by the form ẋ =
Ax + Bu), in which the entire state space can be decomposed into subspaces with matrix
representation of the above form.

Below, we consider the relationship between two matrix representations of the same
linear map L : U → V . Let BU = {uj}nj=1 and BU = {uj}nj=1 be bases for U , and let BV = {vi}mi=1

and BV = {vi}mi=1 be bases for V . Let A,A be the matrix representations of L with respect to
BU ,BV and BU ,BV , respectively.
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Now, let x ∈ U be given, and suppose:

x =
m∑
i=1

ξiui =
m∑
i=1

ξiui

⇒x =
[
u1 u2 · · · un

]

ξ1

ξ2

...
ξn

 =
[
u1 u2 · · · un

]

ξ1

ξ2

...

ξn



⇒


ξ1

ξ2

...
ξn

 =
[
u1 u2 · · · un

]−1 [
u1 u2 · · · un

]︸ ︷︷ ︸
≡P


ξ1

ξ2

...

ξn

 = P


ξ1

ξ2

...

ξn



Similarly, for Lx ∈ V , we have:

Lx =
m∑
i=1

ηivi =
m∑
i=1

ηivi

⇒x =
[
v1 v2 · · · vn

]

η1

η2

...
ηn

 =
[
v1 v2 · · · vn

]

η1

η2

...
ηn



⇒


η1

η2

...
ηn

 =
[
v1 v2 · · · vn

]−1 [
v1 v2 · · · vn

]︸ ︷︷ ︸
≡Q


η1

η2

...
ηn

 = Q


η1

η2

...
ηn


Now, if we define A ≡ [L]VU , then:

∵ η = Aξ

∴ η = Q−1η = Q−1Aξ = Q−1APξ,

where:

[L]
BV
BU
≡ A = Q−1AP

is the matrix representation of A with respect to BU{ui},BV{vj}.
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Essentially, a change in basis is equivalent to a change in matrix or vector representation.

Definition 2.19 (Rank, Nullity). Given a linear mapping L : U −→ V, define:

1. rank(L) = dim(R(L)).

2. nullity(L) = dim(N(L)).

We conclude our discussion on linear transformations with a corollary that summarizes
the important relationships between injectivity, surjectivity, and the existence of right and left
inverses.

Theorem 2.20. Let V,W be vector spaces, with dimensions m,n and bases BV ,mathcalBW ,
respectively. Let L : V → W be a mapping from V to W , with associated matrix representation
A ≡ LBWBV ∈ Rm×n. Then:

1. The following statements are equivalent:

• L is injective.

• L is left invertible.

• N(L) = 0V .

• A has full column rank.

2. The following statements are equivalent:

• L is surjective.

• L is right invertible.
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• R(L) = W .

• A has full row rank.

Proof.

1. ”(1) ⇒ (2)” : Suppose L is injective. Then, by definition, for each w ∈ R(L), one
can identify a unique v ∈ V such that Lv = w. The left inverse of L can thus be defined
as the mapping that associates each w ∈ R(L) with the unique v ∈ V such that Lv = w.

”(2)⇒ (3)” : Suppose there exists some left inverse L−1 of L, and let v ∈ N(L) be
arbitrarily given, i.e. Lv = 0. Then, applying L−1 to the left on both sides, we have:

v = L−10 = 0

”(3) ⇒ (4)” : Suppose N(L) = 0V . Then N(A) = 0Rn . This implies that, if Ai
denotes the i-th column of A, for each i = 1, · · · , n, and a vector a ≡ (a1, · · · , an)T ∈ Rn

were given such that:
0 = Av = a1A1 + · · ·+ anAn,

then a1 = · · · = an = 0. This implies that {A1, · · · , An} are linearly independent, i.e A
has full column rank.

”(4) ⇒ (1)” : We will demonstrate that (4) ⇒ (3) ⇒ (1). By reversing the
above argument, we see that if A has full column rank, i.e. if its columns are linearly
independent, then 0Rn is the only vector contained in N(A), i.e. N(A) = {0Rn}, and (3)
immediately follows.

Now, suppose there exist some v1, v2 ∈ V and w ∈ W such that:

Lv1 = Lv2 = w.

Then L(v1− v2) = 0, and since N(L) = 0V , we have v1− v2 = 0V , or v1 = v2. This shows
that for each w ∈ W , there exists a most one v ∈ V such that L(v) = w (specifically, if
w 6∈ R(L), no such v exists; if w ∈ R(L), then one unique v exists). This establishes (1).

We have thus shown that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1), i.e. (1), (2), (3), (4) are
equivalent.

2. Simply take the transpose of the above arguments; the desired results follow from the
simple fact that, if a matrix has full row rank, its transpose matrix must have full column
rank.

�

Corollary 2.21.
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2.3 Lecture 3 Discussion

Example (Discussion 6, Problem 5). Let B = {e1, e2, e3} be the standard ordered basis in
R3, and let C be the ordered basis given by:

C = {c1, c2, c3} ≡


1

1
0

 ,
0

1
1

 ,
1

0
1


Let A : (R3,R)→ (R3,R) be a linear map, with:

A(e1) =

 2
−1
0

 , A(e2) =

0
0
0

 , A(e3) =

0
4
2

 .
Find the following:

1. [A]CB, i.e. the matrix representation of A with respect to basis B for domain and basis C
for codomain.

2. [A]CC, i.e. the matrix representation of A with respect to basis C for both domain and
codomain.

Solution :

1. Let A ≡ [A]BB, the matrix representation of A given with respect to the standard basis.
The problem gives us:

A =
[
Ae1 Ae2 Ae3

]
=

 2 0 0
−2 0 4
0 0 2


By definition of change of basis, for each i ∈ {1, 2, 3} the elements of the vector [A]CBei
are the coefficients, in the same ordering, of Aei when expressed as a linear combination
of basis vectors in C. In other words, if [A]CB ei = (a1i, a2i, a3i), then:

Aei = a1ib1 + a2ib2 + a3ib3

We thus have: [
c1 c2 c3

]
[A]CB = A

[
e1 e2 e3

]
⇒ [A]CB =

[
c1 c2 c3

]−1
A
[
e1 e2 e3

]
=

1 0 1
1 1 0
0 1 1

−1  2 0 0
−2 0 4
0 0 2

1 0 0
0 1 0
0 0 1


=

1

2

 1 0 2
−3 0 6
3 0 −2
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2. Repeating the above process, we have:

[A]CC =
[
c1 c2 c3

]−1
A
[
c1 c2 c3

]
=

1 0 1
1 1 0
0 1 1

−1  2 0 0
−2 0 4
0 0 2

1 0 1
1 1 0
0 1 1


=

1

2

 1 2 3
−3 6 3
3 −2 1
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2.4 Lecture 4

Definition 2.22 (Normed Linear Spaces). Let the field F be R or C. A linear space (V ,F)
is said to be a normed linear space if there exists a map:

‖ · ‖ : V −→ R+

satisfying the following axioms, for each v1, v2 ∈ V:

1. ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖

2. ‖αv‖ ≤ |α| · ‖v‖

3. ‖v‖ = 0 if and only if v = 0.

Example. Common norms for the Euclidean space Rn are, for each x = (x1, · · · , xn):

1. Two-norm:

‖x‖2 =

(
∞∑
i=1

|xi|2
) 1

2

2. One-norm:

‖x‖1 =
∞∑
i=1

|xi|

3. p-norm:

‖x‖p =

(
∞∑
i=1

|xi|p
) 1

p

4. ∞-norm:
‖x‖∞ = max

i
|xi| = lim

p→∞
‖x‖p

The following is not a norm, but is still sometimes referred to as the ”l0-norm”

lim
p→0
‖x‖p = number of non-zero entries in x

Definition 2.23 (Equivalent Norms). Two norms ‖ · ‖a and ‖ · ‖b are called equivalent if
there exist α, β ∈ R+ such that, for each v ∈ V:

ml‖v‖a ≤ ‖v‖b ≤ mu‖v‖a

In other words, ‖·‖a and ‖·‖b are topologically equivalent, in that qualitative comparisons
of norms of different vectors hold in any norm. It can be shown that any two norms on a finite-
dimensional vector space are equivalent.

Example. Common norms for the function space C([t0, t1],Rn) are, for each f ∈ C([t0, t1],Rn):
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1. Two-norm:

‖f‖2 =

[∫ t1

t0

‖f(t)‖2

] 1
2

2. ∞-norm:

‖f‖∞ = max{‖f(t)‖∞, t ∈ [t0, t1]}

Definition 2.24 (Induced Norms). Let L : (U ,F) −→ (V ,F) be a continuous linear operator,
and suppose U ,V are endowed with the norms ‖ · ‖U and ‖ · ‖V , respectively. Then the induced
norms of L is defined by:

‖A‖i = sup
u6=0

‖Au‖V
‖u‖U

Theorem 2.25 (Facts about Induced Norms). Let (U , ‖ · ‖U), (V , ‖ · ‖V), (W , ‖ · ‖W) be
normed linear spaces, and define L, L̃ : V → W and M : U → V. Then, for each v ∈ V and
α ∈ R:

1. ‖Lv‖W ≤ ‖L‖i · ‖v‖V

2. ‖αL‖ = |α| · ‖L‖

3. ‖L+ L̃‖i ≤ ‖L‖i + ‖L̃‖i

4. ‖L‖i = 0 if and only if L = 0.

5. ‖LM‖i ≤ ‖L‖i · ‖M‖i.

This definition leads naturally to the concept of sensitiviity—A measure of how the
solution x to Ax = b changes as A and b are perturbed. Let A : Fn → Fn, with b ∈ Fn. If A−1

exists, the solution x = A−1b is unique, and is denoted as the nominal solution:

x0 ≡ A−1b

Now, suppose A and b undergo the following perturbations:

A −→ A+ δA

b −→ b+ δb
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and the solution x0 undergoes a perturbation x0 → x0 + δx. Then:

(A+ δ)(x0 + δx) = b+ δb

⇒Ax0 + Aδx+ δAx0 ≈ b+ δb

⇒Aδx+ δAx0 = δb

⇒δx = A−1[−δA · x+ δb]

⇒|δx| ≤ ‖A−1‖i ·
[
‖δA‖i · |x|+ |δb|

]
,

⇒ |δx|
|x0|
≤ ‖A−1‖i ·

[
‖δA‖i +

|δb|
|x0|

]
,

≤ ‖A−1‖i · ‖A‖ ·
[
‖δA‖i
‖A‖

+
|δb|
‖A‖|x0|

]
,

≤ ‖A−1‖i · ‖A‖ ·
[
‖δA‖i
‖A‖

+
|δb|
|b|

]
,

since Ax0 = b implies ‖A‖ · |x0| ≥ |b|.
The quantity:

κ(A) ≡ ‖A−1‖i · ‖A‖ ≥ 1

is defined as the condition number of A. If κ(A) � 1, then small changes in δb and δA can
induce large changes in δx. In other words, the larger the conditional number of A is, the more
difficult the system is to stabilize.

Definition 2.26 (Inner Product Space). Let the field F be R or C, and consider the linear
space (H,F). The function:

〈·, ·〉 : H ×H −→ RC

is called an inner product if, for each x, y, z ∈ H and α ∈ F:

1. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

2. 〈x, αy〉 = α〈x, y〉

3. |x|2 ≡ 〈x, x〉 > 0 iff x 6= 0H .

4. 〈x, y〉 = 〈y, x〉.

A complete inner product space is known as a Hilbert space. Here, completeness refers
to the fact that every Cauchy sequence in the space must converge.

A vector v ∈ H that satisfies |v| = 〈v, v〉 = 1 is said to be a unit vector.

Example.



2.4. LECTURE 4 33

1. (Fn,F, 〈·, ·〉) is a Hilbert space under the inner product:

〈x, y〉 ≡
n∑
i=1

xiyi = x?y

for each x, y ∈ Fn.

2. L2([t0, t1],Fn), the space of square integrable Fn-valued functions on [t0, t1], is a Hilbert
space under the inner product:

〈f, g〉 ≡
∫ t1

t0

f(t)?g(t)dt

for each f, g ∈ L2([t0, t1],Fn).

Inner products allow us to define orthogonality of vectors and discuss angles between
vectors. Henceforth, we will abbreviate (H,F, 〈·, ·〉) as H.

Definition 2.27 (Orthogonality). If H is an inner product space space, then x, y ∈ H are
said to be orthogonal if 〈x, y〉 = 0, and x ∈ H is said to be orthogonal to a subset S ⊂ H if
〈x, s〉 = 0 for each s ∈ S.

Definition 2.28 (Orthogonal Complement). If (H,F, 〈·, ·〉) is an inner product space, and
M ⊂ H, then:

M⊥ ≡ {y ∈ H : 〈x, y〉 = 0, ∀x ∈M} ≤ H

is a subspace of H, and is called the orthogonal complement of M .

Theorem 2.29. Given a Hilbert space H and some M ⊂ H:

1. M ∩M⊥ = {0}.

2. (M⊥)⊥ = span(M).

Proof.

1. Let x ∈ H be given such that x ∈ M ∩M⊥. Then, since x ∈ M and x ∈ M⊥, we have
〈x, x〉 = 0. This implies that x = 0H .

2. Exercise.

�

Given a Hilbert space H and some subset M ⊂ H, then H = M ⊕M⊥, where ”⊕”

denotes the direct sum. (In fact, H = M
⊥
⊕ M⊥, where ”⊕” denotes the orthogonal direct

sum.)
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Definition 2.30 (Adjoint). Let F = R or C, and let (U, F, 〈·, ·〉u) and (V, F, 〈·, ·〉u) be innner
product spaces. Let A : U → V be continuous and linear. Then the adjoint of A, denoted as
A?, is the (unique) map A? : V → U such that:

〈v,Au〉V = 〈A?v, u〉U

Example (From an old prelim). Let f(·), g(·) ∈ C ([t0, t1],Rn) and define a linear map A :
C ([t0, t1],Rn)→ R by:

A(f(·)) = 〈g(·), f(·)〉

for any f(·), g(·) ∈ C ([t0, t1],Rn). Find the adjoint map of A.

Solution :

By definition of adjoint, A? must satisfy, for any x ∈ R, f, g ∈ C ([t0, t1], Rn):

〈A?x, f(·)〉 = 〈Af(·), x〉R = x · 〈g(·), f(·)〉

In other words, the mapping is characterized by:

A?x = x · g(·)



2.5. LECTURE 4 DISCUSSION 35

2.5 Lecture 4 Discussion

Example (Discussion 8, Problem 2). Let M,N be two subspaces of V . Suppose BM ≡
{m1, · · · ,mp} and BN{n1, · · · , nq} form bases forM andN , respectively. Show that V = M⊕N
if and only if B = {m1, · · · ,mp, n1, · · · , nq} is a basis of V .

Solution:

” ⇒ ” Suppose V = M ⊕N . To verify that B is a basis of V , we need to show that the
vectors in B (1) are linearly independent, and (2) generate V .

1. Let v ∈ V = M ⊕ N be given arbitrarily. Then there exists some (unique) m ∈ M and
n ∈ N such that v = m+n. Since BM and BN are bases for M and N , respectively, there
exist some (unique) scalars α1, · · · , αp, β1, · · · , βq such that:

m = α1m1 + · · ·+ αpmp

n = β1n1 + · · ·+ βqnq

Thus, we have:

v = m+ n

= α1m1 + · · ·+ αpmp + β1n1 + · · ·+ βqnq,

so B ≡ {m1, · · · ,mp, n1, · · · , nq spans V .

2. To demonstrate linear independence, let scalars α1, · · · , αp, β1, · · · , βq be given such that:

α1m1 + · · ·αpmp︸ ︷︷ ︸
∈M

+ β1n1 + · · ·+ βqnq︸ ︷︷ ︸
∈N

= 0V .

Since 0V ∈M ∪N , we also have:

0V︸︷︷︸
∈M

+ 0V︸︷︷︸
∈N

= 0V .

But V = M ⊕ N , so by definition the decomposition of 0V as the sum of a vector in M
and a vector in N must be unique. It follows that:

α1 = · · · = αp = 0

β1 = · · · = βq = 0,

which establishes the linear independence of B ≡ {m1, · · · ,mp, n1, · · · , nq}.
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” ⇐ ” For the other direction of the proof, we essentially reverse the above argument.
Suppose β = {m1, · · · ,mp, n1, · · · , nq} form a basis for V . Fix an arbitrary v ∈ V . Then there
exists (unique) scalars α1, · · · , αp, β1, · · · , βq such that:

v = α1m1 + · · ·αpmp︸ ︷︷ ︸
unique, ∈N

+ β1n1 + · · ·+ βqnq︸ ︷︷ ︸
unique, ∈N

This establishes our desired conclusion, V = M ⊕N .

Remark. The above result can be extended to yield the following immediate corollary—Suppose
M1,M2, · · · ,Mn ≤ V , and that, for each i = 1, · · · , n, the set Bi forms a basis for Mi. Then:

V = M1 ⊕ · · · ⊕Mn

if and only if:
B ≡ B1 ∪ · · · ∪ Bn

forms a basis for V .
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2.6 Lecture 5

The definitions given in the previous lecture lead naturally to the concept of orthogonal
projections. For instance, suppose b ∈ R2 is a unit vector, i.e. |b| = 〈b, b〉 = 1. Given
any nonzero v ∈ R2 (the case v = 0 is trivial), define:

u? = 〈v, b〉b

Then v − u? ⊥ b, since:

〈v − u?, b〉 = 〈v − 〈v, b〉, b〉
= 〈v, b〉 − 〈v, b〉〈b, b〉 = 0

This observation is officially recorded as the theorem below.

Theorem 2.31 (Projection Theorem). Let V be a finite-dimensional inner product space
with dim(V) = n, and let S ≤ V. Fix v ∈ V and consider the problem of finding:

inf
s∈S
|v − s| (2.2)

It is not always true that there exists a solution to the above equation.

1. Suppose the optimization problem (2.31) is solvable, with solution ŝ. Then ŝ is optimal if
and only if:

(v − ŝ) ⊥ S

Furthermore, the optimal vector ŝ is unique.

2. Suppose S is complete, then (2.31) is solvable.

3. Suppose S is finite-dimensional. Let B = {b1, · · · , bn} be a basis for S, and define the
matrix M ∈ Cn×n be defined by:

M = [〈bi, bj〉]n×n

Then M is non-singular, and (2.31) is solvable by the unique solution:

ŝ =
n∑
i=1

αibi

where: α1

...
αn

 = M−1

〈b1, v〉
...

〈bn, v〉


Proof.



38 CHAPTER 2. LINEAR ALGEBRA REVIEW

1. ” ⇒ ” Let ŝ be optimal. Suppose by contradiction that (v − ŝ) ⊥ S is false. Then
there exists some s1 ∈ S and α 6= 0 such that:

〈s1, v − ŝ〉 = α 6= 0

Clearly, s1 6= 0V . Define β = α/|s1|2 6= 0, and vnew = ŝ+ βs1 ∈ S. Then:

|v − snew|2 = |v − ŝ− βs1|2

= |v − ŝ|2 + ‖βs1‖2 − 〈v − ŝ, βs1〉 − 〈βs1, v − ŝ〉
= |v − ŝ|2 + |β|2|s1|2 − βᾱ− αβ̄
= |v − ŝ|2 + |α|2|s1|4 − 2|α|2|s1|4

= |v − ŝ|2 − |α|2|s1|4

< |v − ŝ|2

which indicates that ŝ is not optimal, a contradiction.

”⇐ ” To show the converse, let v̂ be any vector satisfying (v − ŝ) ⊥ S. Then:

|v − s|2 = |(v − ŝ) + (ŝ− s)|2

= |v − ŝ|2 + |ŝ− s|2 + 2Re(〈v − ŝ, ŝ− s〉)
= |v − ŝ|2 + |ŝ− s|2

≥ |v − ŝ|2

since the fact that v − ŝ ⊥ S and ŝ− s ∈ S implies 〈v − ŝ, ŝ− s〉 = 0. This shows that ŝ
is optimal.

Finally, we show that, given v ∈ V , the condition (v − ŝ) ⊥ S uniquely determines ŝ.
Suppose there exists some s′ ∈ S such that (v − s′) ⊥ S. Then:

|s′ − ŝ|2 = 〈s′ − ŝ, s′ − ŝ〉
= 〈(v − ŝ)− (v − s′), s′ − ŝ〉
= 〈v − ŝ, s′ − ŝ〉 − 〈v − s′, s′ − ŝ〉
= 0.

since v − ŝ ⊥ S, v − s′ ⊥ S, and ŝ− s′ ∈ S.

2. Define γ ≡ infs∈S |v − s|. By definition of infimum, there exists a sequence of vectors
{sk}∞k=1 in S such that:

lim
k→∞
|v − sk| = γ

Let ε > 0 be given. Then there exists some N0 ∈ N such that |v − sk| < 1
2
ε for each

k ≥ N0. Now, let k1, k2 ≥ N0 be given. Using the triangle inequality, we have:

|sk1 − sk2| ≤ |v − sk1|+ |v − sk2| < ε

This shows that {sk}∞k=1 is a Cauchy sequence in S; since S is complete, this sequence
converges, say, to some s0, completing the proof.
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3. Since M?
j,i = 〈bj, bi〉 = 〈bi, bj〉 = Mi,j, the matrix M is Hermitian. That it is nonsingular

can thus be demonstrated by showing that it is, in fact, positive definite. Let a nonzero
n-tuple of scalars a = (a1, · · · , an) ∈ Cn\{0} be arbitrarily given. Then:

a?Ma =
n∑
i=1

n∑
j=1

a?i 〈bi, bj〉aj =

〈
n∑
i=1

aibi,

n∑
j=1

ajbj

〉

=

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣
2

≥ 0

since the fact that B forms a basis for S indicates that
∑n

i=1 aibi = 0 if and only if ai = 0
for each i = 1, · · · , n, contradicting the fact that a is nonzero.

Since S is finite-dimensional, it must be complete. Part b) then implies that (2.31) is
solvable, while Part a) offers a method for finding the solution. In particular, let the
optimal solution be of the form:

ŝ =
n∑
j=1

αjbj

By Part a), (v − ŝ) ⊥ S, so for each i = 1, · · · , n:

0 = 〈bi, v − ŝ〉 =

〈
bi, v −

n∑
j=1

αjbj

〉

= 〈bi, v〉 −
n∑
j=1

αj〈bi, bj〉

⇒ 〈bi, v〉 =
n∑
j=1

αj〈bi, bj〉 =
n∑
j=1

Mijαj.

In other words:

M

α1

...
αn

 =

〈b1, v〉
...

〈bn, v〉

 ,
completing the proof.

�

Orthogonal projection finds uses in filtering (de-noising), which is used to eliminate
components of noise ”orthogonal” to the true output of a system (e.g. Consider an output of
the form y = Ax+ n, where n ⊥ R(A)).

To simplify the form of the matrix M , we usually wish to obtain an orthonormal basis
from a given basis. This is because, if the basis under consideration is orthonormal, M becomes
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the identity matrix, and we thus have:α1

...
αn

 =

〈b1, v〉
...

〈bn, v〉


The proof of the following theorem provides an algorithm for doing so.

Theorem 2.32 (Gram-Schmidt Process for Orthonormalization). Each finite-dimensional
inner product space has an orthonormal basis.

Proof. This theorem can be proved by directly constructing an orthonormal basis for an
arbitrarily given finite-dimensional inner product space V . If V = {0}, then the empty set
φ is an orthonormal basis for V . Suppose V 6= {0}, and {v1, · · · ,vn} is a basis for V . Define
subspaces Wj of V , for each i = 1, 2, · · · , n as:

Wj = span{v1,v2, · · · ,vj}
Evidently, W1 ⊂ W2 ⊂ · · · ⊂ Wn ⊂ V .

To construct a basis for W1 = span{v1}, let:

u1 =
v1

‖v1‖
Since u1 is a unit vector, {u1} is an orthonormal basis for W . Suppose an orthonormal basis
{u1, · · ·uk} forWk has been defined, for some k = 1, 2, · · · , n−1. Define PWk

as the orthogonal
projection onto Wk, and let:

uk+1 =
vk+1 −PWk

(vk+1)

‖vk+1 −PWk
(vk+1)‖

By induction, an orthonormal basis {u1, · · · ,un} for Wn = V can be found. �

A numerical example of the Gram-Schmidt orthonormalization process is given below.

Example. Consider the following set in R3:

B =


1

2
3

 ,
2

3
4

 ,
3

4
5

 ≡ {v1, v2, v3}

Suppose we wish to obtain an orthonormal basis B′ = {v′1, v′2, v′3} with the same span as B.
First, note that v1 − 2v2 + v3 = 0, so it suffices to restrict our attention to {v1, v2}.

Applying the Gram-Schmidt orthonormalization procedure, we have:

v′1 ∝
v1

|v1|
=

1√
14

1
2
3


v′2 ∝ v2 −

〈v2, v1〉
〈v1, v1〉

v1 =

2
3
4

− 20

14

1
2
3

 =
1

7

 4
1
−2
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Normalizing the above orthogonal vectors, we have:

v′1 =
1√
14

1
2
3


v′2 =

1√
21

 4
1
−2
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2.7 Lecture 6

Definition 2.33 (Self-Adjoint Maps). Given an inner product space (H,F, 〈·, ·〉H), let A :
H → H be a continuous linear map with adjoint A? : H → H. The map A is said to be
self-adjoint if A = A?, i.e. for each x, y ∈ H:

〈x,Ay〉H = 〈Ax, y〉H

Example (Hermitian Matrices). Let the linear map A : Fn → Fn be represented by a matrix
A = (aij)i,j∈{1,··· ,m} ∈ Fn×n. Then A is self-adjoint if and only if the matrix A is Hermitian.
Equivalently, A = A?, meaning aij = aji for each i, j ∈ {1, · · · , n}, or that A is equal to its
complex conjugate transpose.

Definition 2.34 (Unitary Matrix, Orthogonal Matrix). A matrix U ∈ Fn×n is called a
unitary matrix if:

U? = U−1.

Equivalently, U is a unitary matrix if and only if the n columsn and n rows of U form
orthonormal bases for Fn. If F = R, such a matrix is said to be orthogonal.

Below, we present an important theorem often used in mathematical optimization.

Theorem 2.35. Let V and U be finite-dimensional inner product spaces over C or R, with
dimensions n and m, respectively. Let L ∈ L(U ,V) be given, and define r = rank(L). Then
there exist ordered, orthonormal bases BU = {u1, · · · ,ur,ur+1, · · · ,un}, for U , and BV =
{v1, · · · ,vr,vr+1, · · · ,vm}, for V, such that:

1. {u1, · · · ,ur} is an ordered, orthonormal basis for Ker(L)⊥ = Im(L†).

2. {ur+1, · · · ,um} is an ordered, orthonormal basis for Ker(L) = Im(L†)⊥.

3. {v1, · · · ,vr} is an ordered, orthonormal basis for Im(L) = Ker(L†)⊥.

4. {vr+1, · · · ,vm} is an ordered, orthonormal basis for Im(L)⊥ = Ker(L†).

5. Lui = σivi, Lvi = σiui, where σi ≥ 0, for each i = 1, · · · , r.

In particular, σ1, · · · , σr are said to be the singular values of L, u1, · · · ,ur are said to be
the right singular vectors of L, while v1, · · · ,vr are said to be the left singular vectors
of L.

Proof. To demonstrate Part 2 of this theorem, consider the positive operator L†L ∈ L(U). Since
r = rank(L) = rank(L†L), there exists an ordered, orthonormal basis BU = {u1, · · · ,ur,ur+1, · · · ,un}
consisting of eigenvectors of L†L, with corresponding eigenvalues satisfying:

λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · ·+ λn.

For each i = r + 1, · · · , n:

‖Lui‖2 = 〈Lui,Lui〉 = 〈L†Lui,ui〉 = λi‖ui‖2 = 0,
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so Lui = 0. Thus, span({ur+1, · · · ,un}) ⊂ Ker(L). Conversely, suppose v =
∑n

i=1 auui ∈
Ker(L). Then:

0 = 〈Lv,Lv〉 =

〈
n∑
i=1

aiLui,
n∑
j=1

ajLuj

〉
=

n∑
i=1

n∑
j=1

aia
?
j〈Lui,Luj〉

=
n∑
i=1

n∑
j=1

aia
?
j〈L†Lui,uj〉 =

n∑
i=1

n∑
j=1

aia
?
jλi〈ui,uj〉 =

n∑
i=1

n∑
j=1

aia
?
jλiδij

=
r∑
i=1

|ai|2λ2
i ,

Thus,ai = 0 for each i = 1, 2, · · · , r, so v ∈ span({ur+1, · · · ,un}), which implies Ker(L) ⊂
span({ur+1, · · · ,un}). This establishes Part 2, i.e. Ker(L) ⊂ span({ur+1, · · · ,un}). Since
{u1, · · · ,ur,ur+1, · · · ,un} is orthonormal, {u1, · · · ,ur} is thus an ordered, orthonormal basis
for Im(L) = Ker(L†), which confirms Part 1.

To prove Part 5, define σi =
√
λi for each i = 1, 2, · · · , n. Then:

L†Lui = λui = σ2
i ui

In particular, σi = 0 for each i = r + 1, · · · , n. Define vi = (1/σi)Lui. Then:

Lui =

{
σivi, i = 1, 2, · · · r,
0, i ≤ r,

L†vi =

{
σiui, i = 1, 2, · · · r,
0, i ≤ r.

This establishes Part 5.
To prove Part 3, for each i, j = 1, · · · , r:

〈vi,vj〉 =
1

σiσj
〈Lui,Luj〉 =

1

σiσj
〈L†Lui,uj〉 =

σi
σj

= δij,

so {v1, · · · ,vr} is an ordered, orthonormal basis for Im(L) = Ker(L†)⊥. Using the Extension
Theorem (Alternate Proof for Theorem 2.84) and the Gram-Schmidt Process (Theorem 6.31),
choose normalized vectors vr+1, · · · ,vn such that {v1, · · · ,vr, · · · ,vr+1, · · · ,vm} such that BV
is an ordered, orthonormal basis for V . Evidently, {vr+1, · · · ,vm} is an ordered, orthonormal
basis for Ker(L†), which verifies Part 4. It is not difficult to observe that:

LL†vi = σiLui = σ2
i vi,

so v1, · · · ,vr are eigenvalues of LL† corresponding to λ1(= σ2
1), · · · , λr(= σ2

r). �

The singular value decomposition can also be presented as shown below.
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Theorem 2.36 (Singular Value Decomposition for Matrices). Let M ∈ Cm×n with
rank(M) = r. Then there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n such that:

M = UΣV = U

[
Σ1 0
0 0

]
V ?

where:

Σ1 =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,
where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are called the singular values of M , and the representation
above is called the singular-value decomposition of M .

Theorem 2.37. Let M ∈ Cm×n with rank(M) = r, and let M = UΣV ? be the singular-value
decomposition of M . Partition U and V as:

U =
[
U1 U2

]
, V =

[
V1, V2

]
,

where U1, V1 ∈ Cr×r. Then:

1. The columns of U1 and U2 form orthonormal bases for R(M) and N(M?), respectively.
(Note—these are subspaces of Cm.

2. The columns of V1 and V2 form orthonormal bases for R(M)? and N(M), respectively.
(Note—these are subspaces of Cn.



Chapter 3

Dynamical Systems

3.1 Lecture 7

In this section, we investigate properties of differential equations. In particular, given a
differential equation:

ẋ = f(x, t), x(t0) = x0

where x(t) ∈ Rn, f(x, t) : Rn × R+ → Rn, we are interested in the conditions under which:

1. A solution exists, i.e. there exists some x(t), defined for all t ≥ t0, satisfying the given
differential equation.

2. The solution is unique.

Definition 3.1 (Piecewise Continuity). The function f(x, t) : Rn × R+ → Rn is said to
be piecewise continuous in t if, in any compact interval, f(x, ·) : R+ → Rn is continuous
except at a finite number of points.

Definition 3.2 (Lipschitz Continuity). The function f(x, t) : Rn × R+ → Rn is said to
be Lipschitz continuous in x if, for each t, there exists a piecewise continuous function
κ(·) : R+ → R+ such that:

|f(x, t)− f(y, t)| ≤ κ(t) · |x− y|
for each x, y ∈ Rn, and t ∈ R+. This inequality is called the Lipschitz condition.

We wish to present a theorem for the existence of a unique solution to a differential
equation with certain continuity restrictions. However, before presenting the theorem, we first
examine the following lemma.

Lemma 3.3 (Bellman-Gronwall Lemma). Let u(·), k(·) be real-valued, piecewise continuous
functions on R+, and assume that u(t), k(t) > 0 on R+. If, for some differentiable, non-
decreasing function c(t):

u(t) ≤ c(t) +

∫ t

t0

k(τ)u(τ)dτ ≡ Z(t) (3.1)

then:
u(t) ≤ c(t)e

∫ t
t0
k(τ) dτ

45
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Proof. Without loss of generality, suppose t > t0. Define:

Z(t) = c(t) +

∫ t

t0

k(τ)u(τ)dτ,

then u(t) ≤ Z(t). In differential form:

d

dt
Z(t) = c′(t) + k(t)u(t)

Z(t0) = c(t0)

Multiplying both sides of (3.1) by the non-negative function:

k(t)e
−

∫ t
t0
k(τ) dτ ≥ 0

we find:

0 ≥
[
u(t)− Z(t)

]
· k(t)e

−
∫ t
t0
k(τ) dτ

≥
(
d

dt
Z(t)− c′(t)− Z(t)k(t)

)
· e−

∫ t
t0
k(τ) dτ

=

(
d

dt
Z(t)− Z(t)k(t)

)
· e−

∫ t
t0
k(τ) dτ − c′(t) e

−
∫ t
t0
k(τ) dτ︸ ︷︷ ︸

≤1, since k(t)≥0

≥
(
d

dt
Z(t)− Z(t)k(t)

)
· e−

∫ t
t0
k(τ) dτ − c′(t)

=
d

dt

(
Z(t) · e−

∫ t
t0
k(τ) dτ − c(t)

)
Thus, the function Z(t) · e−

∫ t
t0
k(τ) dτ − c(t) is decreasing, and must at any time t be less than

its value at t0:

Z(t) · e−
∫ t
t0
k(τ) dτ − c(t) ≤ Z(t0)− c(t0) = 0

⇒u(t) ≤ Z(t) ≤ c(t) · e
∫ t
t0
k(τ) dτ

�

Theorem 3.4 (Fundamental Theorem of Differential Equations). Consider the differential
equation:

ẋ = f(x, t), x(t0) = x0

where f(x, t) : Rn×R+ → Rn is piecewise continuous in t and Lipschitz continuous in x. Then
there exists a unique function of time φ(·) : R+ → Rn that is continuously differentiable almost
everywhere, and satisfies:

φ(t0) = x0

φ̇(t, 0) = f(φ(t), t),

for each t ∈ [t0, t1]\D, where D denotes the set of discontinuity points of f as a function of t.
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Proof. Construct a sequence of continuous functions:

xm+1(t) ≡ x0 +

∫ t

t0

f(xm(τ), τ)dτ, m = 0, 1, 2, · · ·

where x0(t0) = t0. The idea is to show that

1. The sequence of continuous functions:

{xm(·)}∞0

converges to: a continuous function φ(·) : R+ → Rn,

2. φ(·) is a solution of the given ODE, i.e.:

φ̇ = f(φ, t), φ(t0) = x0.

3. φ(·) is the unique solution. This technique is known as the ”construction of a solution by
iteration.”

We proceed to prove each of the above claims.

1. To show that φ(·) is a continuous function, we first demonstrate that {xm(·)}∞0 is a Cauchy
sequence in the Banach space (C([t1, t2],Rn),R, ‖ · ‖∞), where t0, t ∈ [t1, t2]:

‖xm+1(t)− xm(t)| ≡
∥∥∥∥∫ t

t0

[
f(xm(τ), τ)− f(xm−1(τ), τ)

]
dτ

∥∥∥∥
≤
∫ t

t0

‖f(xm(τ), τ)− f(xm−1(τ), τ)‖ dτ

≤
∫ t

t0

κ(τ) · ‖xm(τ)− xm−1(τ)‖dτ

≤ κ̄ ·
∫ t

t0

‖xm(τ)− xm−1(τ)‖dτ

where κ(t) is a piecewise continuous function arising from the fact that f(x, t) is Lipschitz
continuous in x, and where we have defined κ̄ = sup

t∈[t1,t2]

κ(t). By the definition of {xm(·)}∞0 :

x1(t) ≡ x0 +

∫ t

t0

f(x0, τ)dτ, t ∈ [t1, t2]

∴ ‖x1(t)− x0‖ ≤
∫ t

t0

‖f(x0, τ)‖dτ ≤
∫ t2

t1

‖f(x0, τ)‖dτ ≡M

Since x0 is specified, M is known.
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Thus, if we define T = |t− t0| and apply the recursive bound derived above, we have:

‖x2(t)− x1(t)‖ ≤Mκ|t− t0| = MκT

‖x3(t)− x2(t)‖ ≤ 1

2
Mκ2T 2

...

‖x2(t)− x1(t)‖ ≤ 1

m!
MκmTm

Next, recall that ‖f(·)‖∞ = max {|f(t)|, t ∈ [t1, t2]}. To see that {xm(·)}∞m=0 is a Cauchy
sequence in (C ([t1, t2],Rn),R, ‖ · ‖∞), observe that for any m, p ∈ N, we have:

‖xm+p(·)− xm(·)‖∞ =

∥∥∥∥∥
p−1∑
k=0

[
xm+k+1(·)− xm+k(·)

]∥∥∥∥∥
∞

≤
p−1∑
k=0

∥∥[xm+k+1(·)− xm+k(·)
]∥∥
∞

≤M ·
p−1∑
k=0

(κT )m+k

(m+ k)!

≤M
(κT )m

m!
·
p−1∑
k=0

(κT )k

k!

≤M
(κT )m

m!
eκT

Thus, given any ε > 0, we can always choose a sufficiently large m ∈ N such that, for
each p ∈ N:

‖xm+p(·)− xm(·)‖∞ < ε

By definition, {xm(·)}∞m=0 is Cauchy.

2. Next, we must show that φ(·) is a solution of the given differential equation, i.e. φ̇ =
f(φ, t), φ(t0) = x0. It is sufficient to show that:

φ(t) = x0 +

∫ t

t0

f(φ(τ), τ)dτ,

since the differential equation would follow by differentiating with respect to t on both
sides, while the initial condition can be obtained substituting t = t0 on both sides.

By construction, we already have:

xm+1(t) = x0 +

∫ t

t0

f(xm(τ), τ)dτ
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Moreover, by the proof in Part 1, xm(·)→ φ(·) on [t1, t2] as m→∞. It remains to verify
that: ∫ t

t0

f(xm(τ), τ)dτ −→
∫ t

t0

f(φ(τ), τ)dτ

as m→∞. This can be done straightforwardly, by once again observing the convergence
of {xm(t)}∞m=1 (with respect to the infinity norm) derived in (1):∣∣∣∣∫ t

t0

[
f(xm(τ), τ)− f(φ(τ), τ)

]
dτ

∣∣∣∣
=

∫ t

t0

∣∣f(xm(τ), τ)− f(φ(τ), τ)
∣∣dτ

≤
∫ t

t0

κ(τ) · |xm(τ)− φ(τ)|dτ

≤ κ̄ · ‖xm(·)− φ(·)‖∞ · T

≤κ ·MeκT · (κT )m

m!
· T,

which approaches 0 as m→∞.

3. Finally, uniqueness can be demonstrated using the Bellman-Gronwell Lemma. Suppose
ψ(t) is a solution satisfying:

˙ψ(t) = f(ψ(t), t), ψ(t0) = x0

Then:

|ψ(t)− φ(t)| =
∣∣∣∣∫ t

t0

[
f(ψ(τ), τ))− f(φ(τ), τ))

]
dτ

∣∣∣∣
≤
∫ t

t0

|f(ψ(τ), τ)− f(φ(τ), τ)| dτ

≤
∫ t

t0

κ(t) · |ψ(τ)− φ(τ)| dτ

By the Bellman-Gronwell Lemma (here, c1 = 0), we have |ψ(t)−φ(t)| = 0, i.e. ψ(t) = φ(t)
for each t ∈ [t1, t2].

�

Example. Consider the time-variant system:{
ẋ(t) = A(t)x(t) +B(t)u(t),

x(t0) = x0

Show that the solution to this ODE is unique.
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Solution :
Suppose φ(t) and ψ(t) are two solutions to the given ODE. Then φ(t0) = ψ(t0) = x0,

and:

φ̇(t) = A(t)φ(t) +B(t)u(t)

ψ̇(t) = A(t)ψ(t) +B(t)u(t)

Then:

|ψ(t)− φ(t)| =
∣∣∣∣∫ t

t0

[
ψ̇(t)− φ̇(t)

]
dτ

∣∣∣∣
≤
∫ t

t0

|A(τ)| · |ψ(τ)− φ(τ)|dτ

≤ ‖A(t)‖∞ ·
∫ t

t0

|ψ(τ)− φ(τ)|dτ

where the infinity norm of A(t) was taken over the interval [t0, t1]. By the Bellman-Gronwell
Lemma, |ψ(t)− φ(t)| = 0, so ψ(t) = φ(t) for each t ≥ 0. The proof is done.

Example (Reverse-Time Differential Equation). Consider again the differential equation:

ẋ = f(x, t), x(t0) = x0

Suppose f(x, t) satisfies the hypotheses of the Fundamental Theorem, so that the solution exists
and is unique for t ≥ t0.

Now, consider τ ∈ (0, t0), i.e. τ = t0 − t for some t ∈ (0, t0). Show that there exists a
trajectory z(τ) such that z(τ) = x(t).

Solution :
The proof can be done by constructing a differential equation for z(τ) that satisfies the

constraints imposed in the Fundamental Theorem:

d

dτ
z(τ) = − d

dt
x(t) = −f(x(t), t) = −f(z(τ), t0 − τ)

≡ f(z(τ), τ)

Since f(x, t) is piecewise continuous in t and Lipschitz continuous in x, we see that f(z, τ) is
piecewise continuous in τ and Lipschitz continuous in z. This is because, given any z1(τ), z2(τ),
if we define ẑ1(τ) ≡ z1(t0 − τ) = z1(t) and ẑ2(τ) ≡ z2(t0 − τ) = z2(t):

‖f(z2(τ), τ)− f(z1(τ), τ)‖ = ‖f(z2(τ), t0 − τ)− f(z1(τ), t0 − τ)‖
= ‖f(ẑ2(t), t)− f(ẑ1(t), t)‖

Thus, given the relation between f and f , f(x, t) is Lipschitz in x if and only if f(z, τ) is
Lipschitz in z. The hypotheses of the Fundamental Theorem are thus satisfied, so f is Lipschitz
in z.
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3.2 Lecture 7 Discussion

Definition 3.5 (Locally Lipschitz). A system of differential equations is said to be locally
Lipschitz in Rn if, for each r > 0, there exists some Lr > 0 such that:

|f(x)− f(y)| ≤ Lr · |x− y|

for each x, y ∈ Br(0), where Br(0) is the n-dimensional ball of radius r centered at 0.

Theorem 3.6 (Mean-Value Theorem in Rn). Suppose S is an open subset of Rn, and
assume that f : S → Rm is differentiable at each point of S. Let x, y ∈ S be given such that
λx+ (1− λ)y ∈ S for each λ ∈ [0, 1]. Then there exists some λ ∈ (0, 1) such that:

|f(y)− f(x)| ≤ |f ′(z)| · |y − x|

where z = λx+ (1− λ)y. Here, f ′(z) denotes the Jacobian of f at z.

Note. The above version of the Mean-Value Theorem follows directly from Apostol [1], Theorem
12.9, pg. 355.

Example (Discussion 4, Problem 1). Consider the following system of differential equations.

ẋ1 = x2
1 + x2

2

ẋ2 = x2
1 − x2

2

As in Lecture 7, f(x1, x2) = (ẋ1, ẋ2) = (x2
1 + x2

2, x
2
1 − x2

2). Prove that f is locally Lipschitz but
not (globally) Lipschitz.

Solution :

1. To show that the system is locally Lipschitz, we apply the n-dimensional Mean-Value
Theorem. Fix r > 0, and let x, y ∈ Br(0) be given. Since f is continuously differentiable
throughout R2, we can calculate its Jacobian at any point (z1, z2) ∈ Br(0) as:

f ′(z1, z2) =

∥∥∥∥∥∥
[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]
(z1,z2)

∥∥∥∥∥∥
F

=

∥∥∥∥[2z1 2z2

2z1 −2z2

]∥∥∥∥
F

<
√

8r

where the subscript F denotes the Frobenius norm. (Since all norms are equivalent on
R2, norms can be arbitrarily chosen so long as their use is consistent). Note that, since
(z1, z2) ∈ Br(0), we have z2

1 + z2
1 < r. Since this holds for any (z1, z2) ∈ Br(0), which is

convex, we can apply the Mean-Value Theorem to get:

|f(x)− f(y)| ≤ 8r · |x− y|

as desired.
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2. Suppose by contradiction that there exists some L > 0 such that:

|f(x)− f(y)|1 ≤ L · |x− y|1

where the subscript ”∞” denotes the one-norm, defined on R2 by:∣∣∣∣[v1

v2

]∣∣∣∣ = |v1|+ |v2|

The local Lipschitz property of f , as demonstrated above, implies that that this
inequality may in fact hold if x, y are constrained to be within a sufficiently small ball
centered at the origin (0, 0). Thus, to achieve a contradiction, we must take x, y ∈ R2 to
be sufficiently large, e.g.:

x ≡
[
2L
0

]
, y =

[
L
0

]
In this case:

|f(x)− f(y)|1 =

∣∣∣∣[4L2

0

]
−
[
L2

0

]∣∣∣∣ = 3L2

L · |x− y|1 = L ·
∣∣∣∣[2L0

]
−
[
L
0

]∣∣∣∣ = L2

Clearly, |f(x)− f(y)|1 ≤ L · |x− y|1 does not hold in this case, a contradiction.

Example (Discussion 4, Problem 2). Consider the following linear system:

ẋ = A(t)x(t) +B(t)u(t)

x(t0) = x0

Provide a sufficient condition for the linear system to have a unique solution.

Solution:
By the Fundamental Theorem, f should be:

• Piecewise continuous in t, for any given x, and

• Lipschitz continuous in x, for any given t, with the Lipschitz constant piecewise continuous
in time.

Thus, if we:

1. Fix x —A(t), B(t), u(t) are piecewise continuous in t.

2. Fix t —Observe that:

|f(x1, t)− f(x2, t)| ≤ ‖A(t)‖i · |x1(t)− x2(t)|

Thus, it suffices to show that A(t) is bounded and piecewise continuous.
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Example. Consider the following linear system:

ẋ = Ax(t)

x(0) = x0

where A ∈ Rn×n is nonzero. Now, suppose the initial state x0 undergoes a variation x̃0 to
become x̂(0) = x0 + x̃0. Then the system evolves according to:

˙̂x = Ax(t)

x̂(0) = x0

By subtracting each corresponding equation in the above system, we arrive at a third system
for the error of the system:

˙̃x = Ax̃(t)

x̃(0) = x̃0

Use the Bellman-Gronwell Lemma to show that, as |x̃0| → 0, we have |x̃(t)| → 0 for any
t ∈ [0, T ].

Solution:
The problem can be solved by appropriately bounding the error of the state at time t.

Rewriting the system for x̃(t) as an integral equation, we have:

x̃(t) = x̃0 +

∫ t

0

Ax̃(t)dt

⇒ |x̃(t)| ≤ |x̃0|+
∫ ∞

0

‖A‖ · |x̃(t)|dt

where the Cauchy-Schwarz Inequality has been applied. Since |x̃0| is constant and ‖A‖ > 0, we
can apply Bellman-Gronwell lemma to find:

|x̃(t)| ≤ |x̃0| · e
∫∞
0 ‖A‖ dt = |x̃0| · e‖A‖ t

Remark. Essentially, the problem statement claims that the error in the state x(t) at any given
time t can be made arbitrarily small by adequately reducing the error in the initial state x0.
The solution reveals that although this is true, the bound increases exponentially with t.

Example (Differential Version). Let x(t) be a non-negative, continuously differentiable function
on [0, T ], satisfying:

ẋ(t) ≤ A(t)x(t) +B(t)

for each t ∈ [0, T ], where A,B are non-negative integrable functions on [0, T ], and vectors on
the two side of the inequality are compared term by term. Show that:

x(t) ≤ exp

(∫ t

0

A(τ)dτ

)
·
[
x(0) +

∫ t

0

B(τ)dτ

]
for each t ∈ [0, T ].
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Solution:
We proceed by rewriting the inequality describing ẋ(t) in integral form, and applying

the Bellman-Gronwell Lemma:

ẋ(t) ≤ A(t)x(t) +B(t)

⇒ x(t) ≤ x(0) +

∫ t

0

[A(τ)x(τ) +B(τ)] dτ

=

[
x(0) +

∫ t

0

B(τ)dτ

]
+

∫ t

0

A(τ)x(τ)dτ

⇒ x(t) ≤
[
x(0) +

∫ t

0

B(τ)dτ

]
· exp

(∫ t

0

A(τ)dτ

)
since the term in the square brackets is non-decreasing:

d

dt

[
x(0) +

∫ t

0

B(τ)dτ

]
= B(t) ≥ 0

Example (Discussion 4, Problem 4). Suppose that the dynamical system:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

x(t0) = x0

admits the unique solution:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, t0)B(τ)u(τ)dτ,

for each t ∈ [t0,∞). Identify the state transition function, the output read-out map, and the
response function.

Solution:
The state transition function s(t, t0, x0, u[t0, t]) is:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, t0)B(τ)u(τ)dτ

the output read-out map is:
y(t) = C(t)x(t) +D(t)u(t)

while the response function is:

y(t) = C(t)Φ(t, t0)x0 + C(t) ·
∫ t

t0

Φ(t, t0)B(τ)u(τ)dτ +D(t)u(t)
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3.3 Lecture 8

A system representation is a mathematical model of an input-output system. Consider, for
example, the representation in Lecture 7:

ẋ = f(x, u, t), f : Rn × Rni × R+ → Rn

y = h(x, u, t), h : Rn × Rni × R+ → Rn0

with initial condition x(t0) = x0.
Another example is the discrete-time representation:

xk+1 = f(xk, uk, k)

yk = h(xk, uk, k)

To motivate the following abstract description of a dynamical system, consider first the
concrete example of a passive electrical circuit.

Example (Electrical Circuit). As an example, consider the following electrical circuit:

where:

1. φ1, φ2, q: Fluxes φ1, φ2 and capacitor charge q, considered here to be state variables.

2. u: Voltage source, considered here to be the input

3. y: Voltage across R2, considered here to be the output

Then, by KCL and KVL, we have:

q̇ =
1

L1

φ1 −
1

L2

φ2

φ̇1 =
1

C
q − R1

L1

φ1 − u

φ̇2 =
1

C
q − R2

L2

φ2

y =
R1

L2

φ2
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In system representation:  q̇φ̇1

φ̇2

 =

0 1
L1

− 1
L2

1
C
−R1

L1
0

1
C

0 −R2

L2

 qφ1

φ2

+

 0
−1
0

u
⇒y =

[
0 0 R2

L2

]  qφ1

φ2


The above description can be generalized into a formal definition of a dynamical system

Definition 3.7 (Dynamical System). Let time T be a variable defined on T = (∞,∞) or
[0,∞) (continuous-time case) or {nT, n ∈ Z} (discrete-time case). A dynamical system is
a 5-tuple:

(U ,Σ,Y , s, r)
defined on T , where:

1. Input space: (U)

U is the set of input functions from T → U :

u(t) = {u(t), T → U}

Typically, U = Rni.

2. Output space: (Y)

Y is the set of output functions from T → Y

u(t) = {y(t), T → Y}

Typically, Y = Rno.

3. States: (Σ)

Σ is a set, called the state space, that contains all state trajectories

Σ = {x(t), t ∈ T }

Typically, Σ = Rn.

4. State transition map: (s)

The state transition map:

s : T × T × Σ× U → Σ

is a mapping from a given pair of initial and final times (t0, t1), an initial state (x0), and
an input functions (u[t0, t1]), to a final state (x(t1)):

x(t1) = s(t1, t0, x0, u)
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By convention, the third element in s(·, ·, ·, ·) refers to the location of the trajectory x(t) at
the time given by the second element in s(·, ·, ·, ·). For instance, writing x(t) = s(t, τ, x′, u)
indicates that the initial condition under consideration is x′ = x(τ).

5. Output Read-out Map: (r)

The output readout function:

r : T × Σ× U → Y

is a mapping from a given point in time t, and the state and output at time t, to the
output y(t) at time t:

y(t) = r(t, x(t), u(t))

Remark (Difference between u[t0, t1] and u(t)). All state transition maps s take into account
the action of u on the state trajectory x(t) at all times in T . When considering state transitions
between different points in time (given an initial state), it is usually insufficient to merely
consider the effect of u at any specific point in time between [t0, t1]. On the other hand, in our
model of dynamical systems, we assume that the output y(t) at any point in time t′ depends
only on the state and input at time t′ (i.e. x(t′), u(t′), respectively. Thus, when calculating
y(t′), it is enough to know x(t′) and u(t′); we do not need to know u[t0, t1].

Definition 3.8. For any given dynamical system, the state transition map s is required to
satisfy the following two axioms:

1. State Transition Axiom:

Let t0, t1 ∈ T be given, with t0 ≤ t1. The state transition axiom states that if
u(t), ũ(t) ∈ U satisfy:

u(t) = ũ(t), ∀ t ∈ [t0, t1] ∩ T

for each interval [t0, t1] ∩ T , then:

s(t1, t0, x0, u) = s(t1, t0, x0, u)

2. Semi-Group Axiom:

Let t0, t1, t2 ∈ T be given, with t0 ≤ t1 ≤ t2. The semi-group axiom states that if
u(t), ũ(t) ∈ U satisfy:

s(t2, t1, x(t1), u) = s(t2, t1, s(t1, t0, x0, u), u)

= s(t2, t0, x0, u)

for each initial state x0 ∈ Σ and input function u ∈ U .

Remark (Interpretations of the State Transition Axioms).
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1. State Transition Axiom:

Only the input between the initial and final points of time will affect the state
trajectory. This property is suggested by writing:

x(t1) = s(t, t0, x0, u[t0, t1])

2. Semi-Group Axiom:

In other words, the concatenated effects of applying the same input u throughout the
time intervals [t0, t1] and [t1, t2] is the same as the effect of applying u throughout the
total time interval [t0, t2], assuming all initial conditions are aligned.

Below, we define two important classes of dynamical systems—time-invariant systems
and linear dynamical systems.

Definition 3.9 (Shift Operator). Define the shift operator Tτ : U → U as:

(Tτu)(t) = u(t− τ)

(Similar notations are used for Tτ : Y → Y.)

Definition 3.10 (Time-Invariant Dynamical System). A dynamical system is said to be
time-invariant if:

1. U is closed under Tτ , for each τ .

2. For each t0, t, τ ∈ T , where t0 ≤ t1, and each x0 ∈ Σ, u ∈ U , we have:

s(t1, t0, x0, u) = s(t1 + τ, t0 + τ, x0, Tτu)

Definition 3.11 (Linear Dynamical Systems). A dynamical system is said to be linear if:

1. U ,Σ,Y are linear spaces over the same field F.

2. For each t0, t ∈ T , with t0 ≤ t, the response map ρ is linear in Σ × U , i.e. for any
x1, x2 ∈ Σ and α1, α2 ∈ F:

ρ(t, t0, α1x1 + α2x2, α1u1 + α2u2)

=α1 · ρ(t, t0, x1, u1) + α2 · ρ(t, t0, x2, u2)

Remark. The above axioms in the definition of linearity for dynamical systems basically state
that, in order for a dynamical system to be considered linear, the parameters and mappings
associated with its definition must satisfy the following properties:

1. Any two states, or their linear combinations, can be added together. So can any two
inputs or any two outputs.
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2. For any given initial time t0 and final (time of response) time t, the (output) response of
the dynamical system to a linear combination of 2-tuples of (initial state, input), i.e.:

α1(x01, u1) + · · ·+ αn(x0n, un)

is the linear combination of the responses of the system to any particular 2-tuple (xn1, un),
with the same coefficients α1, · · · , αn.

Definition 3.12 (Zero-State Response, Zero-Input Response). Given a linear dynamical
system (U ,Σ,Y , r, s), suppose θΣ and θU are the zero elements of Σ and U , respectively. Then:

(x0, u) = (θΣ, u) + (x0, θU)

⇒ ρ(t, t0, x0, u) = ρ(t, t0, θΣ, u) + ρ(t, t0, x0, θU)

Define:

ρ(t, t0, θΣ, u) ≡ zero-state response

ρ(t, t0, x0, θU) ≡ zero-input response

We have thus shown that the response map of any linear dynamical system can be written as the
sum of a zero-state response and a zero-input response. The linearity of each can be established
by observing that both θΣ and θU can be written as linear combinations of itself:

ρ(t, t0, θΣ, α1u1 + α2u2)

=α1 · ρ(t, t0, θΣ, u1) + α2 · ρ(t, t0, θΣ, u2)

ρ(t, t0, α1x01 + α2x02, θU)

=α1 · ρ(t, t0, x01, θU) + α2 · ρ(t, t0, x02, θU)

Finally, we establish the concept of equivalent states and equivalent representations for
two dynamical systems.

Definition 3.13 (Equivalent States). Let D = (U ,Σ,Y , s, r) and D̃ = (U , Σ̃,Y , s̃, r̃) be two
dynamical systems with the same input and output spaces (U and Y, respectively). We say that
an initial state x0 ∈ Σ of D and an initial state x̃0 ∈ Σ̃ of D̃ are equivalent if, for each t ≥ t0:

ρ(t, t0, x0, u[t0, t]) = ρ(t, t0, x̃0, u[t0, t])

In other words, stating that x0 ∈ Σ and x̃ ∈ Σ̃ are equivalent states is the same as
stating the following—If at time t0, the systems D and D̃ are initialized at state x0 and x̃0,
respectively, and are subject to the same input u[t0, t] during the interval [t0, t], then they must
have the same response ρ at t.

Definition 3.14 (Equivalent Representations). Two dynamical systems D and D̃ are said
to be equivalent if and only if, for each t0 ∈ T, x ∈ D, there exists at least one state x̃ ∈ D̃ that
is equivalent to x at t0. Thus, equivalent system representaitons have the same input-output
pairs.
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3.4 Lecture 8 Discussion

Example (Discussion 4, Problem 4). Suppose that the dynamical system:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

x(t0) = x0

admits the unique solution:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, t0)B(τ)u(τ)dτ,

for each t ∈ [t0,∞). Identify the state transition function, the output read-out map, and the
response function.

Solution:
The state transition function s(t, t0, x0, u[t0, t]) is:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, t0)B(τ)u(τ)dτ

the output read-out map is:
y(t) = C(t)x(t) +D(t)u(t)

while the response function is:

y(t) = C(t)Φ(t, t0)x0 + C(t) ·
∫ t

t0

Φ(t, t0)B(τ)u(τ)dτ +D(t)u(t)
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3.5 Lecture 9

In Sections 7 and 8, we considered the system to be evolving according the differential
equation ẋ = f(x, t), where f can be of any form, so long as it guarantees the existence of a
unique solution. Here, we restrict our attention to specific forms for f(x, t), as well as specific
forms for writing the output in terms of the states and inputs. This will allow us to define a
mapping Φ(t, t0), called the state transition matrix, that concisely describes the state trajectory
x(t).

Definition 3.15 (System Representation). The system representation R = [A(·), B(·), C(·), D(·)]
stands for the dynamical system:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0 (3.2)

y(t) = C(t)x(t) +D(t)u(t) (3.3)

where we have:

u(t) ∈ Rni

y(t) ∈ Rn0

x(t) ∈ Rn,

with matrix-valued piecewise continuous functions:

A(t) ∈ Rn×n

B(t) ∈ Rn×ni

C(t) ∈ Rno×n

D(t) ∈ Rno×ni

The input u(t) ∈ U , where U is the set of piecewise continuous functions from R+ → Rni .
We wish to show that (3.2) and (3.3) satisfy the conditions of the existence and uniqueness

theorem for differential equations; this would imply that x(t) and y(t) ∈ Rn0 is well-defined for
all t ≥ t0. Rewrite (3.2) as:

ẋ(t) = A(t)x(t) +B(t)u(t)

≡ p(x(t), t)

Observe that for each x, the function p(x, t) is piecewise continuous in t, sinceA(t), B(t), u(t)
are piecewise continuous in t. Also, for each fixed t, p(x, t) is globally Lipschitz in x (with
Lipschitz constant ‖A(t)‖i piecewise continuous in t), as shown below:

|p(x1, t)− p(x2, t)| = |A(t)(x1 − x2)

≤ ‖A(t)‖i|x1 − x2|
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The solution x(t) can be represented in terms of the state transition map s, while the
output can be represented by the response map ρ:

x(t) = s(t, t0, x0, u[t0, t])

y(t) = ρ(t, t0, x0, u[t0, t])

Example (Linearization). One of the reasons for adopting a system representation of the
form (3.2), (3.3), is that state perturbations in non-linear systems can be characterized via
linearization. Consider a general non-linear system with dynamics of the form:

ẋ = f(x, u, t), x(t0) = x0

y = h(x, u, t)

and suppose that a small perturbation is applied to the state (x) and input (u) of the system,
thus inducing a slight change in the output (y):

x −→ x+ δx

x(t0) −→ x0 + δx0

u −→ u+ δu

y −→ y + δy

Then, Taylor expansion gives us:

ẋ+ δẋ = f(x+ δx, u+ δu, t)

= f(x, u, t) +
∂

∂x
f(x, u, t)

∣∣∣∣∣
x,u︸ ︷︷ ︸

≡A(t)∈Rn×n

δx+
∂

∂u
f(x, u, t)

∣∣∣∣∣
x,u︸ ︷︷ ︸

≡B(t)∈Rn×ni

δu

⇒ δẋ = A(t) · δx+B(t) · δu

Similarly, we have:

y + δy = h(x+ δx, u+ δu, t)

= h(x, u, t) +
∂

∂x
h(x, u, t)

∣∣∣∣∣
x,u︸ ︷︷ ︸

≡C(t)∈Rno×n

δx+
∂

∂u
f(x, u, t)

∣∣∣∣∣
x,u︸ ︷︷ ︸

≡D(t)∈Rno×ni

δu

⇒ δy = C(t) · δx+D(t) · δu

In summary, we have:

δẋ = A(t) · δx+B(t) · δu
δy = C(t) · δx+D(t) · δu
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Below, we define the state transition matrix for dynamical systems with system representation
of the form (3.2) and (3.3), and demonstrate its relationship to the state x(t).

Definition 3.16 (State Transition Matrix). Consider a dynamical system (U ,Σ,Y , s, r)
with system representation given as in (3.2), (3.3). The state transition matrix Φ(t, t0)
of the system is defined as the unique solution to the following differential equation, where
X(t) ∈ Rn×n for each t ∈ R:

Ẋ = A(t)X, X(t0) = X0 (3.4)

Proposition 3.17. Consider a dynamical system (U ,Σ,Y , s, r) with system representation
given as in (3.2), (3.3), and state transition matrix Φ(t, t0). Then:

1. The (unique) solution to the differential equation:

ẋ = A(t)x, x(t0) = x0

is given by:
x(t) ≡ s(t, t0, x0) = Φ(t, t0)x0

Moreover, for each t, t0, t1 ∈ R+, we have:

2. Φ(t, t0) = Φ(t, t1) · Φ(t1, t0).

3. [Φ(t, t0)]−1 = Φ(t0, t)

4. det(t, t0) = exp
(∫ t

t0
tr(A(τ))dτ

)
Proof.

1. By the Fundamental Theorem, we only have to show that the given expression satisfies
the given differential equation and initial conditions. For the differential equation, we
have:

d

dt

[
Φ(t, t0)x0

]
=

[
d

dt
Φ(t, t0)

]
x0 = A(t)x0

At t = t0, we have:
x(t0) = Φ(t0, t0)x0 = x0

The proof is done.

2. Here, we will show that the expression on the right-hand side satisfies the matrix differential
equation that defines Φ(t, t0), as well as the given initial condition:

d

dt

[
Φ(t, t1) · Φ(t1, t0)

]
=
[
A(t) · Φ(t, t1)

]
· Φ(t1, t0),
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since, by definition, Φ(t, t1) is the unique solution to the matrix equation:

Ẋ = A(t)X, X(t1) = I

For the initial condition, we have at t1:

Φ(t1, t1)Φ(t1, t0) = Φ(t1, t0)

3. Observe that:

I = Φ(t0, t0) = Φ(t0, t) · Φ(t, t0)

I = Φ(t, t) = Φ(t, t0) · Φ(t0, t),

so Φ(t0, t)
−1 = Φ(t, t0).

4. The given equation can be rewritten in its differential form, as follows:

d

dt
Φ(t, t0) = tr(A) · det

(
Φ(t, t0)

)
This can be shown by observing that:

Φ(t, t0) = Φ(t, t0) + A(t)Φ(t0, t)dt+O(dt2)

= (I + A(t)dt)Φ(t, t0) +O(dt2)

⇒ det
(
Φ(t+ dt, t0)

)
=

[
1 +

n∑
i=1

aiidt+O(dt2)

]
· det

(
Φ(t, t0)

)
+O(dt2)

= [1 + tr(A) · dt] · detΦ(t, t0) +O(dt2)

⇒ d

dt
detΦ(t, t0) = lim

t→0

detΦ(t+ dt, t0)− detΦ(t, t0)

dt
= tr(A) · det(Φ(t, t0))

�

Now, we wish to demonstrate what happens when a nonzero input function u(t) is
superimposed onto the system. Consider an input u(t) imposed onto the system during the
infinitesimal time period [t′, t′ + dt], where:

t0 � t′ < t′ + dt′ � t

as shown in the figure below.
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Analyzing the trajectory x(t) at times t′, t′ + dt and t, we find:

x(t′) = Φ(t′, t0)x0

⇒ x(t′ + dt′) = x(t′) +
[
A(t′)x(t′) +B(t′)u(t′)

]
dt′

⇒ x(t) = Φ(t, t′ + dt′)x(t′ + dt′)

= Φ(t, t′ + dt′)
[
x(t′) +

[
A(t′)x(t′) +B(t′)u(t′)

]
dt′
]

= Φ(t, t′ + dt′)
[
I + A(t′)dt′

]
x(t′) + Φ(t, t′ + dt′)B(t′)u(t′)dt′

≈ Φ(t, t′ + dt′)Φ(t′ + dt′)

where d
dt

Φ(t, t0) = A(t)Φ(t, t0):

A(t)Φ(t, t0) =
d

dt
Φ(t, t0)

≈ Φ(t′ + dt′, t′)− Φ(t′, t′)

dt′

=
Φ(t′ + dt′, t′)− I

dt′

⇒ Φ(t′ + dt′, t′) ≈ I + A(t)Φ(t, t0)dt′

Theorem 3.18. The state transition and response maps for a dynamical system with system
representation (3.2), (3.3) are:

s(t, t0, x0, u[t0, t]) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, t′)B(t′)u(t′)dt′, (3.5)

ρ(t, t0, x0, u[t0, t]) = C(t)Φ(t, t0)x0 + C(t)

∫ t

t0

Φ(t, t′)B(t′)u(t′)dt′ +D(t)u(t), (3.6)

respectively.

Proof. To verify (3.5), we must demonstrate that the expression on its right-hand side satisfies
the differential equation (3.2). By taking the derivative of s with respect to time, we have:

d

dt
s(t, t0, x0, u[t0, t]) =

[
d

dt
Φ(t, t0)

]
x0 + Φ(t, t)B(t)u(t)

= [A(t)Φ(t, t0)]x0 +B(t)u(t)

= A(t)x(t) +B(t)u(t)

It remains to show that the initial condition is satisfied:

x(t0) = Φ(t, t0)x0 + 0 = x0

Finally, (3.6) follows when (3.5) is substituted as x(t) into (3.3). This completes the proof. �
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Theorem 3.19. The state transition function (3.5) satisfies the state transition axiom and the
semi-group axiom.

Proof.

1. State Transition Axiom:

Let inputs u(·) and u(·) be given such that they take identical values in the time
interval τ ∈ [t0, t]. Then we have:

s(t, t0, x0, u[t0, t]) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, t′)B(t′)u(t′)dt′

= Φ(t, t0)x0 +

∫ t

t0

Φ(t, t′)B(t′)u(t′)dt′

= s(t, t0, x0, u[t0, t])

2. Semi-Group Axiom:

To check the semi-group axiom, we must compare s(t2, t1, s(t1, t0, x0, u[t0, t1], u[t1, t2]))
and s(t2, t0, x0, u[t0, t2]):

s(t2, t1, s(t1, t0, x0, u[t0, t1], u[t1, t2]))

=Φ(t2, t1) ·
(

Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ

)
+

∫ t2

t1

Φ(t2, τ)B(τ)u(τ)dτ

=Φ(t2, t0)x0 +

∫ t1

t0

Φ(t2, τ)B(τ)u(τ)dτ +

∫ t2

t1

Φ(t2, τ)B(τ)u(τ)dτ

=Φ(t2, t0)x0 +

∫ t2

t0

Φ(t2, τ)B(τ)u(τ)dτ

�
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3.6 Lecture 9 Discussion

Example (Discussion 5, Problem 5, Fall 2009, 2015 Midterms). For a non-singular
M(t) ∈ Rn×n, determine an expression for:

d

dt

[
M−1(t)

]
in terms of Ṁ(t) and M−1(t).

Solution :
The desired result can be derived by applying the definition for the inverse of a matrix

and the product rule for differentiation:

I = M(t) ·M−1(t)

⇒O =

[
d

dt
M(t)

]
M−1(t) +M(t)

[
d

dt
M−1(t)

]
⇒ d

dt
M−1(t) = −M−1(t)

[
d

dt
M(t)

]
M−1(t)

Example (Discussion 5, Problems 6, 7, Fall 2014 Midterm). Given a system of the form
(3.2) and (3.3), with state transition matrix Φ(t, t0)

1. Find an expression for:
d

dτ
Φ(t, τ)

in terms of Φ(t, t0) and A(t).

2. Prove that Φ(t0, t) is the unique solution to the matrix differential equation:

d

dt
X(t) = −X(t)A(t), A(t0) = I

Solution:

1. We repeat the solution process of the above example for Φ(t, τ):

I = Φ(t, t) = Φ(t, τ)Φ(τ, t)

⇒O =

[
d

dτ
Φ(t, τ)

]
Φ(t, τ) + Φ(t, τ)

[
d

dτ
Φ(τ, t)

]
⇒ d

dτ
Φ(t.τ) = −Φ(t, τ)

[
d

dt
Φ(τ, t)

]
Φ(t, τ)

= −Φ(t, τ)
[
A(τ)Φ(τ, t)

]
= −Φ(t, τ)A(τ)



68 CHAPTER 3. DYNAMICAL SYSTEMS

where Φ(τ, t) is the unique solution:

d

dτ
X = A(τ)X, X(τ) = I.

2. First, we verify that Φ(t0, t) satisfies the given differential equation. This follows directly
from the results derived above (simply replace t and τ with t0 and t, respectively:

∵
d

dτ
Φ(t.τ) = −Φ(t, τ)A(τ)

⇒ d

dt
Φ(t0, t) = −Φ(t0, t)A(t)

Remark. Any uniqueness issues in the definition of Φ(t, t0) can be circumvented by noting that,
when A(t) is piecewise continuous in t, the differential equation d

dt
X(t) = A(t)X(t) satisfies the

Fundamental Theorem (which extends to matrix differential equations).

Example (Discussion 5, Problem 8). Calculate the state transition matrix for the differential
equation ẋ(t) = A(t)x(t), where:

A(t) =

[
t 2
0 −1

]
Solution-1:

Since A(t) ∈ R2×2 for each t ∈ R, the state space Σ is 2-dimensional, i.e. x(t) =
(x1(t), x2(t))T . Let the initial conditions be x1(t0) = a and x2(t0) = b, and rewrite the
differential equation as:

ẋ1 = tx1 + 2x2

ẋ2 = −x2

The second equation implies that x2(t) = be−(t−t0). Substituting this result into the first
equation, we have:

ẋ1 = tx1 + 2be−(t−t0)

The solution to x1(t) can then be found via the integrating factor method:

ẋ1 = tx1 + 2be−t

⇒e−
1
2
t2ẋ1 − te−

1
2
t2x1 = 2be−t−

1
2
t2

⇒ d

dt

(
e−

1
2
t2x1

)
= 2be−t−

1
2
t2

⇒e−
1
2
t2x1 − e−

1
2
t20 · a = 2

∫ t

t0

e−τ−
1
2
τ2

dτ · b,
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where, in the final step, we have integrated from t0 to t on both sides of the equality. In
summary, we have for x1(t) and x2(t):

x1(t) = e
1
2

(t2−t20) · a+ 2e−
1
2
t20

∫ t

t0

e−τ−
1
2
τ2

dτ · b

x2(t) = e−(t−t0) · b

Since the state transition matrix uniquely satisfies x(t) = Φ(t, t0)x0, we find that:

Φ(t, t0) =

[
e

1
2

(t2−t20) 2e−
1
2

(t2−t0)
∫ t
t0
e−τ−

1
2
τ2
dτ

0 e−(t−t0)

]
Solution-2:

Another method is to solve for Φ(t, t0) directly, from its definition as the unique solution
to the differential equation:

Ẋ(t) = A(t)X(t), X(t0) = I

Define the components of Φ(t, t0) as:

Φ(t, t0) ≡
[
Φ11(t, t0) Φ12(t, t0)
Φ21(t, t0) Φ22(t, t0)

]
Then the differential equation uniquely satisfied by Φ(t, t0) becomes:[

Φ̇11(t, t0) Φ̇12(t, t0)

Φ̇21(t, t0) Φ̇22(t, t0)

]
=

[
A11(t) A12(t)
A21(t) A22(t)

] [
Φ11(t, t0) Φ12(t, t0)
Φ21(t, t0) Φ22(t, t0)

]
=

[
t 2
0 −1

] [
Φ11(t, t0) Φ12(t, t0)
Φ21(t, t0) Φ22(t, t0)

]
This can be expressed as four differential equations, one each for Φ̇11(t, t0), Φ̇12(t, t0), Φ̇21(t, t0),
and Φ̇22(t, t0):

Φ̇11 = tΦ11 + 2Φ21

Φ̇11 = tΦ11 + 2Φ22

Φ̇21 = −Φ21

Φ̇22 = −Φ22

with initial conditions:

Φ̇11(t0, t0) = 1

Φ̇12(t0, t0) = 0

Φ̇21(t0, t0) = 0

Φ̇22(t0, t0) = 1
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From the differential equations for Φ21 and Φ22, we immediately conclude that Φ21(t, t0) = 0
and Φ22(t, t0) = e−(t−t0). Substituting into the differential equations for Φ11 and Φ12, we have:

Φ̇11 = tΦ11 + 2e−(t−t0)

Φ̇12 = tΦ12

Using the initial conditions Φ̇11(t0, t0) = 1 and Φ̇12(t0, t0) = 0, we have:

Φ11(t, t0) = e
1
2

(t2−t20)

Φ12(t, t0) = 2e−
1
2

(t2−t0)

∫ t

t0

e−τ−
1
2
τ2

dτ,

in agreement with the solution presented above.

Example (Discussion 5, Problem 10). Determine whether the dynamical system described
by the following equations is linear:[

ẋ1

ẋ2

]
=

[
sin(x2)

sin(t)x2(0)

]
+

[
0
1

]
u(t)

y(t) =
[
0 0

]
x(t)

Assume that u(t) is piecewise continuous in t.

Solution:
The system is linear since the response map, which is identically 0, is linear with respect

to any tuple of initial state and control, (x0, u[t0, t]). This problem emphasizes the fact that,
even if the dynamics of the system appear non-linear, the system itself is linear by definition if
its response map is linear.

Example (Discussion 5, Problem 11). Find a mathematical representation for the system
presented below, and determine whether it is a dynamical system. Is it linear?

Solution:

1. Since multiplying by 1/s in the frequency domain is equivalent to an integrator in the
time domain, we have:

ẋ = −2x+ u

y = x
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2. Applying (3.9) to the given differential equation, with the initial condition x(t0) = x0, we
find:

x(t) = e−2(t−t0)x0 +

∫ t

t0

u(τ) · e−2(t−τ)dτ

To verify that the above trajectory is that of a dynamical system, we must verify that it
satisfies the state transition axiom and the semi-group axiom:

• State Transition Axiom:

Let u and u′ be input functions taking identical values at each point in [t0, t].
Since the given state trajectory only depends on values of u in the time interval
[t0, t], it satisfies state transition axiom.

• Semi-Group Axiom:

We have:

s
(
t2, t1, s(t1, t0, x0, u[t0, t1]), u[t1, t2]

)
=e−2(t2−t1)

(
e−2(t−t0)x0 +

∫ t1

t0

u(τ) · e−2(t1−τ)dτ

)
+

∫ t2

t1

u(τ) · e−2(t2−τ)dτ

=e−2(t2−t0)x0 +

∫ t1

t0

u(τ) · e−2(t1−τ)dτ +

∫ t2

t1

u(τ) · e−2(t1−τ)dτ

=e−2(t2−t0)x0 +

∫ t2

t0

u(τ) · e−2(t1−τ)dτ

=s(t1, t0, x0, u[t0, t2])
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3.7 Lecture 10

It will become apparent that the solution to the differential equations (3.2), (3.2) involves the
matrix exponential etA. Thus, we devote the first half of this section towards understanding
this expression.

The following material, which establishes the convergence of etA for each
square matrix A and each t ∈ R, is not included in the Lecture 10 Notes. It
originates from Professor Chee-Fai Yung’s Lecture Notes on Mathematical Control
Theory [12].

Below, we extend (3.5) and (3.6) to the special case where A(t), B(t), C(t), D(t) are fixed
matrices whose values are independent of time. However, we first require a result for the
convergence of a particular sequence of matrix polynomials.

Definition 3.20 (Convergence of a Series of Matrices). Let {c(k)} be a sequence of m×n
matrices. We say that

∑
k ck converges if each series

∑
k c

(k)
ij converges, where:

ck = [c
(k)
ij ]m×n

If
∑

k c
(k)
ij converges for each i, j, then we define:

[bij] ≡
∑
k

ck

Theorem 3.21. If
∑

k ‖ck‖ converges, then
∑

k ck converges.

Proof. Without loss of generality, take the Frobenius norm. Since |c(k)
ij | ≤ ‖ck‖ for each i, j,

and
∑

k ‖ck‖ converges, the series
∑

k |c
{
ij(k)} converges for each i, j. In other words,

∑
k c

(k)
ij

converges (absolutely), for each i, j, so
∑

k ck converges by Theorem 3.20. �

Theorem 3.22. For each square matrix A, the infinite sum:

∞∑
k=0

Ak

k!

converges.

Proof. For each k = 0, 1, 2, · · · : ∥∥∥∥Ak

k!

∥∥∥∥ =
‖Ak‖
k!
≤ ‖A‖

k

k!

⇒
∞∑
k=0

∥∥∥∥Ak

k!

∥∥∥∥ ≤ ∞∑
k=0

‖A‖k

k!
= e‖A‖

The right-hand side converges, by the Comparison Test. Thus, by Theorem 3.21, so does∑∞
k=0

Ak

k!
. �
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With the above results, we can now simplify (3.5) and (3.6) for the case where A(t), B(t),
C(t), D(t) are all constant.

Lecture 10 Notes begin here

Corollary 3.23. Let D be a dynamical system with system representation (3.2) and (3.3), with
A(t), B(t), C(t), D(t) all constant (i.e. time-independent). Then the state transition matrix
Φ(t, t0) for D is:

Φ(t, t0) = e(t−t0)A (3.7)

As a result, the state transition and response maps for a dynamical system with system representation
(3.2), (3.3), when A(t), B(t), C(t), D(t) are all constant, are:

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−τ)ABu(τ)dτ (3.8)

y(t) = C(t)e(t−t0)Ax0 + C(t)

∫ t

t0

e(t−τ)ABu(τ)dτ +Du(t) (3.9)

Proof. To show (3.7), we must show that e(t−t0)A satisfies (3.4):

d

dt
e(t−t0)A =

d

dt

[
∞∑
k=0

tkAk

k!

]
=

d

dt

[
∞∑
k=0

tkAk

k!

]
=
∞∑
k=0

[
d

dt

(
tkAk

k!

)]
=
∞∑
k=0

tk−1Ak

(k − 1)!
=
∞∑
k=1

tkAk+1

k!

= AetA = etAA

The exchange of the infinite sum and the differentiation in the third equality relies on the fact
that the convergence of

(
k!

tkAk
, k ≥ 0

)
to etA is uniformly continuous in t (see Rudin [8]). (3.5)

and (3.9) then follow by substituting (3.7) into (3.5) and (3.6). (Observe that the norm of A,
a constant matrix, offers a natural choice for the Lipschitz constant. Thus, if u(t) is piecewise
continuous, all the conditions of the Fundamental Theorem are then satisfied.) �

Other properties regarding the matrix exponential etA are discussed below.

Theorem 3.24 (Properties of the Matrix Exponential).

1. eO = I.

2. e(t+s)A = etA · esA = esA · etA.

3. If (and only when) AB = BA, we have et(A+B) = etA · etB

4. (etA)−1 = e−tA

5. If A = PBP−1, then etA = PetBP−1.
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Proof.

1. By definition of the matrix exponential:

eO = I + I +O +O + · · · = I

2. By expanding the left-hand side of the given expression, we have:

e(t+s)A =
∞∑
n=0

(t+ s)nAn

n!
=
∞∑
n=0

n∑
k=0

(
n

k

)
tksn−k · A

n

n!

=
∞∑
k=0

∞∑
n=k

n!

k!(n− k)!
tksn−k · A

n

n!

=
∞∑
k=0

∞∑
n=0

1

k!n!
tksn · A(n+k)

= etA · esA

= esA · etA

3. ”⇒ ” By expanding the left-hand side of the given expression, we have:

et(A+B) =
∞∑
n=0

tn(A+B)n

n!
=
∞∑
n=0

n∑
k=0

(
n

k

)
AkBn−k · t

n

n!

=
∞∑
k=0

∞∑
n=k

n!

k!(n− k)!
AkBn−k · t

n

n!

=
∞∑
k=0

∞∑
n=0

1

k!n!
AkBn · t(n+k)

= etA · etB

= etB · etA

where the fact that AB = BA has been used, in conjunction with the binomial theorem,
to separate the A and B terms in the expression (A+B)n.

” ⇐ ” Conversely, suppose et(A+B) = etAetB. Differentiating both sides twice and
taking t = 0, we have:

et(A+B) = etA · etB

⇒ (A+B)et(A+B) = etA(A+B)etB

⇒ (A+B)2 et(A+B) = etA
(
A(A+B) + (A+B)B

)
etB

⇒A2 + AB +BA+B2 = A2 + 2AB +B2

⇒AB = BA
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4. Since A and −A clearly commute, we have from the above derivation:

I = eO = et(A+(−A)) = etA · e−tA = e−tA · etA

5. By definition of the matrix exponential:

PetBP−1 = P

(
∞∑
k=0

tkBk

k!

)
P−1 =

∞∑
k=0

tkPBkP−1

k!

=
∞∑
k=0

tk(PBP−1)k

k!
=
∞∑
k=0

tkAk

k!
= etA

�

Methods for calculating etA, when A is independent of t, include:

1. Direct Expansion

2. Laplace Transform

3. Cayley-Hamilton Theorem

4. Diagonalization or Jordan Canonical Form

However, if A = A(t) is time-dependent, the differential equation must be directly solved
(either for x(t), or for Φ(t)). The process is rather time-consuming. Examples are furnished in
the discussion problems following this lecture.

For very simple matrices, etA can be directly calculated. In general, the results of the
above theorem allow etA to be calculated via diagonalization or Jordan decomposition. Other
methods for calculating etA, as listed above, are demonstrated in examples in Discussion Notes
following this chapter.

Example. Suppose:

A =

[
0 1
0 0

]
Find etA using the definition of the matrix polynomial.

Solution 1 : (Direct Calculation)
Since A2 = O, we have An = O for any n = 2, 3, · · · . Thus:

etA = I + tA =

[
1 t
0 1

]
For more difficult examples, the Laplace transform can be used to find the matrix

polynomial. Consider again the matrix differential equation Ẋ = AX,X(0) = In. By taking
the Laplace transform on both sides, we have:
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Ẋ = AX

⇒sX̂(s)−X(0) = AX̂(s)

⇒ (sI − A)X̂(s) = I

⇒X̂(s) = (sI − A)−1

⇒x(t) = L−1{(sI − A)−1}

where the adjugate matrix adj(sI − A) of A is the transpose of the cofactor matrix C
of A, as shown below. We define Aij as the matrix obtained by deleting the i-th row and j-th
column of A:

Cij(A) = (−1)i+jdet(Aij)

adj(A) =
[
C(A)

]T
Solution 2 : (Laplace Transform)

From above, we know that etA = L−1(sI − A), so:

sI − A =

[
s −1
0 s

]
⇒ (sI − A)−1 =

1

s2

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s

]
⇒etA = L{(sI − A)−1} = L−1

{[
1
s

1
s2

0 1
s

]}
=

[
1 t
0 1

]
�

Below, we revisit the derivation of the solution to the linear time-invariant system:

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = C x(t) +Du(t)

The solution is given by (3.8) and (3.9), as reproduced below:

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−τ)ABu(τ)dτ

y(t) = C(t)e(t−t0)Ax0 + C(t)

∫ t

t0

e(t−τ)ABu(τ)dτ +Du(t)

Below, we show that these formulas can be derived via Laplace transform and inverse Laplace
transform. Consider the Laplace transform of the linear time-invariant system:
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{
sX̂(s)− x0 = AX̂(s) +B Û(s)

sŶ (s) = C X̂(s) +DÛ(s)

⇒

{
X̂(s) = (sI − A)−1x0 + (sI − A)−1B Û(s)

Ŷ (s) = C(sI − A)−1x0 +D(sI − A)−1B Û(s)

⇒


x(t) = L−1{(sI − A)−1}x0 + L−1{(sI − A)−1} ? (Bu)(t)

= e(t−t0)Ax0 +
∫ t
t0
e(t−τ)ABu(τ)dτ

y(t) = CL−1{(sI − A)−1}x0 +DL−1{(sI − A)−1} ? (Bu)(t)

= Ce(t−t0)Ax0 +D
∫ t
t0
e(t−τ)ABu(τ)dτ

Example (Inverted Pendulum). Consider the inverted pendulum described by the differential
equation and figure provided below:

ml2θ̈ −mgl sin θ = τ

Analyze its dynamics.

Figure 10.1

Solution:
The given dynamics can be rewritten as:

θ̈ = Ω2θ + u

y = θ

where we have defined:
Ω2 =

g

l
, u(t) =

τ

ml2

By taking the Laplace transform on both sides, we have for the transfer function G(s):

G(s) ≡ Ŷ (s)

Û(s)
=

1

s2 − Ω2
=

1

(s+ Ω)(s− Ω)

The zero-state response of the system can thus be represented by the figure below. This system
has an unstable pole at s = Ω.

Figure 10.2
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Closed-Loop Solution:

Suppose we try to cancel this pole by passing the input through another controller with
transfer function and applying some sort of closed-loop feedback:

K(s) =
s− Ω

s

such that the original transfer function, G(s) becomes (see accompanying figure):

H(s) ≡ K(s) ·G(s) =
1

s(s+ Ω)

Figure 10.3

Now, suppose we close the loop:

Figure 10.4

If we apply a step function for the input R(t), the resulting closed-loop step response is
as follows (the MATLAB code used to generate figures in this example is provided at the end
of the section):

Figure 10.5
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Now, Consider the original dynamics as:

ẋ1 = x2

ẋ2 = Ω2x1 + u

We wish to replace ū with as the overall input of the composite system. This can be done by
introducing a third state variable, x3, from the relationship between ū and u:

u =

(
s− Ω

s

)
ū

⇒ u̇ = ˙̄u− Ωū

A good candidate for x3 is thus x3 ≡ ū− u, which yields ẋ3 = Ωū. The state space equations
for the above (open loop) system are (see accompanying figure):

ẋ1 = x2

ẋ2 = Ω2x1 + ū

ẋ3 = Ωū

Figure 10.6
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MATLAB Simulations for Closed-Loop Step Response and Initial State Response:

For the remainder of this example, we will suppose Ω = 1 for simplicity. If so, the above
equations can be rewritten in matrix form as follows:

ẋ =

0 1 0
1 0 −1
0 0 0


︸ ︷︷ ︸

≡A

x+

0
1
1


︸︷︷︸
≡B

ū

y =
[
1 0 0

]︸ ︷︷ ︸
≡C

x

Now, consider the closed-loop system obtained by using as our input ū the difference
between a desired output r and the output y(t) (via feedback), as shown below. Here, we take:

u(t) = c0 · ust(t)

where ust(t) denotes the unit-step function.
The dynamics of the closed-loop system can be analyzed in the frequency domain as

follows (see accompanying figure):

u(t) = e(t) = r(t)− y(t)

⇒H(s) · [R(s)− Y (s)] = Y (s)

⇒Y (s) =
H(s)

1 +H(s)
R(s) =

1

s(s+ Ω) + 1
· c0

s

Figure 10.8

As a sanity check, we can use the Final-Value Theorem to verify that the steady-state
response of the system is stable:

lim
t→∞

y(t) = lim
s→0+

sY (s) = c0
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Back in the state space representation, the closed-loop system becomes:

ẋ = (A−BC)x+BR (3.10)

y = Cx

Consider the following two types of system response simulated and plotted using MATLAB:

1. Closed-Loop Step Response:

Figure 10.9

2. Closed-Loop Initial-State Response:

Figure 10.10
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Qualitative Analysis to Explain Instability:

The above simulation results illustrate that, although pole cancellation modifies the
poles in the transfer function, which connects the input and output of a system, it cannot
eliminate sources of instability within the system itself. Thus, when the system may become
unstable when initialized at particular states, even in the absence of external inputs. Below,
we qualitatively analyze the state space model to gain more insight into this phenomenon.

By (3.5), the solution to (3.10) is:

x(t) = et(A−BC)x0 +

∫ t

0

e(t−τ)(A−BC)BR(τ)dτ,

where et(A−BC) can be calculated via the inverse Laplace transform:

et(A−BC) = L−1{(sI − A)−1} = L−1


s −1 0

0 s 1
1 0 s

−1
= L−1

 1

s3 − 1

 s2 s −1
1 s2 −s
−s −1 s2

−1
Note that (sI − (A − BC))−1 can be evaluated via Gauss-Jordan elimination, use of

the adjunct (classical adjoint) matrix, or any other method for evaluating the inverse of an
invertible matrix. In particular, Gauss-Jordan elimination provides an straightforward method
for evaluating (sI−(A−BC))−1, while the adjunct matrix method reveals that (sI−(A−BC))−1
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is a rational function with polynomials of degrees n−1 and n in the numerator and denominator,
respectively.

Recall that we wish to understand why the closed-loop step response of the system is
stable, while the initial state response, with x(t) = (1, 0, 0)T is not (to be more precise, it is
the first term in the response, which is a 3D vector, that is unstable). We do so explicitly
below. This time, consider from a qualitative viewpoint the response y(t) under the two types
of responses simulated earlier:

1. Closed-Loop Step Response—R(t) = 0, and x0 = (1, 0, 0)T :

Similarly, only certain components of et(A−BC) are necessary in the evaluation of y(t)
in this case:

y(t) =
[
1 0 0

]
x(t)

=
[
1 0 0

] [∫ t

0

e(t−τ)ABdτ

]

=

∫ t

0

[1 0 0
] [
e(t−τ)A

] 0
1
1

 dτ

=

∫ t

0

L−1

{
s

s3 − 1
− 1

s3 − 1

}
dτ

=

∫ t

0

L−1

{
1

s2 + s+ 1

}
dτ

=

∫ t

0

e−0.5(t−τ) cos
(
0.866(t− τ)

)
dτ

which is stable, since the poles in this case, s = −0.5 ± j 0.866 are all on the left half of
the complex plane.

2. Closed-Loop Initial-State Response—R(t) = 0, and x0 = (1, 0, 0)T :

It is, in fact, unnecessary to evaluate each term in et(A−BC); the figures given above
imply we only have to show that certain parts of the response converge:

y(t) =
[
1 0 0

]
x(t)

=
[
1 0 0

]
et(A−BC)

1
0
0


= L−1

{
s2

s3 − 1

}
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Since s3 − 1 includes s = 1 as a pole, the resulting y(t) is a linear combination of
exponential and sinusoidal terms, one of which is et. This demonstrates that y(t) has
an unstable mode due to the pole at s = 1.

For this purpose, it is actually unnecessary to evaluate every term in et(A−BC); we only
need to obtain the (1, 1) entry.

This result can be interpreted by comparing A and A−BC:

A =

0 1 0
1 0 −1
0 0 0


A−BC =

0 1 0
0 0 −1
1 0 0



We can straightforwardly compute the eigenvalues of A and A−BC as follows:

σ(A) = {1,−1, 0}

σ(A−BC) =

{
1,

1

2
± j 0.87

}

Note that the unstable eigenvalue at s = 1 is still present, even after the control is applied.

�

Note. The MATLAB code used to generate the figures in this example is as follows:

Figure 10.7
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3.8 Lecture 10 Discussion

Example (Discussion 6, Problem 3). Compute etA for the following matrix:[
−1 1
−2 −3

]
Below, we compute etA in three different ways—(1) Laplace Transform, (2) Cayley-

Hamilton Theorem, (2) Diagonalization.

Solution 1 : (Laplace Transform)
We have:

etA = L−1{(sI − A)−1}

= L−1

{[
s+ 1 −1

2 s+ 3

]−1
}

= L−1

{
1

(s+ 1)(s+ 3) + 2

[
s+ 3 2

1 s+ 1

]}
= L−1

{
1

(s+ 2)2 + 1

[
s+ 3 2

1 s+ 1

]}
=

[
e−2t(cos t+ sin t) e−2t sin t
−2e−2t sin t e−2t(cos t− sin t)

]
Solution 2 : (Cayley-Hamilton Theorem)

To invoke the Cayley-Hamilton Theorem. which roughly states that all square matrices
satisfy their own characteristic equation, we must find the characteristic function of A:

χλ(A) = (λ+ 1)(λ+ 3) + 2 = λ2 + 4λ+ 5

The roots of χλ(A), i.e. the eigenvalues of A, are −2± i.
Thus, the Cayley-Hamilton Theorem implies that A2 + 4A + 5 = 0. Now, consider the

function etλ, which we will treat as an infinite polynomial of λ, with coefficients dependent on t.
We hope to express etλ in such a way that allows us to easily compute etA by replacing λ with
A. To that end, consider the long division of etλ over χλ(A). By the Polynomial Remainder
Theorem, there must exist polynomials q(λ), r(λ), with the degree of r(λ) less than 2 (the
degree of χλ(A), such that:

etλ = q(λ) · (λ2 + 4λ+ 5) + (c1λ+ c0)︸ ︷︷ ︸
≡ r(λ)

.

The coefficients c0, c1 ∈ C can be readily computed by taking λ to be the eigenvalues of A,
since they are the roots of the polynomial λ2 + 4λ+ 5:

et(−2+i)= c1(−2 + i) + c0

et(−2−i) = c1(−2− i) + c0
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Solving for c0, c1, we have:

c1 =
1

i2
(eit − e−it) = e−2t sin t

c2 = e−2t(eit − sin t(−2 + i)) = e−2t(cos t+ 2 sin t)

Substituting back into etx, we have:

etλ = q(λ) · (λ2 + 4λ+ 5) + (e−2t sin t)λ+ e−2t(cos t+ 2 sin t)

Finally, replacing λ with A, we have:

etA = q(A) · (A2 + 4A+ 5) + (e−2t sin t)A+ e−2t(cos t+ 2 sin t)I2

= (e−2t sin t)A+ e−2t(cos t+ 2 sin t)I2

=

[
e−2t(cos t+ sin t) e−2t sin t
−2e−2t sin t e−2t(cos t− sin t)

]
Solution 3 : (Diagonalization)

Finally, etA can also be computed by diagonalizing A, since, if A = PDP−1, where P is
invertible and D is diagnol, then etA = PetDP−1.

From above, we find that the characteristic equation of A is χλ(A) = λ2 + 4λ+ 5, with
roots at −2± i. Using this fact, we find that the following serves as possible values for P and
D:

P =

[
1 1

−1 + i −1− i

]
, D =

[
−2 + i 0

0 −2− i

]
, P−1 =

1

2

[
1− i −i
1 + i i

]
Thus, we have:

etA = PetDP−1

=

[
1 1

−1 + i −1− i

] [
e−2t(cos t+ i sin t) 0

0 e−2t(cos t− i sin t)

]
· 1

2

[
1− i −i
1 + i i

]
=

[
e−2t(cos t+ sin t) e−2t sin t
−2e−2t sin t e−2t(cos t− sin t)

]
The last equality can be verified by rearranging terms.

Example (Discussion 6, Problem 6). Calculate the state transition matrix for ẋ(t) = A(t)x(t),
where:

A(t) =

[
t t
0 −1

]
Let x(t0) = (a, b)T , and rewrite the differential equations as:

ẋ1 = tx1 + tx2, x1(t0) = a,

ẋ2 = −x2, x2(t0) = b,
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The second differential equation, which only concerns x2, yields the solution x2(t) = b · e−(t−t0).
Thus, the first equation becomes:

ẋ1 − tx1 = bte−(t−t0), x1(t0) = a

⇒ d

dt

(
e−

1
2
t2x1

)
= bte−

1
2
t2−t+t0

⇒e−
1
2
t2x1 − e−

1
2
t20a = b · et0

∫ t

t0

τe−
1
2
τ2−τ

⇒x1(t) = a · e−
1
2

(t2−t20) + b · e
1
2
t2+t0

∫ t

t0

τe−
1
2
τ2−τ

where the integrating factor was calculated as I(t) = e
∫
−τdτ = e−

1
2
t2 Thus, we have:

x(t) =

[
a · e− 1

2
(t2−t20) + b · e 1

2
t2+t0

∫ t
t0
τe−

1
2
τ2−τ

b · e−(t−t0)

]
≡ Φ(t, t0)x(t0)

⇒Φ(t, t0) =

[
e

1
2

(t2−t20) e
1
2
t2+t0

∫ t
t0
τe−

1
2
τ2−τ

0 e−(t−t0)

]
Alternatively, Φ(t, t0) could have been derived by directly solving the differential equation:

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I2

and evaluating differential equations for each of the four elements in Φ(t, t0) ∈ R2×2. (The same
procedure is outlined as an alternate solution in Discussion 5, Problem 8). This is left to the
reader as an exercise. In particular, Φ12(t) (which, as the above derivation shows, is the most
”complicated” element in Φ(t, t0)) satisfies the differential equation:

Φ̇12 = tΦ12 + te−(t−t0), Φ12(t0) = 0

Example (Discussion 6, Problem 7). Compute etA1 and etA2 , where:

A1 =

[
9 1
−4 −5

]
, A2 =

 5 −3 2
15 −9 6
10 −6 4


Solution :

1. We will solve this problem using Laplace transform and the Cayley-Hamilton Theorem.
Note that diagonalizing A1 (or finding its Jordan canonical form) involves finding the
eigenvectors (and/or generalized eigenvectors) of A, which is a time-consuming process.)

(a) Laplace Transform:

Using Laplace transform and inverse Laplace transform, we have:
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etA1 = L−1{(sI − A)−1}

= L−1

{[
s+ 9 −1

4 s+ 5

]}
= L−1

{
1

(s+ 9)(s+ 5) + 4

[
s+ 5 1
−4 s+ 9

]}
= L−1

{
1

(s+ 7)2

[
s+ 5 1
−4 s+ 9

]}
=

[
(1− 2t)e−7t te−7t

−4te−7t (1 + 2t)e−7t

]
(b) Cayley-Hamilton Theorem:

The characteristic equation of A1 is:

χA(λ) = (λ+ 9)(λ+ 5) + 4 = (λ+ 7)2

Let q(λ) and c1, c0 ∈ R be given such that:

etλ = q(λ) · (λ+ 7)−1 + c1λ+ c0

tetλ = q′(λ) · (λ+ 7)2 −+2q(λ) · (λ+ 7) + c1,

where the second equality follows by taking the derivative with respect to λ. Substituting
λ = 7 into the above equation, we have:

e−7t = −7c1 + c0

te−7t = c1,

so (c1, c0) = (te−7t, (1 + 7t)e−7t). Substituting back into etλ, and replacing λ with A,
we find:

etλ = q(λ) · (λ+ 7)2 + te−7t · λ+ (1 + 7t)e−7t

etA = q(A) · (A+ 7I2)2 + te−7t · A+ (1 + 7t)e−7tI2

= te−7t · A+ (1 + 7t)e−7tI2

=

[
(1− 2t)e−7t te−7t

−4te−7t (1 + 2t)e−7t

]
2. We will solve this problem using Jordan decomposition and the Cayley-Hamilton Theorem.

As we will see below, the Jordan decomposition approach actually allows us to find
etA without actually finding the eigenvectors and generalized eigenvectors of A. Since
A ∈ R3×3, Laplace transform in fact becomes a more time-consuming approach for this
particular problem.
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(a) Jordan Decomposition:

By observation, the three columns of A2 are simply multiples of the same
vector, (1, 3, 2)T . Thus, two of the three eigenvalues of A2 are 0, with two linearly
independent eigenvectors, (2, 0,−5)T and (0, 2, 3)T . Since tr(A2) = 0 is the sum of
the three eigenvalues, the third eigenvalue must also be 0. If there existed a third
linearly independent eigenvector for A2, then A2 is diagonalizable with diagonal
matrix D = O, which would in turn imply A2 = O, a contradiction. This implies
that A2 can only be Jordan decomposed, i.e. A2 = PJP−1, where:

J =

0 1 0
0 0 0
0 0 0


Note that J2 = O. Thus, by direct expansion, we have:

etA2 = QetJQ−1 = Q(1 + tJ)Q−1 = I + tA2

=

1 + 5t −3t 2t
15t 1− 9t 6t
10t −6t 1 + 4t


(b) Cayley-Hamilton Theorem:

Again, by observation, we note that the three eigenvalues of A2 are all 0. Thus,
χA(λ) = λ3. Let:

etλ = q(λ) · λ3 + c2λ
2 + c1λ+ c0

tetλ = q2(λ) · λ3 + 2c2λ+ c1

t2etλ = q3(λ) · λ3 + 2c2

where the last two equalities were derived by differentiating the first once and twice,
respectively, and q2(λ) and q(λ) represent polynomials of λ that depend on q(λ).
Substituting λ = 0, we find that:

(c2, c1, c0) =

(
1

2
t2, t, 1

)
.

Substituting back into etλ, and replacing λ with A2, we have:

etλ = q(λ) · λ3 +
1

2
t2 · λ2 + t · λ+ 1

⇒ etA2 =
1

2
t2A2

2 + tA2 + I3 = tA2 + I3,

where A2
2 = O (it takes some time to verify this).



Chapter 4

System Stability

4.1 Lecture 12

Consider the time-invariant dynamical system:

ẋ(t) = A(t)x(t), x(0) = x0

which, as shown in Lecture 10, has the state transition matrix:

Φ(t, 0) = etA

The Laplace Transform method of evaluating the matrix polynomial etA is provided below.

Φ(t, 0) = etA = L−1{(sI − A)−1}.

The expression:

(sI − A)−1 =
adj(sI − A)

det(sI − A)
,

where det(sI −A) and adj(sI −A) (classical adjoint) are n-dimensional and n− 1-dimensional
matrices, respectively, can be used to evaluate (sI − A)−1. Alternatively, (sI − A)−1 can also
be evaluated via Gauss-Jordan elimination.

Below, we introduce a very important property of the characteristic equation of a square
matrix. However, before doing so, we must introduce the concept of a matrix function.

Theorem 4.1 (Cayley-Hamilton Theorem). Let A ∈ Rn×n, and suppose its characteristic
polynomial has the form:

χA(s) ≡ det(sI − A) = sn + d1s
n−1 + · · ·+ dn−1s+ dn

Then:
χA(A) = An + d1A

n−1 + · · ·+ dn−1A+ dnI = O

Remark. In the statement of the Cayley-Hamilton Theorem, we have overloaded the notation
χA(·) to describe polynomials of either scalar or square matrix inputs with the same coefficients
as the characteristic polynomial of A.

91
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Proof. Consider the inverse of (sI − A), computed using the classical adjoint of A:

(sI − A)−1 =
adj(sI − A)

det(sI − A)

⇒ (sI − A) · adj(sI − A) = det(sI − A) · I

Let adj(A), which is of degree n− 1, have the following form:

adj(A) = B0s
n−1 +B1s

n−2 + · · ·+Bn−2s+Bn−1

Then the above equation becomes:

(sI − A)(B0s
n−1 +B1s

n−2 + · · ·+Bn−2s+Bn−1)

=(sn + d1s
n−1 + · · ·+ dn−1s+ dn)I

By comparing coefficients on both sides of the equation, we have:

B0 = I

Bk = ABk−1 + dkI, ∀k = 1, · · · , n− 1

O = ABn−1 + dnI

We claim that, for each k ∈ 1, · · · , n:

O = AkBn−k + Ak−1dn−k+1 + · · ·+ dn−1A+ dn

This can be done via induction, by working backwards from n − 1. When k = 1, we have
O = ABn−1 + dn−1I. Suppose the claim holds for some k ∈ {1, · · · , n− 1}. Then:

O = AkBn−k + Ak−1dn−k+1 + · · ·+ dn−1A+ dn

= Ak(ABn−k−1 + dn−k) + Ak−1dn−k+1 + · · ·+ dn−1A+ dn

= Ak+1Bn−k−1 + Akdn−k + Ak−1Bn−k+1 + · · ·+ dn−1A+ dn

By induction, the claim holds. Taking k = n− 1 completes the proof. �

The Cayley-Hamilton Theorem is both of significant theoretical interest in linear and
abstract algebra, and useful as a computational tool for evaluating functions of square matrices.
Alternative proofs for the Cayley-Hamilton (some of which may appear less ad hoc than the
one presented above) are provided in the appendix.

Now, consider a polynomial p(s) of degree m ≥ n (where m may be infinite), and
suppose we wish to evaluate the matrix p(A). By the Polynomial Remainder Theorem, there
exists polynomials q(s) and r(s) such that:

p(s) = q(s) · χA(s) + r(s),

where the degree of q(s) is m− n, if m is finite, and infinite otherwise, and the degree of r(s)
is less than n. By the Cayley-Hamilton Theorem, χA(A) = 0, so:

p(A) = q(A) · χA(A) + r(A) = r(A)
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We have thus reduced the problem of evaluating a matrix polynomial of ≥ n (and possibly
infinite) degree to one of solving a matrix polynomial of < n degree. This is particularly useful
when n = ∞, i.e. when p(s) is an infinite polynomial, as is the case when p(s) represents the
Taylor expansion of a continuously differentiable, non-polynomial function (i.e. sin s, cos s, es,
etc.) Examples are given in the Discussion notes following this lecture.

Dyadic Expansion:

We devote the next part of this section to a discussion of dyadic expansion. Let A ∈ Rn×n

be a diagonalizable matrix with n distinct eigenvalues λ1, λ2 · · · , λn, and corresponding right
(column) eigenvectors e1, e2 · · · , en. Define:

P ≡
[
e1 e2 · · · en

]
,

D ≡


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .
Then we have:

A
[
e1 e2 · · · en

]︸ ︷︷ ︸
≡P

=
[
λ1e1 λ2e2 · · · λnen

]

=
[
e1 e2 · · · en

]︸ ︷︷ ︸
≡P


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


︸ ︷︷ ︸

≡D

⇒A = PDP−1

The above process is known as the diagonalization of A.
Now, let vT1 , v

T
2 , · · · , vTn be the rows of P−1. Then:

A = PDP−1 = (P−1)−1DP

=


vT1
vT2
...
vTn


−1 

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn



vT1
vT2
...
vTn



⇒


vT1
vT2
...
vTn

A =


vT1
vT2
...
vTn



λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 =


λ1v

T
1

λ2v
T
2
...

λnv
T
n
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It follows that vTi A = λiv
T
i , for each i = 1, · · · , k. We call {vT1 , · · · , vTn } the left (row)

eigenvectors of A.
Now, let us return to the expression A = PDP−1, and rewrite P and P−1 as a collection

of the column and row eigenvectors of A, respectively:

A = PDP−1

=
[
e1 e2 · · · en

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn



vT1
vT2
...
vTn


=

n∑
i=1

λieiv
T
i ,

where each eiv
T
i is a rank-1 matrix called a dyad.

Observe that:

I = PP−1 =
[
e1 e2 · · · en

]

vT1
vT2
...
vTn

 =
n∑
i=1

eiv
T
i

I = P−1P =


vT1
vT2
...
vTn

 [e1 e2 · · · en
]

=


vT1 e1 vT1 e2 · · · vT1 en
vT2 e1 vT2 e2 · · · vT2 en
...

...
. . .

...
vTn e1 vTn e2 · · · vTn en


The first equality states that the dyads of A sum to the identity matrix, while the second
implies that:

vTi ej = δij,

where δij, called the Kronecker delta, is 1 if i = j and 0 otherwise.

Example. Find the minimal polynomial of:

A =

2 1 0
0 2 0
0 0 2


Solution :

Since σ(A) = {2}, the characteristic polynomial of A is:

χA(s) = (s− 2)3

However, in fact, we have:
(A− 2I)2 = 0

This demonstrates that the characteristic polynomial is not always the minimal polynomial.
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Theorem 4.2. If A ∈ Cn×n has n distinct eigenvalues λ1, · · · , λn ∈ C, with corresponding
eigenvectors v1, · · · , vn, then {v1, · · · , vn} forms a basis for Cn×n.

Proof. Suppose by contradiction that {v1, · · · , vn} are not linearly independent. Then there
exist α1, · · · , αn ∈ C, not all zero, such that:

α1v1 + · · ·+ αnvn = 0.

Without loss of generality, suppose α1 6= 0. Applying (L− λ2I)(L− λ3I) · · · (L− λnI) on both
sides, we have:

0 = (L− λ2I)(L− λ3I) · · · (L− λnI)(α1v1 + · · ·+ αnvn)

= α1(L− λ2I)(L− λ3I) · · · (L− λnI)v1 + 0

= α1(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)v1

6= 0,

a contradiction. The above equalities follow from the facts that (1) The (L− λiI) terms in the
product (L− λ2I)(L− λ3I) · · · (L− λnI) all commute, since they are all functions of the same
mapping L, and (2) (L− λiI)vi = 0 for each i = 1, · · · , n. �

Alternatively, this theorem can be proved via induction, as demonstrated below.

Proof. The lemma can be proven using by induction. When k = 1, we have Lv1 = λ1v1, where
v1 6= 0, so {v1} is a linearly independent subset. Suppose the lemma is valid for some k − 1,
where k ∈ {2, 3, · · · }. Let:

a1v1 + a2v2 + · · ·+ akvk = 0

Then:

0 = (L− λkI)(a1v1 + a2v2 + · · ·+ akvk)

= a1(λ1 − λk)v1 + a2(λ2 − λk)v2 + · · ·+ ak−1(λk−1 − λk)vk−1 + ak(λk − λk)vk︸ ︷︷ ︸
=0

By the induction hypothesis, {v1, v2, · · · , vk−1} is linearly independent, so:

a1(λ1 − λk) = a2(λ2 − λk) = · · · = ak−1(λk−1 − λk) = 0

Since λi 6= λk for each i 6= k:

a1 = a2 = · · · = ak−1 = 0

So Equation (4.1) becomes akvk = 0. Since vk 6= 0, we have ak = 0, which indicates that
{v1, v2, · · · , vk} is a linearly independent subset. The proof follows by induction. �
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This theorem can be applied to the solving process of a matrix differential equation
ẋ = Ax. Recall that its solution is:

x(t) = etAx0

If A has n distinct eigenvalues λ1, · · · , λn ∈ C, with corresponding eigenvalues v1, · · · , vn, then
by the above theorem, we can write:

x0 =
∞∑
i=1

ηi(0)vi,

which allows us to simplify the given expression for x(t):

x(t) = etAx0 =
∞∑
i=1

ηi(0)etAvi

=
∞∑
i=1

ηi(0)etλivi

Note that {λ1, · · · , λn} may contain real values and/or complex conjugate pairs. In general,
a complex eigenvalue λir + iλic would correspond to either an exponentially growing mode (if
λir > 0) or an exponentially decaying mode (if λir < 0), oscillating at angular frequency |λic|.

Modal Decomposition

Recall that, given a change of coordinates in the system state x = Tx, the equivalent
system representation of an LTI system R : (A,B,C,D) is R : (TAT−1, TB,CT−1, D), i.e.:{

ẋ = Ax+Bu,

y = Cx+Du,
⇒

{
ẋ = TAT−1x+ TBu,

y = CT−1x+Du,

Equivalent systems have the same transfer function, since:

CT−1(sI − TAT−1)−1TB

=CT−1
(
T (sI − A)−1T−1

)
TB

=C(sI − A)−1B

Let an LTI system R : (A,B,C,D) be given, and suppose A is diagonalizable. Define
the rows of B and the columns of C by:

B =
[
b1 b2 · · · bni

]
, C =


cT1
cT2
...
cTno
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Let T−1 be an invertible matrix whose columns are linearly independent right eigenvectors
of A. (Equivalently, the rows of T are the corresponding linearly independent left eigenvectors
of A). Then we can diagonalize A as shown below:

TAT−1 =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Then, if we define:

TB =


vT1
vT2
...
vTn

 [b1 b2 · · · bni
]

=


vT1 b1 vT1 b2 · · · vT1 bni
vT2 b1 vT2 b2 · · · vT2 bni
...

...
. . .

...
vTn b1 vTn b2 · · · vTn bni

 ≡

B̃1

B̃2

...

B̃n

 ,

CT−1 =


cT1
cT2
...
cTno

 [e1 e2 · · · en
]

=


cT1 e1 cT1 e2 · · · cT1 en
cT2 e1 cT2 e2 · · · cT2 en
...

...
. . .

...
cTnoe1 cTnoe2 · · · cTnoen

 ≡ [C̃1 C̃2 · · · C̃n
]
.

where, as before, {e1, · · · , en} and {vT1 , · · · , vTn } are the left (column) eigenvectors and corresponding
left (row) eigenvectors of A, respectively. The transfer function of the system then becomes:

H(s) = CT−1(sI − TAT−1)−1TB

=
[
C̃1 C̃2 · · · C̃n

]


1
s−λ1

0 · · · 0

0 1
s−λ2

· · · 0
...

...
. . .

...
0 0 · · · 1

s−λn



B̃1

B̃2

...

B̃n



If the system were single-input-single-output (SISO), i.e. B ∈ Rn×1, C ∈ R1×n, then
each B̃i and each C̃i is a scalar. The transfer function then has the simple form:

H(s) =
n∑
i=1

C̃iB̃i

s− λi

This is called modal decomposition. Notice that, if B̃i = 0 or C̃i = 0, the transfer
function C(sI −A)−1B does not contain the corresponding term 1/(s− λi), and thus does not
contain the corresponding pole λi. A block diagram is given below.
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If the system were multiple-input multiple-output (MIMO), the same analysis follows—
If, for some i = 1, · · · , n, we have:

B̃i =
[
vTi b1 vTi b2 · · · vTi bn

]
= 0, or

C̃i =


cT1 ei
cT2 ei
...

cTnei

 = 0,

then the pole λi does not appear in C(sI − A)−1B.

Forced Response

The discussion above implies that, for a given LTI system R : (A,B,C), and arbitrary
initial state x0 and input u(·), exponential functions of the form eλit, where λi ∈ σ(A), would
arise in the resulting trajectory x(t). We now wish to ask whether there exist specific initial
states from which, if the system were excited by an input u(t) = u0e

λt, λ 6∈ σ(A), the resulting
trajectory would only contain terms of the form eλt. The theorem below answers this in the
affirmative.

Theorem 4.3. Given an LTI system R : (A,B,C), and an input u(t) = u0e
λt, with λ 6∈ σ(A)

and some arbitrary u0 ∈ Rni, the resulting trajectory is of the form:

y(t) = y0e
λt

if and only if the initial condition satisfies:

x0 = (λI − A)−1Bu0
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Proof. Using (3.9) :

∵ y(t) = CetAx0 +

∫ t

0

Ce(t−τ)ABu(τ)dτ

= CetAx0 +

∫ t

0

Ce(t−τ)ABu0e
λτ dτ

⇒ Y (s) = C(sI − A)−1x0 + C(sI − A)−1B · u0

s− λ
where we have used the fact that the Laplace transform of the convolution of two functions
equals the product of the Laplace transform of the individual functions.

Now, we wish to isolate the effect of (sI −A)−1 and (s− λ)−1 on u0, in order to isolate
a term in Y (s) that depends only on (s − λ)−1. This can be done by rewriting (sI − A)−1 in
terms of (λi − A)−1 and (s− λ)−1. In particular, observe that:

(sI − A)− (λI − A) = (s− λ)I,

⇒ (λI − A)−1 − (sI − A)−1 = (s− λ)(sI − A)−1(λI − A)−1,

⇒ (sI − A)−1 =
[
I − (s− λ)(sI − A)−1

]
(λI − A)−1

Substituting into the above expression, we have:

Y (s) = C(sI − A)−1x0 + C(sI − A)−1B · u0

s− λ
= C(sI − A)−1x0 + C

[
I − (s− λ)(sI − A)−1

]
(λI − A)−1B · u0

s− λ
= C(sI − A)−1

[
x0 − (λI − A)−1Bu0

]
+ C(λI − A)−1B · u0

s− λ
,

⇒ y(t) = CetA
[
x0 − (λI − A)−1Bu0

]
+ C(λI − A)−1Bu0e

λt

Thus, y(t) is proportional to eλt if and only if x0 = (λI − A)−1Bu0, in which case:

y(t) = C(λI − A)−1Bu0e
λt = H(λ) · u0e

λt,

where H(s) = C(sI − A)−1B is the transfer function of the system. �

Remark. If the system is stabilizable, then etA → O as t → ∞, so y(t) → H(λ) · u0e
λt as

t → ∞. In other words, even though y(t) may initially not be directly proportional to eλt,
it will eventually asymptotically approach a function proportional to eλt as its steady-state
response.

We end our discussion by connecting the above concepts to that of the ”zeros” of a
transfer function.

Definition 4.4 (Zero (of a transfer function)). Let R : (A,B,C) be a ”square” system, in
the sense that ni = n0. Then z ∈ C is said to be a zero of the system if the transfer function
evaluated at z:

H(z) = C(zI − A)−1B

is singular.
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For ”square” LTI systems with zeros, particular choices of initial state and input functions
can be chosen such that the output is identically zero. Specifically, if H(z) is singular for some
z ∈ C, then there must exist some u0 ∈ Rni such that H(z)u0 = 0. Now, let:

u(t) = u0e
zt,

x0 = (zI − A)−1Bu0

The analysis above shows that y(t) = 0.
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4.2 Lecture 12 Discussion

Example (Discussion 7, Problem 1). Let:

A =

[
1 1
0 2

]
Is {I2, A,A

2} linearly dependent or independent in R2×2?

Solution :
The characteristic equation of A is:

χA(λ) = (λ− 1)(λ− 2) = λ2 − 3λ+ 2

The Cayley-Hamilton Theorem thus implies that:

O = χA(A) = (A− I2)(A− 2I) = A2 − 3A+ 2I2

This shows that {I, A,A2} is linearly dependent.

Remark. The solution to this problem can actually be generalized to show that {I, A, · · · , An}
is linearly dependent for each A ∈ Rn×n.

Example (Discussion 7, Problems 2, 3, 6, 7). Let:

A =

[
1 0
1 2

]
Consider the following questions:

1. Find A3.

2. Find etA via dyadic expansion.

3. Find sin(eA).

4. Find 2A4 − 3A3 − 3A2 + 4I2.

Solution :
The characteristic equation of A is:

χA(λ) = (λ− 1)(λ− 2) = λ2 − 3λ+ 2

The Cayley-Hamilton Theorem thus implies that:

O = χA(A) = (A− I2)(A− 2I) = A2 − 3A+ 2I2

The three given functions of A can thus be solved via long-division.
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1. By long division:

A3 = (A2 − 3A+ 2I2)(A+ 3I2) + (7A− 6I2) = 7A− 6I2 =

[
1 0
7 8

]
2. Since we have already computed σ(A) = {2, 1} to be the eigenvalues ofA, the diagonalization

of A can be readily found:

A =

[
0 1
1 −1

] [
2 0
0 1

] [
1 1
1 0

]
where the vertical and horizontal lines are used to emphasize the placement of the (right)
column and (left) eigenvectors of A in its diagonalization.

Thus, the dyadic expansion of A is:

A = 2 ·
[
0
1

] [
1 1

]
+ 1 ·

[
1
−1

] [
1 0

]
Since the eigenvalues of etA are simply {etλi}, where {λi} are the eigenvalues of A, with
the same corresponding eigenvectors, the dyadic expansion of etA is simply that of A with
each eigenvalue λ replaced with etA:

A = e2t ·
[
0
1

] [
1 1

]
+ et ·

[
1
−1

] [
1 0

]
= e2t ·

[
0 0
1 1

]
+ et ·

[
1 0
−1 0

]
=

[
et 0

e2t − et e2t

]
3. Let c1, c0 be time-dependent coefficients such that:

sin(eλ) = q(λ) · (λ2 − 3λ+ 2) + c1λ+ c0

Taking λ = 1 and λ = 2, we have:

sin(e) = c1 + c0

sin(e2) = 2c1 + c0

Thus, c1 = sin(e2)− sin(e) and c0 = − sin(e2) + 2 sin(e), so:

sin(eλ) = q(λ) · (λ2 − 3λ+ 2) + (sin(e2)− sin(e))λ+ (− sin(e2) + 2 sin(e))

⇒ sin(eA) = q(A) · (A2 − 3A+ 2I2) + (sin(e2)− sin(e))A+ (− sin(e2) + 2 sin(e))I2

= (sin(e2)− sin(e))A+ (− sin(e2) + 2 sin(e))I2

=

[
sin(e) 0

sin(e2)− sin(e) sin(e2)

]
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4. By long division:

2A4 − 3A3 − 3A2 + 4I2 = (A2 − 3A+ 2I2)(2A2 + 3A+ 2I2) = O

i.e. f(x) = 2x4 − 3x3 − 3x2 + 4 annihilates A.

Example (Discussion 7, Problem 4, 9). Consider:

ẋ = Ax, x(0) = vi

where A ∈ Rn×n has n linearly independent eigenvectors v1, · · · , vn with corresponding real
eigenvalues λ1, · · · , λn (not necessarily distinct). Find x(t) in terms of the eigenvalues and
eigenvectors of A, and give a geometric interpretation of the result when x0 = vi for some
i = 1, · · · , n.

Solution :
Since {v1, · · · , vn} is linearly independent, it must be a basis for Rn. Thus, there exist

scalars a1, · · · , an such that:
x0 = a1v1 + · · ·+ anvn

Substituting into (3.8), we have:

x(t) = etAx0

= etA(a1v1 + · · ·+ anvn)

= a1e
λ1tv1 + · · ·+ ane

tλntvn

In particular, x0 = vi corresponds to the case that aj = δij, where the Kronecker delta δij
equals 1 if i = j and equals 0 otherwise. In this case, the above equation becomes:

x(t) = vie
λit

Thus, the trajectory diverges if <λi > 0, and converges otherwise.

Example (Discussion 7, Problem 5). Suppose A ∈ R2×2 has eigenvalues λ, λ ∈ C, where λ
denotes the complex conjugate of λ. Let v ∈ Cn be the (complex) eigenvector ofA corresponding
to the eigenvalue λ, and suppose:

λ = σ + jω

v = v1 + jv2,

where σ, ω ∈ R and v1, v2 ∈ Rn.
Now, consider:

ẋ = Ax, x(0) =
1

2
(v + v),

where v denotes the (term-wise) complex conjugate of v. Find an expression for the trajectory
x(t) in terms of v1, v2, σ, ω, t, and give a geometric interpretation of x(t).
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Solution :
Using (3.8), we have:

x(t) = etAx0 = etA · 1

2
(v + v) =

1

2
etAv +

1

2
etAv

=
1

2
etλv +

1

2
etλv

=
1

2
e(σ+jω)t(v1 + jv2) +

1

2
e(σ−jω)t(v1 − jv2)

=
1

2
eσt(ejωtv1 + e−jωtv1 + jejωtv2 − je−jωtv2

= eσt(cos(ωt)v1 + sin(ωt)v2)

Example (Discussion 7, Problem 10). Given:

A =

[
−3 1
0 −2

]
Answer the following questions.

1. Find the characteristic polynomial of A.

2. Express A4 as the lowest order polynomial in A.

3. Find etA by the Cayley-Hamilton Theorem; that is, show that etA = a0(t)I2 + a1(t)A.

Solution :

1. We have:
χA(λ) = (λ+ 3)(λ+ 2)

2. The Cayley-Hamilton Theorem implies that:

O = χA(A) = (A+ 3I2)(A+ 2I2) = A2 + 5A+ 6I2

Using long division, we have:

A4 = (A2 + 5A+ 6I2)(A2 − 5A+ 19I2) + (−65A− 114I2)

= −65A− 114I2

3. Note that there exist t-dependent coefficients a0(t), a1(t) such that:

etλ = q(λ) · (λ+ 3)(λ+ 2) + a1(t)λ+ a0(t)
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Setting λ = −3 and λ = −2, we have:

e−3t = 3a1(t) + a0(t)

e−2t = 2a1(t) + a0(t),

which yields a1(t) = e−2t − e−3t and a2(t) = 3e−2t − 2e−3t.

Substituting λ with A, we have:

etA = a1(t)A+ a0I2

= (e−2t − e−3t)

[
s− 3 1

0 −2

]
+ (3e−2t − 2e−3t)

[
1 0
0 1

]
=

[
e−3t e−3t − e−2t

0 e−2t

]
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4.3 Lecture 13

If a given square matrix A ∈ Rn×n is diagonalizable, then each of its eigenvectors {vi, i =
1, · · · , n} will remain invariant with respect to their original one-dimensional subspaces, i.e.:

Avi ∈ span{vi}

for each i = 1, · · · , k. However, this does not hold in general for non-diagonalizable square
matrices. This motivates the following definition.

Definition 4.5 (Subspace Invariance). Given a vector space V and a linear operator A :
V → V , a subsspace M ≤ V is invariant under A, or A-invariant if, for each x ∈ M , we
have Ax ∈M .

It can be easily checked that the null space and range space of any linear operator A are
A-invariant. This is detailed in the lemma below. The proofs are left as exercises to the reader.

Lemma 4.6. Let A be a linear operator. If λ ∈ σ(A), and p(s) is any polynomial, the following
subspaces are A-invariant:

1. N(A)

2. R(A)

3. N(A− λI)

4. N(p(A))

Theorem 4.7. If M1,M2 ∈ V are A-invariant, so are M1 +M2 and M1 ∪M2.

Definition 4.8 (Direct Sum). Let V be a vector space, and let M1, · · · ,Mk ≤ V . Then V is
said to be the direct sum of M1, · · · ,Mk, if, for each i = 1, · · · , k, denoted by:

V = M1 ⊕M2 ⊕ · · · ⊕Mk,

if, for each x ∈ V , there exists a unique xi ∈Mi for each i = 1, · · · , k such that:

x = x1 + · · ·+ xk

Theorem 4.9 (Equivalent Definition for Direct Sum of Subspaces). Let V be a vector
space, and let M1, · · · ,Mk ≤ V . Then V = M1 ⊕ · · · ⊕Mk if and only if:

1. V = M1 + · · ·+Mk, and

2. M1

⋂
· · ·
⋂
Mk = {0}.
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The above definitions for subspace invariance and direct sum to make the following
observation. Let V be a vector space, and let A be a linear operator on V . If V is the direct
sum of a sequence of A-invariant subspaces M1, · · · ,Mk, then there exists a choice of basis B for
V , constructed by taking the union of bases for each Mi, such that the matrix representation
of A with respect to B is block diagonal.

For example, for the k = 2 case, if {b1, · · · , bk} is a basis for M1, and {bk+1, · · · , bn} is
a basis for M2, then:

{b1, · · · , bk, bk+1, · · · , bn}

A version of the above result is discussed below.

Theorem 4.10 (2nd Representation Theorem). Let V = M1⊕M2 be a finite-dimensional
vector space. If M1 is A-invariant, then there exists a basis B of V such that the matrix
representation of A with respect to B has the form:

[A]B =

[
A11 A12

O A22

]
∈ Fn×n,

where A11 ∈ Fk×k, A12 ∈ Fk×(n−k), and A22 ∈ F(n−k)×(n−k). In other words, the first k columns
of A have zeros in the last (n− k) rows.

Proof. Essentially, we wish to show that
(
[A]B

)
ji

= 0 for each i = 1, · · · , k and j = k+1, · · · , n.

Let {b1, · · · , bk} and {bk+1, · · · , bn} be bases for M1 and M2, respectively. Then B ≡
{b1, · · · , bn} forms a basis for V . Then, for each bi, i = 1, · · · , k, we have the following equality
from the definition of matrix representations:

Abi =
n∑
j=1

(
[A]B

)
ji
bj

where ei denotes the i-th standard vector in Fn. Since M1 is A-invariant, we have Abi ∈ A, and
since vector representations with respect to a given basis are unique, we must have:

Abi =
k∑
j=1

(
[A]B

)
ji
bj

This implies that, for each i = 1, · · · , k:

n∑
j=k+1

(
[A]B

)
ji
bj = 0

Since {bj, j = k + 1, · · · , n} forms a basis for M2, we have
(
[A]B

)
ji

= 0 for each i = 1, · · · , k
and j = k + 1, · · · , n. This completes the proof. �
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If M1,M2 were both A-invariant, then the above argument can be repeated to show that
A12 = 0, so:

[A]B =

[
A11 0
0 A22

]
∈ Fn×n,

where A11 ∈ Fk×k and A22 ∈ F(n−k)×(n−k), as before. This is simply the observation described
above.

Corollary 4.11. Given a diagonalizable matrix A ∈ Rn×n with n distinct eigenvalues λ1, · · · , λn:

Cn = N(A− λ1I)⊕N(A− λ2I)⊕ · · · ⊕N(A− λnI)

In general, suppose A ∈ Rn×n, not necessarily diagonalizable, has a characteristic
equation of the form:

χA(s) = (s− λ1)d1(s− λ2)d2 · · · · · (s− λσ)d1

=
σ∏
i=1

(s− λi)di

where di is the algebraic multiplicity of λi, we have d1 + · · · dk = n, and σ is the number of
distinct eigenvalues of A (clearly, σ ≤ n.

Definition 4.12 (Annihilating Polynomial). Given a linear operator A, an annihilating
polynomial of A is a finite-dimensional polynomial f(s) such that:

f(A) = 0

Definition 4.13 (Minimal Polynomial). Given a linear operator A, a minimal polynomial
ψA(s) of A is a non-zero polynomial of the least degree, with leading coefficient 1, that annihilates
A, i.e. it is a polynomial of the last degree such that:

ψA(s) = On×n

Below, we show that the minimal polynomial must be a factor of any annihilating factor.
This can be sued to show that the minimal polynomial is unique.

Theorem 4.14. Let A be a linear operator. If p(A) is an annihilating polynomial of A, and
ψA(s) is a minimal polynomial of A, then ψA(s) divides p(A).

Proof. Since pA(s) annihilatesA, it must have higher (or the same) degree as χA(s), a polynomial
of least degree that annihilates A. Thus, there exist matrix polynomials q(s), r(s), with
deg(r(s)) ≤ deg(ψA(s)), such that:

pA(s) = ψA(s)q̇(s) + r(s)

⇒ pA(A) = ψA(A)q̇(A) + r(A).

Since pA(A) = ψA(A) = 0, we have r(A) = 0. If r(s) is non-zero, then it is a non-zero
polynomial of degree less than degψA(s) that annihilates A, a contradiction. Thus, r(s) = 0,
so pA(A) = ψA(A)q̇(A). The proof is done. �
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Corollary 4.15. The minimal polynomial ψA(s) of any linear operator A is unique.

Proof. Suppose ψA,1(s) and ψA,2(s) are both minimal polynomials of A. Then, by the above
argument, there exist polynomials q1(s), q2(s) such that:

ψA,1(s) = q1(s) · ψA,2(s)

ψA,2(s) = q2(s) · ψA,1(s)

⇒ψA,1(s) = q1(s) · ψA,2(s)

= q1(s)q2(s) · ψA,1(s)

⇒q1(s)q2(s) = 1

Since ψA,1(s) and ψA,2(s) both have leading coefficient 1, so must q1(s) and q2(s). The fact that
q1(s)q2(s) = 1 implies that q1(s) and q2(s) are both constant. Combining these two facts, we
have:

q1(s) = q2(s) = 1,

and so ψA,1(s) = ψA,2(s). �

The corollary below shows that χA(s) and ψA(s) must have the same roots.

Corollary 4.16. Let A ∈ Cn×n be a linear operator with distinct eigenvalues λ1, · · · , λσ, where
σ ≤ n. Then the minimal polynomial χA(s) of A has the form:

ψA(s) = (s− λ1)m1 · (s− λ2)m2 · · · · · (s− λσ)mσ ,

where 1 ≤ mi ≤ ai for each i = 1, · · · , σ.

Proof. Taking p(s) = χA(s) (the characteristic polynomial of A) in the above theorem, we find
that χA(s) is a factor of p(s). Since χA(s) has the form:

χA(s) = (s− λ1)a1 · · · · · (s− λσ)aσ

the minimal polynomial p(s) must have the form:

χA(s) = (s− λ1)m1 · · · · · (s− λσ)mσ

where 0 ≤ mi ≤ ai for each i = 1, · · · , σ.
It remains to show that mi ≥ 1 for each i = 1, · · · , σ, i.e. that each λi is a root of ψA(s).

Let vi be an eigenvector of A with corresponding eigenvalue λi. Then, since ψA(A) = 0, we
have:

0 = ψA(A)vi = ψA(λi)vi,

where the replacement of A with λi in the second equality follows from the observation that
Akvi = λki vi for each k ∈ N. Since vi 6= 0, we have ψA(λi) = 0, which shows that λi is a root of
ψA(s). The proof is done. �
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Theorem 4.17. Given any matrix A ∈ Rn×n with σ ≤ n distinct eigenvalues λ1, · · · , λσ:

Cn = N(A− λ1I)m1 ⊕N(A− λ2I)m2 ⊕ · · · ⊕N(A− λnI)mn

Proof. Fix x ∈ Cn, and observe that:

ψA(s) = (s− λ1)m1 · (s− λ2)m2 · · · · · (s− λσ)mσ

⇒ 1

ψA(s)
=

1

(s− λ1)m1 · (s− λ2)m2 · · · · · (s− λσ)mσ

=
n1(s)

(s− λ1)m1
+

n2(s)

(s− λ2)m2
+ · · ·+ nσ(s)

(s− λσ)mσ

⇒I =
1

ψA(A)
· ψA(A)

= n1(A) · ψA(A)

(A− λ1I)m1
+ · · ·+ nσ(A) · ψA(A)

(A− λσI)mσ

⇒x = n1(A)
ψA(A)

(A− λ1I)m1
x+ · · ·+ nσ(A)

ψA(A)

(A− λσI)mσ
x

where n1(s), · · · , nσ(s) are functions of s with degree less than m1, · · · ,mσ, respectively. For
each i = 1, · · · , n:

(A− λiI)mi
(
ni(A)

ψA(A)

(A− λiI)mσ
x

)
= ni(A)ψA(A)x = 0,

since ψA(A) = 0. Thus, x is written as a linear combination of elements in N(A− λiI)mi , i.e.:

Cn = N(A− λ1I)m1 +N(A− λ2I)m2 + · · ·+N(A− λnI)mn

To complete the proof, it remains to show that N(A− λiI)
⋂
N(A− λjI) = {0} for each i, j ∈

{1, · · · , σ}. Fix one such pair of i, j, and suppose without loss of generality that 1 ≤ mi ≤ mj.
Let v ∈ N(A− λi)mi , and define:

mi = min{m|v ∈ N(A− λi)m}

The definition of m shows that {m|v ∈ N(A − λi)m} is bounded above by mi, so mi exists.
Now:

0 = (A− λiI)miv = (A− λiI)(A− λiI)mi−1v

⇒A(A− λiI)mi−1v = λi(A− λiI)mi−1v

In other words, (A − λiI)mi−1 is an eigenvector of A with corresponding eigenvalue λi (By
definition of mi, we have (A− λiI)mi−1 6= 0). We thus have:

(A− λjI)m2v = (A− λjI)m2−m1+1 (A− λjI)m1−1v

= (λi − λj)m2−m1+1(A− λjI)m1−1v 6= 0

since (λi − λj)m2−m1+1 6= 0 and (A− λjI)m1−1v 6= 0.
�
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Definition 4.18 (Algebraic and Geometric Multiplicities, Grade). Let A ∈ Rn×n be
given, and suppose A has characteristic polynomial given by:

χA(λ) = (λ− λ1)d1 · · · · (λ− λσ)aσ

where λ1, · · · , λσ are the distinct eigenvalues of A, i.e. σ(A) = {λ1, · · · , λσ} and minimal
polynomial given by:

ψA(λ) = (λ− λ1)m1 · · · · (λ− λσ)mσ

Then, we have the following definitions:

1. Algebraic Multiplicity:

di is called the algebraic multiplicity of λi. Note that
∑σ

i=1 di = 1

2. Geometric Multiplicity:

qi ≡ dim(N(A − λi)) is called the geometric multiplicity of λi, and describes the
maximum number of linearly independent eigenvectors corresponding to the eigenvalue λi.

3. Grade:

mi ≡ dim(N(A− λi)) is called the grade of λi. It describes the largest Jordan block
of A corresponding to λi, since it takes mi multiplications of (A − λi) to annihilate the
blocks.

Example. Consider the algebraic multiplicities, geometric multiplicities, and grades of the
following square matrices (observe that they are already in Jordan form), with λ ∈ C arbitrarily
given:

A1 =


λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

 , A2 =


λ 1 0 0
0 λ 1 0
0 0 λ 0
0 0 0 λ


By observation, we can compile the following table. The algebraic multiplicity of λ is 4 for both
A1 and A2, since they are both 4× 4 matrices with whose only eigenvalue is λ. The geometric
multiplicity of λ is 2 for both A1 and A2 since they both have two Jordan blocks. Finally, the
grades of λ for A1 and A2 are 2 and 3, respectively, since the maximum size of the Jordan
blocks corresponding to λ in A1 and A2 are 2× 2 and 3× 3, respectively.

Parameter A1 A2

Algebraic Multiplicity 4 4
Geometric Multiplicity 2 2

Grade of λ 2 3

Theorem 4.19 (Spectral Mapping Theorem). Given a square matrix A ∈ Rn×n, and a
polynomial f(λ), we have:

σ(f(A)) = f(σ(A)),

i.e. the spectrum of f(A) is the set of f(λ) for each eigenvalue λ of A.
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Proof. Explicitly express f as:

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

Let λ ∈ σ(A). Then there exists some eigenvector v of A such that Av = λv. Thus:

f(A)v = (anA
n + an−1A

n−1 + · · ·+ a1A+ a0I)v

= (anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0)v

= f(λ)v

This establishes the theorem. �

Remark. This result can be extended to all analytic functions (not just polynomials), via Taylor
expansion.

Consider the following simple example of a 2× 2 matrix. Suppose:

J =

[
λ 1
0 λ

]
.

It can be verified that:

Jn =

[
λn nλn−1

0 λn

]
Then, for the matrix exponential etJ , we have

etJ = I + tJ +
(tJ)2

2!
+ · · ·+ (tJ)n

n!
+ · · ·

=

[
eλt b
0 eλt

]
,

where b ∈ R can be determined by using the formula above for Jn:

b = t+ 2λ
t2

2!
+ · · ·+ nλn−1 · t

n

n!
+ · · ·

= teλt

Thus:

etJ =

[
eλt teλt

0 eλt

]
In general, we can show that, if J ∈ Rn×n is given by:

J =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ
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Then, we have (by induction):

etJ =



etλ tetλ t2

2!
etλ · · · tn−2

(n−2)!
f (n−2)(λ) tn−1

(n−1)!
f (n−1)(λ)

0 etλ tetλ · · · tn−3

(n−3)!
f (n−3)(λ) tn−2

(n−2)!
f (n−2)(λ)

0 0 etλ · · · tn−4

(n−4)!
f (n−4)(λ) tn−3

(n−3)!
f (n−3)(λ)

...
...

...
. . .

...
...

0 0 0 · · · etλ tetλ

0 0 0 · · · 0 etλ


The above generalized result can be proven by the following theorems.

Lemma 4.20. Let A ∈ Rn×n be a square matrix, with minimal polynomial:

ψA(s) = (s− λ1)m1 · · · · · (s− λσ)mσ

Let n =
∑σ

i=1 di = n, and let h(s) be an (n− 1)-th order polynomial. Then f(A) = h(A) if and
only if:

f (k)(λi) = h(k)(λi), ∀k = 0, 1, · · · ,mi − 1, i = 1, · · ·σ,

where f (k)(λi) and h(k)(λi) respectively denote the k-th derivative of f and g, evaluated at λi.

Proof. The proof follows by Taylor expansion at each λi ∈ σ(A). �

Theorem 4.21 (Functions of a Matrix). Consider an n× n Jordan block given by:

J =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


Then:

f(J) =



f(λ) f ′(λ) 1
2!
f ′′(λ) · · · 1

(n−2)!
f (n−2)(λ) 1

(n−1)!
f (n−1)(λ)

0 f(λ) f ′(λ) · · · 1
(n−3)!

f (n−3)(λ) 1
(n−2)!

f (n−2)(λ)

0 0 f(λ) · · · 1
(n−4)!

f (n−4)(λ) 1
(n−3)!

f (n−3)(λ)
...

...
...

. . .
...

...
0 0 0 · · · f(λ) f ′(λ)
0 0 0 · · · 0 f(λ)


Proof. From the above lemma, we have:

f(J) =
n−1∑
k=0

f (k)(λ) · 1

k!
(x− λ)k
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Thus, by substituting x with J , we find:

f(J) =
∞∑
k=0

f (k)(λ) · 1

k!
(J − λI)k

The proof is completed by observing that, for each m = 1, · · · , n, we have:

[(J − λI)m]ij = δi,j−m

�

Note that the Jordan form J = P−1AP is unique only up to permutations of the Jordan
blocks. This can be seen by interchanging the order in which different Jordan chains (i.e. sets
containing a single eigenvector and generalized eigenvectors associated with that eigenvector)
appear in P .

Example (From an Old Prelim).

1. A matrix A has minimal polynomial (s− λ1)2(s− λ2)3. Find cos(eA) as a polynomial in
A.

2. Now, assume further that A has characteristic polynomial (s− λ1)2(s− λ2)3, and that it
has four linearly independent eigenvectors. Write down the Jordan form J of this matrix,
and write down cos(eA) explicitly.

Solution:

1. Since the minimal polynomial, by definition, is the (unique) polynomial of the lowest
degree with leading coefficient 1 that annihilatesA. To that end, let a (infinite) polynomial
q(λ) and constants c4, c3, c2, c1, c0 be given such that:

cos(eλ) = q(λ) · (λ− λ1)2(λ− λ2)3 + c4λ
4 + c3λ

3 + c2λ
2 + c1λ+ c0

The five constants can be found by differentiating cos(eλ) with respect to λ twice times,
and substituting λ = λ1 to cos(eλ) and its first derivative, and substituting λ = λ2 to
cos(eλ) and its first and second derivatives. The derivatives of cos(eλ) are:

d

dλ
cos(eλ) = −eλ sin(eλ)

d2

dλ2
cos(eλ) = −eλ sin(eλ)− e2λ cos(eλ)

So, substituting λ = λ1 and λ = λ2 in the relevant equations, we have:

cos(eλ1) = c4λ
4
1 + c3λ

3
1 + c2λ

2
1 + c1λ1 + c0

cos(eλ2) = c4λ
4
2 + c3λ

3
2 + c2λ

2
2 + c1λ2 + c0

−eλ1 sin(eλ1) = 4c4λ
3
1 + 3c3λ

2
1 + 2c2λ1 + c1

−eλ2 sin(eλ2) = 4c4λ
3
2 + 3c3λ

2
2 + 2c2λ2 + c1

−eλ2 sin(eλ2)− e2λ2 cos(eλ2) = 12c4λ
2
2 + 6c3λ2 + 2c2
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Thus, c4, c3, c2, c1, c0 can be solved as functions of t. We thus have:

A = c4A
4 + c3A

3 + c2A
2 + c1A+ c0I

2. Note that the exponent of each term in minimal polynomials gives the size of the largest
Jordan block corresponding to each eigenvalue; in this case, m1 = 2 and m2 = 3. Since
each linearly independent eigenvector of A gives rise to one Jordan block, the total number
of Jordan blocks in the Jordan form of A is 4 (In other words, they occupy a 4×4 matrix
in the Jordan form of A). On the other hand, the algebraic multiplicities corresponding to
each eigenvalue of A is the total size of all Jordan blocks corresponding to that eigenvalue.

In the context of this problem, the above information implies that:

• For λ1, the largest Jordan block is of size 2, and the sum of the sizes of the Jordan
blocks is 5.

• For λ1, the largest Jordan block is of size 3, and the sum of the sizes of the Jordan
blocks is 3.

• In the Jordan form of A, the eigenvalues λ1 and λ2 have a total of four Jordan blocks.

The second fact in the above list indicates that there exists only one (3× 3) Jordan block
corresponding to λ2. Thus, there exist three Jordan blocks corresponding to λ1. These
blocks have maximum size 2 and total size 5, so there must be two blocks of size 2 and
one block of size 1. In short, the Jordan form of A looks as follows:

J =



λ1 0 0 0 0 0 0 0
0 λ1 1 0 0 0 0 0
0 0 λ1 0 0 0 0 0
0 0 0 λ1 1 0 0 0
0 0 0 0 λ1 0 0 0
0 0 0 0 0 λ2 1 0
0 0 0 0 0 0 λ2 1
0 0 0 0 0 0 0 λ2


By Theorem 4.21, for any analytic function f(·), we have:

f(J) =



f(λ1) 0 0 0 0 0 0 0
0 f(λ1) f ′(λ1) 0 0 0 0 0
0 0 f(λ1) 0 0 0 0 0
0 0 0 f(λ1) f ′(λ1) 0 0 0
0 0 0 0 f(λ1) 0 0 0
0 0 0 0 0 f(λ2) f ′(λ2) 1

2
f ′′(λ2)

0 0 0 0 0 0 f(λ2) f ′(λ2)
0 0 0 0 0 0 0 f(λ2)


The solution is completed by substituting f(x) = cos(ex) and its first and second derivatives
into the expression above. The resulting matrix is a similarity transform away from
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f(A), with respect to the same invertible matrix P (with columns/rows consisting of the
column/row eigenvectors of A) that connects A to J via the similarity transformation:

A = PJP−1

More examples are furnished in the Discussion questions listed below.

Corollary 4.22. For any A ∈ Rn×n, the characteristic and minimal polynomials of A and AT

are the same.

Proof. First, since the determinant is invariant with respect to taking the transpose of the
matrix:

χA(λ) = det(A− λI) = det(AT − λI) = χAT (λ)

Next, suppose the minimal polynomial of A is of the form:

mA(λ) = (λ− λ1)m1 · · · · (λ− λσ)mσ = 0,

The Cayley-Hamilton Theorem implies that mA(A) = On, so:

On =
(
mA(A)

)T
=
(
(A− λ1In)m1 · · · · (A− λσIn)mσ

)T
= (AT − λσIn)mσ · · · · · (AT − λ1In)m1

= (AT − λ1In)m1 · · · · (AT − λσIn)mσ

= mA(AT )

It follows that mA(λ) annihilates AT . But by definition of minimal polynomial, mAT (λ) is the
polynomial of least degree that annihilates AT . Thus:

deg(mA(λ)) ≤ mAT (λ)

By symmetry (or, by replacing A with AT ), we have deg(mA(λ)) ≥ mAT (λ). We conclude that
deg(mA(λ)) = mAT (λ). Since, by definition of minimal polynomial, both mA(λ) and mAT (λ)
have leading coefficient 1, they must be equal:

mAT (λ) = mA(λ)

It follows that A and AT have identical Jordan forms, up to a permutation of the Jordan
blocks. �
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4.4 Lecture 13 Discussion

Example (Discussion 8, Problems 1, 8, 10). Consider the matrix A given below:

A =

3 −2 0
0 1 0
0 −1 2


Consider the following subspaces of R3:

M1 = span


0

1
0

 , M2 = span


1

0
0

 ,
0

0
1


Answer the following questions:

1. Determine whether or not M1 and M2 are A-invariant.

2. Using M1 and M2, find a basis representation for A based on the 2nd Representation
Theorem, i.e. with an block upper triangular form.

Solution:

1. Since [0, 1, 0]T ∈M1, but:

A

0
1
0

 =

3 −2 0
0 1 0
0 −1 2

0
1
0

 =

−2
1
−1

 6∈M1,

we conclude that M1 is not an A-invariant subspace of R3.

On the other hand, any vector in M2 must have the form (a, 0, b)T , and:

A

a0
b

 =

3 −2 0
0 1 0
0 −1 2

a0
b

 =

3a
0
2b

 ∈M2

we conclude that M1 is not an A-invariant subspace of R3.

2. Technically, A is already in block upper triangular form: 3 −2 0
0 1 0
0 −1 2


This is due to the fact that, not only is M2 an A-invariant subspace, so are the two
subspaces spanned by the two linearly independent vectors used in the definition of M2,
namely (1, 0, 0)T and (0, 0, 1)T . In particular, the block upper triangular form of A results
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from the A-invariance of (1, 0, 0)T . However, an (actual, not just block) upper triangular
matrix representation of A can be derived by shuffling the vectors that generate M1 and
M2 such that the two A-invariant vectors are placed first:

A =

3 −2 0
0 1 0
0 −1 2

 =

1 0 0
0 0 1
0 1 0

3 0 −2
0 2 −1
0 0 1

1 0 0
0 0 1
0 1 0

−1

Example (Discussion 8, Problems 4, 5).

1. Find the characteristic polynomial and minimal polynomial of the following matrix:

A =

3 0 0
1 3 0
0 0 3


2. Verify that:

dim
(
N(A− λiI)mi

)
= di

Solution:

1. Since AT is in Jordan form, with a largest Jordan block of size 2, we have:

χA(λ) = χAT (λ) = (λ− 3)3

ψA(λ) = ψAT (λ) = (λ− 3)2

2. With regard to the left-hand side of the given equality, since λi = 3 and mi = 2, we have,
by the Cayley-Hamilton Theorem:

(A− λiI)mi = (A− 3I3)2 = O3

⇒dim
(
N(A− λiI)

)
= dim

(
N(O3)

)
= dim(R3) = 3

Example (Discussion 8, Problem 6). A square matrix A has the following characteristic and
minimal polynomials:

χA(λ) = (λ− 1)4(λ− 2)2

ψA(λ) = (λ− 1)2(λ− 2)

Answer the following questions:

1. What is the size of A?

2. Find the possible Jordan forms J of A, up to a permutation of the Jordan blocks.

3. Repeat the above question, this time with the additional constraint that A has 5 linearly
independent eigenvectors.
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Solution :

1. A square matrix A has dimension n×n if and only if its characteristic polynomial χA(λ)
is of degree n. Here, deg(χA(λ)) = 6, so A ∈ R6×6.

2. From χA(λ) and ψA(λ), we have:

d1 = 4, d2 = 2

m1 = 2, m2 = 1

It follows that the Jordan blocks corresponding to λ = 1 have maximum size 2 and total
size 4, while the Jordan blocks corresponding to λ = 2 have maximum size 1 and total
size 2. Thus, for λ1, there could be two Jordan blocks of size 2, or one Jordan block of
size 2 and two Jordan blocks of size 1. However, for λ2, there can only be two Jordan
blocks of size 1. The possibilities are as follows: (with the Jordan blocks corresponding
to each eigenvalue placed in decreasing order of size along the diagnol):

J =


1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 2



or J =


1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 2


3. The number of linearly independent eigenvectors corresponding to each eigenvalue corresponds

to the total number of Jordan blocks associated with that eigenvalue, as each eigenvector
generates exactly one Jordan block. Thus, that A has 5 linearly independent eigenvectors
corresponds to the presence of 5 Jordan blocks in J . This corresponds to the second
matrix J written above.
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4.5 Lecture 14

Below, we discuss input-output stability. Recall that, given a dynamical system described by
equations of the form (3.2) and (3.3), we have:

y(t) =

∫ t

0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

Thus, in general, the relationship between the input and output of a system can be
elucidated by rewriting the y(t) and u(t) as follows:

y(t) =

∫ t

−∞
H(t, τ)u(τ)dτ (4.1)

Definition 4.23 (Norms). In the ensuing discussion, the following norms will be used:

1. ‖x‖∞ = maxi |xi|.

2. ‖A‖i,∞ = max1≤i≤m
∑n

j=1 |aij|

3. ‖u(·)‖∞ = supt∈R ‖u(t)‖∞ = supt∈R{max1≤j≤ni |uj(t)|}

4. ‖y(·)‖∞ = supt∈R ‖y(t)‖∞ = supt∈R{max1≤j≤ni |yj(t)|}

5. Lni∞ = {u(·)|‖u(·)‖∞ <∞}

6. Lno∞ = {y(·)|‖y(·)‖∞ <∞}

Note in particular that the matrix norm induced by the infinity norm is simply the max
row sum.

Definition 4.24 (Bounded Input, Bounded Output (BIBO) Stability). A system is
bounded-input, bounded-output (BIBO) stable if there exists some k ≥ 0 such that, for
each u(·) ∈ Lni∞, and each t ≥ 0:

‖y(·)‖∞ ≤ ‖u(·)‖∞ (4.2)

Remark.

1. (4.2) is BIBO stable if all bounded inputs produce bounded outputs. In fact, one can
think of (4.2) as a linear operator L : Lni∞ → Ln0

∞ such that:

(
Lu(·)

)
(t) ≡= y(t) =

∫ t

−∞
H(t, τ)u(τ)dτ

2. Note that (4.2) specifies a linear relationship between y and u. Thus, as with induced
norms, one can equivalently define a system to be BIBO stable if there exists some k > 0
such that, for each input u(·) with unit norm:

‖y(·)‖∞ ≤ k
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3. A system is not BIBO stable if no k > 0 exists to satisfy (4.2), i.e. if there exists a
sequence of unit-norm inputs uk(·) ∈ Lni∞, where k = 1, 2, · · · , such that:

‖yk(·) ≡ (Luk(·))‖ > k

for each k = 1, · · · , n.

4. On any finite-dimensional space, all norms are equivalent; thus, the inequality in the
definition of BIBO stability can be given with respect to any norm without changing the
definition.

Our main theorem involving BIBO stability will require the following lemma.

Lemma 4.25. Given a matrix H(t, τ) = [hij(t, τ)]n0,ni dependent on two time instances, we
have:

sup
t∈R

{∫ t

−∞
‖H(t, τ)‖i,∞dτ

}
<∞

⇐⇒ sup
t∈R

{∫ t

−∞
|hij(t, τ)|i,∞dτ

}
<∞,

for each i = 1, · · · , no and j = 1, · · · , ni.

Proof. The lemma follows straightforwardly from the fact that the induced matrix sup norm is
in fact the maximum row sum, which implies:

|hij(t, τ)| ≤ ‖H(t, τ)‖i,∞ ≤
n0∑
i=1

ni∑
j=1

|hij(t, τ)|.

�

Theorem 4.26. The system given by (4.1) is BIBO stable if and only if:

sup
t∈R

{∫ t

−∞
‖H(t, τ)‖i,∞dτ

}
<∞

Equivalently, by the above lemma, (4.2) is BIBO stable if and only if:

sup
t∈R

{∫ t

−∞
|hij(t, τ)|i,∞dτ

}
<∞

for each i = 1, · · · , n0 and j = 1, · · · , ni.
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Proof.
”⇒ ” Notice that:

‖y(t)‖∞ =

∥∥∥∥∫ t

−∞
H(t, τ)u(τ)dτ

∥∥∥∥
∞

≤
∫ t

−∞
‖H(t, τ)u(τ)‖∞ dτ

≤
∫ t

−∞
‖H(t, τ)‖i,∞ · ‖u(τ)‖∞ dτ

=

∫ t

−∞
‖H(t, τ)‖i,∞ dτ · ‖u(·)‖∞

≤ sup
t∈R

{∫ t

−∞
‖H(t, τ)‖i,∞dτ

}
· ‖u(·)‖∞

”⇐ ” Suppose by contradiction that:

sup
t∈R

{∫ t

−∞
‖H(t, τ)‖i,∞dτ

}
=∞

The above lemma implies that this is equivalent to assuming the existence of some α ∈
{1, · · · , no} and β ∈ {1, · · · , ni} such that:

sup
t∈R

∫ t

−∞
||hα,β(t, τ)||dτ

In other words, there exists a sequence of times {tk}∞k=1 such that:∫ tk

−∞
‖hα,β(t, τ)‖i,∞dτ > k

for each k = 1, · · · ,∞.
We now have to demonstrate the existence of a sequence of unit-norm inputs {uk(t)}

such that the corresponding outputs have norms diverging to +∞. We do so by exploiting the
divergence of the integral of |hαβ|. For each k = 1, · · · , n, such that:

uk,i(t) =

{
sgn
(
hαβ(tk, t)

)
· δi,β, t ≤ tk

0, t > tk
,

where uk,i denotes the i-th component of uk, while δi,β is the Kronecker delta. Notice that
‖uk(·‖∞ = 1 for each k ∈ N, and that this definition allows us to have:

yk,α(tk) =

∫ tk

−∞

ni∑
i=1

hα,i(t, τ) · uk,i(τ)dτ

=

∫ tk

−∞

ni∑
i=1

‖hαβ(tk, t)‖ · δi,β dτ > k
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By definition of ‖yk(·)‖ as the maximum row sum of yk(·):

‖yk(·)‖ ≥ |yk,α(tk)| =
∫ tk

−∞
|hα,β(tk, τ)|dτ > k

�

Corollary 4.27. A linear time-varying system described by (3.2) and (3.3), with bounded
A(·), B(·), C(·), D(·), is BIBO stable if and only if:

sup
t≥0

{∫ t

0

‖C(t)Φ(t, τ)B(τ)‖dτ
}
<∞

Proof. Simply note that:

y(t) =

∫ t

−∞
H(t, τ)u(τ)dτ +D(t)u(t),

where H(t, τ) is taken here to be:

H(t, τ) =

{
C(t)Φ(t, τ)B(τ), τ ≥ 0,

0, τ < 0

The corollary thus follows from the above theorem. �

In particular, for linear time-invariant systems:

sup
t≥0

{∫ t

0

‖Ce(t−τ)AB‖dτ
}
<∞

⇔
∫ ∞

0

‖CeAτB‖dτ <∞

Theorem 4.28. Consider the following transfer function:

H(s) = C(sI − A)−1B +D ∈ Rni×no(s)

Then the following is equivalent:

1. The system is BIBO stable.

2.
∫∞

0
‖CetAB‖dt <∞.

3. Poles(H(s)) ∈ Co.



124 CHAPTER 4. SYSTEM STABILITY

Proof.
”⇐ ” Let G(t) ≡ CetAB = L−1{H(s)} −D. Then:∫ ∞

0

‖CetAB‖dt <∞

⇐⇒
∫ ∞

0

|gij(t)|dt <∞,

Moreover, since the poles of G(s) are the union of those of gij(s):

Poles(H(s)) ⊂ C−

⇐⇒Poles(Gij(s)) ⊂ C−

for each i ∈ {1, · · · , no}, j ∈ {1, · · · , ni}
We thus need to show that: ∫ ∞

0

|gij(t)|dt <∞

=⇒Poles(Gij(s)) ⊂ C−.

This can be shown by observing that:

sup
s∈C+

|Gij(s)| ≤
∫ ∞

0

sup
s∈C+

|gij(t)e−st|dt

≤
∫ ∞

0

|gij(t)|dt

<∞

Thus, |Gij(s)| is bounded above in C+ by a positive constant throughout C+. This demonstrates
that no pole of Gij lies in C+; therefore, all its poles must be in Co.

” ⇒ ” If poles(G(s)) ≡ {λ1, · · · , λl} ∈ Co, then poles(gij(t)) ∈ Co. Thus, there exist
polynomials π1(t), · · · , πl(t):

gij(t) =
l∑

k=1

πk(t)e
λkt,

For each ε > 0, since each πk(t) is polynomial in t, it must grow at a slower rate than eεt. Thus,
there exists polynomials m1(ε), · · · ,ml(ε) > 0 such that:

|πk(t)| ≤ mk(ε) · eεt

Now, define:

µ ≡ min
k
{−Re(λk)} > 0

ε ≡ 1

2
µ

m(ε) ≡
l∑

k=1

mk(ε)
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Thus, we have:

⇒ |gij(t)| =

∣∣∣∣∣
l∑

k=1

πk(t) · eλkt
∣∣∣∣∣

≤
l∑

k=1

|πk(t)| · eλkt

≤
l∑

k=1

mk(ε)e
εt · e−µt

= m(ε) · e−(µ−ε)t

⇒
∫ ∞

0

|gij(t)|dt ≤
m(ε)

µ− ε
<∞

Since g(t) = CetAB, we have:
‖G(t)‖ ≤ m(ε)e−(µ−ε)t

�
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4.6 Lecture 14 Discussion

Example (Discussion 9, Problem 2). Consider the linear time-varying system:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t).

Assume that the equilibrium 0 of ẋ(t) = A(t)x(t) is exponentially stable. Let B(·), C(·), D(·)
be bounded. Show that the system is BIBO stable.

Solution:
Since B(·), C(·), D(·) are bounded, there exist k1, k2, k3 ∈ R+ such that:

‖B(·)‖ ≤ k1

‖C(·)‖ ≤ k2

‖D(·)‖ ≤ k3

and since ẋ(t) = A(t)x(t) is exponentially stable, there exists some M > 0 such that:

‖Φ(t, t0)‖ ≤M · e−α(t−t0)

Given an input u(t), the output y(t) is:

y(t) = C(t) ·
∫ t

0

Φ(t, t0) ·B(τ)u(τ)dτ +D(t)u(t)

= ·
∫ t

0

[
C(t)Φ(t, t0)B(τ) +D(t) · δ(t− τ)

]︸ ︷︷ ︸
≡H(t,τ)

u(τ)dτ +D(t)u(t)

⇒ ‖H(t, τ)‖ ≤ k1k2M

∫ t

−∞
e−α(t−t0) dτ + k3

= k1k2M ·
∫ ∞

0

e−αtdt

=
k1k2M

α
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4.7 Lecture 15

Below, we describe state-space notions of stability (e.g. asymptotic stability, exponential
stability), and compare these with BIBO stability. We conclude this section with Lyapunov’s
Lemma, which poses. This lecture draws largely from Professor Shankar Sastry’s text ”Nonlinear
Systems: Analysis, Stability, and Control” [9]. In this lecture, the origin of each theorem,
lemma, or definition originating from this text will be provided in parentheses as a convenience
to the reader.

We begin our discussion with different definitions for internal stability.

Notions of Internal Stability
Below, we concern ourselves with state trajectories following the dynamics:

ẋ = f(x, t), x(t0) = x0 (4.3)

Definition 4.29 (Equilibrium Point (Definition 5.2, pg. 184)). A state x? ∈ Σ is called an
equilibrium point if f(x?, t) = 0 for all t ≥ 0.

Definition 4.30 (Stable in the sense of Lyapunov (Definition 5.4, pg. 185)).

1. The state xe ≡ 0 is called stable (in the sense of Lyapunov) if, for each x0 ∈ Rn

and t0 ∈ R, the mapping:
x(t) = Φ(t, t0)x0

is bounded by some positive function of t0.

2. The equilibrium point x = 0 is called a stable equilibrium point of the system (4.3) if,
for any t0 ≥ 0 and ε > 0, there exists some δ(t0, ε) such that:

|x0| < δ(t0, ε) ⇒ |x(t)| < ε, ∀ t ≥ t0,

where x(t) is the solution to (4.3), starting from x(t0) = x0.

Definition 4.31 (Uniformly Stable (Definition 5.5, pg. 185)).

1. The state xe ≡ 0 is called uniformly stable if, for each x0 ∈ Rn and t0 ∈ R, the
mapping:

x(t) = Φ(t, t0)x0

is bounded by some positive constant.

2. The equilibrium point x = 0 is called a uniformly stable equilibrium point of the
system if it achieves the criterion for stable equilibrium points, with some δ(ε) that is
independent of t0.

In essence, a stable (in the sense of Lyapunov) equilibrium point is uniformly stable if
the associated upper bounds δ(t0, ε) for its norms never approach 0, i.e.:

inf
t0∈R

δ(t0, ε) > 0
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Definition 4.32 (Asymptotically Stable (Definition 5.6, pg. 185-186)). The state xe ≡ 0
is called asymptotically stable if:

1. xe ≡ 0 is a stable equilibrium point of (4.3), and

2. x(t) converges to 0, i.e. lim
t→∞

Φ(t, t0) = 0. If this condition is met, x = 0 is said to be

attractive.

The reader may question whether it is necessary to specify the first condition ”xe ≡ 0
is a stable equilibrium point of (4.3)” if the second statement ” lim

t→∞
Φ(t, t0) = 0” already holds

true. The following example answers this question in the affirmative.

Example. Consider the dynamical system given by:

ẋ1 = x2
1 − x2

2

ẋ2 = 2x1x2.

The phase portrait of this system indicates that, although all trajectories following this system
tends to x = 0 as t → ∞, those particularly close to the x-axis will initially move far away
from the origin before returning. In fact, one can choose a sequence of trajectories, increasingly
closer to being parallel to the x-axis, such that the maximum distance (in time) between each
trajectory and the origin increases as the sequence progresses. In this sense, x = 0 is not stable,
even though it is attractive.

Definition 4.33 (Uniformly Asymptotically Stable (Definition 5.7, pg. 186-187)). The
state xe ≡ 0 is called uniformly asymptotically stable if:

1. xe ≡ 0 is a uniform stable equilibrium point of (4.3), and

2. x(t) converges uniformly to 0, i.e. ∃δ > 0, and γ(τ, x0) : R+ × Rn → R+ such that,
whenever |x0| < δ:

‖φ(t, t0)‖ ≤ γ(t− t0, x0)

lim
τ→∞

γ(τ, x0) = 0

Let φ(t, x0, t0) denotes the trajectory of the system ẋ = f(x, t), x(t0) = t0, starting from
x0 at time t0. Then the second condition above is equivalent to the following statement—
∃δ and some non-decreasing function T : R+ → R+ such that, whenever |x0| < δ:

|φ(t1 + t, x0, t1)| < ε

for each t1 ≥ t0.

The definitions of asymptotic stability do not quantify the speed of convergence of
trajectories to the origin, e.g. 1/t, 1/

√
t, etc. However, there is a particularly strong form

of stability that demands an exponential rate of convergence.
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Definition 4.34 (Exponentially Stable, Rate of Convergence (Definition 5.10, pg. 187)).
The state xe ≡ 0 is called exponentially stable if xe ≡ 0 is stable, and ∃M,α > 0 such that:

‖x(t)‖ ≤Me−α(t−t0) · |x0|

We will later show that, for linear systems (whether time-invariant or time-varying),
uniform asymptotic stability implies exponential stability. However, we first examine a few
basic results regarding asymptotic stability.

Theorem 4.35 (Asymptotic Stability (Theorem 5.33, pg. 209)). For a time-invariant
system, x = 0 is asymptoptically stable if and only if, for each t0 ∈ R:

lim
t→∞

Φ(t, 0) = O

Remark. Since t → Φ(t, 0) is continuous, that limt→∞ φ(t, 0) → 0 implies the boundedness of
Φ(t, t0) in t, for each t0 ∈ R.

Proof.

” ⇒ ” The proof is most readily established by contradiction. Suppose that Φ(t, 0) does
not approach 0 as t→∞. Then there must exist some i, j ∈ {1, · · · , n} such that:

φi,j(t, 0) 6→ O

as t → ∞. Now, choose x0 to be the j-th standard vector in Rn, i.e. with one for the j-th
element and zero for all other elements. Then the i-th component of x(t) = φ(t, 0)x0 will not
approach 0 as t→∞, contradicting the fact that x = 0 is asymptotically stable.

” ⇐ ” The proof can be completed by establishing bounds on φ(t, 0) and x(t). Fix some
initial state x0 and some initial time t0, and let ε > 0. Since φ(t, 0)→ O as t→∞, there exists
some tM ∈ R+ such that:

‖Φ(t, 0)‖ < ε

|x0| · ‖Φ(0, t0)

whenever t > tM . Then, when t > tM :

|x(t)| = |φ(t, 0)x0| ≤ ‖Φ(t, 0)‖ · Φ(0, t0) · |x0| < ε

This establishes the asymptotic stability of x = 0.

�

Lemma 4.36 (Exponential Stability of ẋ = Ax). The system ẋ = Ax is exponentially
stable if and only if:

σ(A) ⊂ C−
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Proof. Applying the Jordan form of A and the Cayley-Hamilton Theorem, there exist an
invertible matrix P , and polynomials π1(t), · · · , πn(t), of order less than n (constructed from
the elements of P ) such that:

eAt = PetJP−1 =
n∑
k=1

πk(t) · eλkt,

where J is the Jordan form of A.

” ⇒ ” Again, the proof is most readily established by contradiction. If at least one of the
eigenvalues of A is not in C−, then eAt =

∑n
k=1 πk(t) · eλkt does not tend to 0 as t→∞. Thus,

ẋ = Ax is not exponentially stable.

”⇐ ” Since σ(A) = {λk|k = 1, · · · , n} ∈ C− by hypothesis, and the behavior of exponential
functions dominate that of polynomial functions over time, it follows that ẋ = Ax is exponentially
stable.

�

The following theorem summarizes the relationship between the internal stability of the
system ẋ = Ax and the Jordan decomposition of A.

Theorem 4.37. Let A ∈ Rn be given, and let σ(A) denote the set of all eigenvalues of A,
i.e. the spectrum of A. Then the system ẋ = Ax is internally stable if and only if both of the
following conditions hold:

1. σ(A) ⊂ C−

2. The Jordan blocks for each λ ∈ σ(A) ∩ Co are all of size 1.

Proof. We provide a succinct, though not completely mathematically rigorous, explanation.
Let σ(A) = {λ1, · · · , λk}, where k ≤ n. Let ai, gi andmi denote the algebraic multiplicity,

geometric multiplicity, and index for each i = 1, · · · , k. Let:

A = PJP−1

be the Jordan decomposition of A. Recall that the stability of the solution, x(t) = etAx(0),
depends on the time dependence of the matrix exponential etA.

First, since the Jordan decomposition of A is block-diagnol, Rn can be written as the
direct sum of a collection of subspaces, each of which is spanned by a particular Jordan chain
consisting of an eigenvector of A and generalized eigenvectors derived from that eigenvector.
More precisely, by recalling that the geometric multiplicity of each eigenvalue gives the number
of Jordan blocks associated with that eigenvalue:

Rn = (Vλ1,1 ⊕ · · · ⊕ Vλ1,g1)⊕ · · · ⊕ (Vλk,1 ⊕ · · · ⊕ Vλk,gk)
⇒ J = diag{Jλ1,1, · · · , Jλ1,g1 , · · · , Jλk,1, · · · , Jλk,gσ}
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Clearly, x(t) = etAx(0) is stable if and only if etA contains only constant or exponentially
decaying terms; this, in turn, is true for etA if and only if it is true for each etJλi,j , where
i = 1, · · · , σ, j = 1, · · · , gi. If σ(A) ⊂ C−, this is always true; if there exists some eigenvalue on
the imaginary axis, i.e. ∃λ ∈ σ(A)∩Co, then we require that eigenvalue to have Jordan blocks
of size 1. This is because Jordan blocks of sizes larger than 1 would involve polynomial terms
in t, which, for eigenvalues of real part 0, would result in divergence in off-diagonal terms of
the Jordan block as t→∞. �

Theorem 4.38 (Exponential and Uniform Asymptotic Stability (Theorem 5.33, pg.
209)). Consider a linear, time-varying system of the form:

ẋ = A(t)x, , x(t0) = x0,

where A(t) is piecewise continuous and bounded. Then the following statements are equivalent:

1. x = 0 is a uniform asymptotic stable equilibrium point of this system.

2. x = 0 is an exponentially stable equilibrium point of this system.

Remark. The ”if” direction is trivial. Our strategy for the ”only if” direction will be to show
that, for any fixed t0, as t increase in time, the norm of the state transition matrix Φ(t, t0) must
decay in a geometric series, whenever t increases by some T .

Proof. By definition, exponential stability implies uniform asymptotic stability. For the converse,
suppose the system is uniformly asymptotically stable. Fix some t0 ≥ 0; then, for each t1 ≥ 0,
there exists some m0 > 0 such that:

‖Φ(t, t1)‖ ≤ m0, t ≥ t1

Next, the uniform convergence of Φ(t, t0), (which follows from the uniform asymptotic stability
of x = 0) implies that there exists some T > 0 for which:

‖Φ(t, t1)‖ < 1

2
,

whenever t− t1 > T . Now, fix t > t0, and let k ∈ {0, 1, 2, · · · , } be given such that:

t0 + (k − 1)T ≤ t ≤ t0 + kT

Then, we have:

‖Φ(t, t0)‖ =

∣∣∣∣∣Φ(t, t0 + kT ) ·
k∏
j=1

Φ
(
t0 + jT, t0 + (j − 1)T

)∣∣∣∣∣
≤ ‖Φ(t, t0 + kT )‖ ·

k∏
j=1

‖Φ
(
t0 + jT, t0 + (j − 1)T

)
‖

≤ m0 · 2−k

≤ m0 · 2−
t−t0
T ,

since k ≥ t−t0
T

. This establishes the exponential decay of ‖Φ(t, t0)‖ towards 0 as t→∞. �
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The following theorem provides a method of determining whether the eigenvalues of A
all lie in the left half plane that is computationally more efficient than explicitly solving for the
n roots of the n-degree polynomial χA(s).

Theorem 4.39 (Routh-Hurwitz Criterion for Matrix Stability). Let A ∈ Rn×n, and
suppose the characteristic polynomial of A is:

χA(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0,

where a0, · · · , an−1 ∈ R. Consider the matrices:

D1 = an−1,

D2 =

[
an−1 an−3

an an−2

]
,

D3 =

an−1 an−3 an−5

an an−2 an−4

0 an−1 an−3


...

Dn =



an−1 an−3 an−5 · · · · · · 0
an an−2 an−4 · · · · · · 0
0 an−1 an−3 · · · · · · 0
0 an an−2 · · · · · · 0
...

...
...

...
. . .

...
0 0 · · · · · · a1 0
0 0 · · · · · · a2 a0


Then σ(A) ⊂ C− if and only if det(Di) > 0 for each i = 1, · · · , n. This is known as the
Hurwitz criterion.

Example. Using the Hurwitz condition, find the conditions for α under which the system
governed by:

ÿ + 2αẏ + y = 0

is stable.

We conclude this section by noting that, although exponential stability in linear systems
implies BIBO stability, the converse is, in general, not true.

Theorem 4.40. Consider the linear system:

ẋ(t) = A(t)x+B(t)u

y(t) = C(t)x+D(t)u

If x = 0 be an exponentially stable point of this system, and B(·), C(·), D(·) are bounded, the
system is BIBO stable.
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Proof. Since B(·), C(·), D(·) are bounded, there exist k1, k2, k3 > 0 such that:

‖C(·)‖ ≤ k1,

‖B(·)‖ ≤ k2,

‖D(·)‖ ≤ k3

The zero-state response of the system is:

y(t) =

∫ t

0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

Thus, we need to show that:

sup
t∈R

∫ t

−∞
‖C(t)Φ(t, τ)B(τ) +D(t)δ(t− τ)‖dτ

≤ sup
t∈R

∫ t

−∞
‖C(t)‖ · ‖Φ(t, τ)‖ · ‖B(τ)‖dτ + ‖D(t)‖

≤ sup
t∈R

∫ t

−∞
k1 ·me−µ(t−τ) · k2 dτ

=
mk1k2

µ
<∞

This establishes the BIBO stability of the given system. �

BIBO vs. Internal Stability, Stability in Time-Variant Systems

The converse to the above theorem is not true, i.e. BIBO-stable linear systems are not
necessarily exponentially stable, or even internally stable. It is not true even for time-invariant
systems. This is because the ”output matrix” C and ”control matrix” C may be chosen such
that the internal instability of the system, characterized by eigenvalues of A in C+ (or possibly,
on Co), does not appear in the transfer function:

H(s) = C(sI − A)−1B +D

If this occurs for some choice of C, the unstable modes of the system are said to be unobservable;
if this occurs for some choice ofB, the unstable modes of the system are said to be uncontrollable.
This is illustrated by the inverted pendulum example following Lecture 10, and in the following
examples.

This concept can be explained in a slightly different manner. In bygone eras of control
theory, engineers may be given a transfer function H(s) that models some system, and asked to
design a linear system to implement H(s). Mathematically speaking, the task at hand would
be to find suitable state and input vectors, x(t) and u(t), respectively, and matrices A,B,C,D
such that the system:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
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has the transfer function H(s). If the system can be made time-invariant, the latter task boils
down to finding A,B,C,D such that:

H(s) = C(sI − A)−1B +D

Choices of A,B,C,D that implement the transfer function H(s) are called realizations of H(s).

It is easy to see that realizations for a given transfer function are not unique. Given a
realization, one could, for example, multiply each entry of C by 2 and divide each entry of D
by 2 without changing H(s). One could also choose B,C such that certain poles of A do not
appear in the transfer function H(s) = C(sI−A)−1B+D. Of particular interest are choices of
x(t), u(t), and A,B,C,D such that all the modes of A are controllable and observable; such a
realization is said to be minimal. Minimal realizations force all the eigenvalues of A to appear as
modes in the transfer function H(s), and thus eliminates the asymmetry between BIBO stability
and exponential stability. In other words, for a minimally realized linear time-invariant system
S, the following are equivalent:

• Poles(H(s)) = σ(A) ⊂ C−

• S is exponentially stable.

• S is BIBO stable.

As the following examples illustrate that this equivalence does not hold for realizations in
general.

The figure on the next page summarizes the relationship between BIBO and internal
stability.

Example (Lecture 15, pg. 8, Example 1). Consider the linear dynamical system:{
ẋ = Ax+Bu

y = Cx,

where:

A =

−1 0 0
0 −3 0
0 0 −6

 , B =

1/10
−1/6
1/15

 , C =
[
1 1 1

]
Discuss the internal and BIBO stability of this system.

Solution:

Since σ(A) = {−1,−3,−6} ⊂ C−, the given system is internally stable. Thus, the
transfer function G(s) = C(sI − A)−1B can only have roots at s = −1,−3,−6. As such,
the given system is also BIBO stable.
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More explicitly, we have for the transfer function:

G(s) = C(sI − A)−1B

=
[
1 1 1

]  1
s+1

0 0

0 1
s+3

0

0 0 1
s+6

1/10
0

1/15


=

1

10
· 1

s+ 1
− 1

6
· 1

s+ 3
+

1

15
· 1

s+ 6

=
1

(s+ 1)(s+ 3)(s+ 6)

Thus, the given system is BIBO stable.

Example (Lecture 15, pg. 8, Example 2). Consider the linear dynamical system:{
ẋ = Ax+Bu

y = Cx,

where:

A =

−1 0 0
0 3 0
0 0 −6

 , B =

1/10
0

1/15

 , C =
[
1 1 1

]
Discuss the internal and BIBO stability of this system.

Solution:
Since σ(A) = {−1, 3,−6} 6⊂ C−, the given system is not internally stable.
To consider the BIBO stability of the system, consider the transfer function:

G(s) = C(sI − A)−1B

=
[
1 1 1

]  1
s+1

0 0

0 1
s−3

0

0 0 1
s+6

1/10
0

1/15


=

1

10
· 1

s+ 1
− 1

6
· 1

s+ 3
+

1

15
· 1

s+ 6

=
1

6
· s+ 4

(s+ 1)(s+ 6)

Thus, the given system is BIBO stable, despite not being internally stable. This is because,
the mode λ = 3 is uncontrollable from u, i.e. the corresponding pole disappears during the
derivation of the transfer function when (sI − A)−1 is multiplied to the right by B.

Example (Lecture 15, pg. 11, Example 3). Consider the linear dynamical system:{
ẋ = Ax+Bu

y = Cx,
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where:

A =

−1 0 0
0 3 0
0 0 −6

 , B =

1/10
−1/6
1/15

 , C =
[
1 0 1

]
Discuss the internal and BIBO stability of this system.

Solution:
Since σ(A) = {−1, 3,−6} 6⊂ C−, the given system is not internally stable.
To consider the BIBO stability of the system, consider the transfer function:

G(s) = C(sI − A)−1B

=
[
1 0 1

]  1
s+1

0 0

0 1
s−3

0

0 0 1
s+6

1/10
−1/6
1/15


=

1

10
· 1

s+ 1
− 1

6
· 1

s+ 3
+

1

15
· 1

s+ 6

=
1

6
· s+ 4

(s+ 1)(s+ 6)

Thus, the given system is BIBO stable, despite not being internally stable. This is because,
the mode λ = 3 is unobservable from y, i.e. the corresponding pole disappears during the
derivation of the transfer function when (sI − A)−1 is multiplied to the left by C.

For time-varying system, there exists no connection between the eigenvalues of A(t) and
stability. Even if σ(A(t)) = {−1} ∈ C−, the matrix A(t) may contain time-varying terms that
cause the state x(t) to become unbounded as t → ∞. As an example, consider the system
shown below.

Example. Consider the system characterized by:[
ẋ1

ẋ2

]
=

[
−1 e2t

0 −1

] [
x1

x2

]
, x0 =

[
0
1

]
Solving the above differential equations, we have:

x2 = e−t

⇒ ẋ1 = −x1 + e2t · x2

= −x1 + et

⇒ x1(t) =
1

2
(et − e−t).

In short, due to the off-diagonal term e2t in A(t), we have x1(t) → ∞ as t → ∞, despite the
fact that σ(A(t)) = {−1} ∈ C−.

However, there are in fact two notable cases when the eigenvalues of A(t) reveal a
significant amount of information regarding the stability of a system.

The first case arises when A(t) = AT (t) (i.e. when A is symmetric).
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Theorem 4.41. If A(t) is symmetric, and there exists some µ > 0 such that each eigenvalue
of A(t) is no greater than −µ, then 0 is exponentially stable.

Proof. Given the system ẋ = Ax, and any initial point x(0), consider a simple energy function
on the corresponding trajectory:

xTx = |x|2

(Energy functions of more complex forms will be given in subsequent subsections of this lecture).
Then:

d

dt
(|x|2) = ẋTx+ xT ẋ

= xTAT (t)x+ xTA(t)x

= 2xTA(t)x

≤ −2µxTx

⇒ |x(t)|2 ≤ |x(0)|2 · e−2µt

This shows that |x(t)| ≤ ‖x(0)‖ ·e−µt, which establishes the exponential stability of the system.
�

Theorem 4.42. If there exist some λ > 0 and some sufficiently small ε > 0 such that A(t)
satisfies:

Re(A(t)) ≤ −λ < 0

for each t ∈ R, and ‖A(t)‖ ≤ ε, then the system is stable.

Proof. (Beyond the scope of this course). �

Stability and Energy Functions:

The Basic Stability Theorem of Lyapunov, presented below, illustrates that the different
definitions of stability mentioned above can be directly characterized by an energy function
V (x, t) that describes the system. This energy function is often upper and/or lower bounded
by a set of continuous functions with particular properties. We first present definitions of broad
classes of functions that satisfy these properties.

Definition 4.43 (Classes of Functions, Part 1 (Definition 5.12, pg. 188)).

1. A function α(·) : R+ → R+ belongs to class K, denoted by α(·) ∈ K, if it is continuous,
strictly increasing, and α(0) = 0.

2. A function α(·) : R+ → R+ belongs to class KR, denoted by α(·) ∈ K, if α ∈ K and
α(p)→∞ as p→∞.
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Below, we characterize functions that behave locally and globally ”like an energy function,”
in the sense that they increase in the direction away from the origin (which can, in the context
of these definitions, be intuitively thought of as an attractive equilibrium point).

Definition 4.44 (Classes of Functions, Part 2 (Definitions 5.12, 5.13, 5.14, pg. 188)).

1. A function v(x, t) : Rn × R+ → R+ is called locally positive definite (l.p.d.) if it is
continuous, and there exists some h > 0 and some function α(·) ∈ K such that:

v(0, t) = 0,

v(x, t) ≥ α(|x|), ∀x ∈ Bh, t ≥ 0

2. A function v(x, t) : Rn × R+ → R+ is called (globally) positive definite (p.d.) if it
is continuous, and there exists some function α(·) ∈ KR such that:

v(0, t) = 0,

v(x, t) ≥ α(|x|), ∀x ∈ Rn, t ≥ 0

3. A function v(x, t) → Rn × R+ → R+ is called decrescent if it is continuous, and there
exists some function β(·) ∈ K such that:

v(x, t) ≤ β(|x|), ∀x ∈ Bh, t ≥ 0

Remark. If v(x, t) does not explicitly depend on the time t, it must be decrescent. This is
because it is either bounded above by a function of class K, or unbounded above, in which
case it is bounded by itself. In addition, if v(x, t) is decrescent, then v(0, t) ≤ β(0) = 0. (The
equality follows from β(·) ∈ K).

Examples are given below for each of the above types of functions.

Example (Examples of l.p.d., p.d., and decrescent functions (Example 5.15, pgs. 188-189)).
Here are some examples of energy-like functions and their membership in the various classes
introduced above. It is an interesting exercise to check the appropriate functions of class K
and KR that can to be used to verify these properties.

For the examples below, P is positive definite, whereas Q is not. No other information
is assumed about P or Q.

Table 4.1: Classification of Value Functions

v(x, t) l.p.d.f. p.d.f. Decrescent
(1) |x2| Yes Yes Yes
(2) xTPx Yes Yes Yes
(3) (t+ 1)|x|2 Yes Yes No
(4) e−t|x|2 No No Yes
(5) sin2(|x|2) Yes No Yes
(6) etxTQx No No No
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The theorem below illustrates how imposing an increasingly strict set of conditions on
the value function v(x, t) and its time derivative v̇(x, t), defined along the trajectory of the
system’s state, allows us to make increasingly stronger claims regarding the stability of the
system. In particular, we define v̇(x, t) as:

dv

dt
(x, t)

∣∣∣∣∣ ẋ=f(x,t)

x(t0)=x0

=
∂v

∂t
(x, t) +

∂v

∂x
(x, t)

dx

dt

=
∂v

∂t
(x, t) +

∂v

∂x
(x, t)f(x, t)

This is called the Lie derivative of v(x, t) along f(x, t).

Theorem 4.45 (Basic Lyapunov Theorems (Theorem 5.16, pg. 189)). Sets of conditions
on v(x, t) and v̇(x, t) are associated with notions of internal stability as given in the following
table. Without loss of generality, we have placed the equilibrium point at the origin.

Table 4.1

Table 4.2: Basic Lyapunov Theorems

Conditions on Conditions on Conclusions
v(x, t) −v̇(x, t)

1 l.p.d.f. ≥ 0 locally stable
2 l.p.d.f., decrescent ≥ 0 locally unif. stable
3 l.p.d.f., decrescent l.p.d.f. unif. asymp. stable
4 p.d.f., decrescent p.d.f. globally unif. asymp. stable

Proof. (see Appendix) �

Next, we wish to examine the stability of exponential functions.

Theorem 4.46 (Exponential Stability Theorem (Theorem 5.17, pg. 195)). Suppose
f(x, t) : Rn×R+ → Rn has continuous first partial derivatives in x, and is piecewise continuous
in t. Then the following two statements are equivalent:

1. x = 0 is a locally exponentially stable equilibrium point of ẋ = f(x, t):, i.e. there exists
some h,m, α > 0 such that for each x ∈ Bh:

|Φ(t, t0)| ≤ me−α(t−t0)

2. There exists a function v(x, t) and some h, α1, α2, α3, α4 > 0 such that:

α1|x|2 ≤ v(x, t) ≤ α2|x|2

dv

dt
(x, t)

∣∣∣ ẋ=f(x,t)

x(t0)=x0

≤ −α3|x|2∣∣∣∣∂v∂x(x, t)

∣∣∣∣ ≤ α4|x|
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Proof.
”(1)⇒ (2)” : (see Appendix).

”(2)⇒ (1)” : This direction is straightforward. Note that:

v̇(x, t) ≤ −α3

α2

v(x, t),

⇒v(x(t), t) ≤ v(x(t0), t0) · e−
α3
α2

(t−t0)

⇒α1|x(t)|2 ≤ v(x(t), t) ≤ v(x(t0), t0) · e−
α3
α2

(t−t0) ≤ α2|x(t0)|2e−
α3
α2

(t−t0)

⇒|x(t) ≤
√
α2

α1

|x(t0)| · e−
α3
α2

(t−t0)

�

Lyapunov Equations:

Below, we motivate the definition of Lyapunov equations. Consider the time-varying
system:

ẋ = A(t)x

and suppose this system is associated with some notion of stability that is characterized by a
potential function:

V (x, t) ≡ x?P (t)x

Intuitively, if the system is stable, then the potential decreases in time, i.e.:

0 ≥ dV

dt
= ẋ?P (t)x+ x?P (t)ẋ+ x?Ṗ (t)x

= (x?A(t)?)P (t)x+ x?P (t)(A(t)x) + x?Ṗ (t)x

= x?(A(t)?P (t) + P (t)A?(t) + Ṗ (t)︸ ︷︷ ︸
≡−Q(t)

)x

In other words, we want:

A(t)?P (t) + P (t)A?(t) + Ṗ (t) = −Q(t)

with Q(t) positive definite.
The above concepts leads to Lyapunov’s Lemma, presented below. However, we first

present the following lemma to illustrate the connection between the Lyapunov equation and
exponential stability. In a way, this is a more generalized version of Lyapunov’s Lemma.

Lemma 4.47 (Time-Varying Lyapunov Lemma (Claim 5.38, Theorem 5.40, pgs. 212-213)).
Given a system ẋ = A(t)x with state transition matrix Φ(t, t0), the following statements are
equivalent:
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1. The system ẋ = A(t)x is exponentially stable.

2. There exist constants α, β, µ > 0, and some positive definite Q(t) such that the following
two conditions hold:

• Q(t) ≥ µI, and:

• The Lypaunov equation Ṗ + A?P + PA = −Q has a solution P (t):

P (t) =

∫ ∞
t

Φ?(τ, t)Q(τ)Φ(τ, t)dτ

satisfying αI ≤ P (t) ≤ βI.

Proof. For both sides of the proof, we must establish that the function:

P (t) =

∫ ∞
t

Φ?(τ, t)Q(τ)Φ(τ, t)dτ

solves the Lyapunov equation Ṗ +A?P +PA = −Q. To begin with, it is uncertain whether or
not P (t), as given by the above improper integral, is even well-defined; that would depend on
properties of Φ(τ, t), to be verified in the ”(1) ⇒ (2)” portion of the proof. If, however, P (t)
is indeed well defined, we can directly differentiate P (t) via differentiation under the integral
sign:

d

dt

(∫ ∞
t

Φ?(τ, t)Q(τ)Q(τ, t)dτ

)
= −Q(t) +

∫ ∞
t

[
A?(t)Φ?(τ, t)Q(τ)Q(τ, t) + Φ?(τ, t)Q(τ)Q(τ, t)A(t)

]
dτ

= −Q(t) + A?(t)P (t) + P (t)A(t)

Thus, if P (t) is well-defined, it satisfies the Lyapunov equation Ṗ + A?P + PA = −Q.

”(2)⇒ (1)” : By the Basic Lyapunov Theorems, it suffices to show the following:

• v(x, t) ≡ x?P (t)x is bounded above and below by locally positive definite functions of x
(criteria referred to as decrescence and positive definiteness, respectively.

• −v̇(x, t) is bounded below by some locally positive definite function. (Roughly speaking,
v(x, t) must be changing with respect to time at an increasing rate.)

The Basic Lyapunov Theorem implies that, if these conditions hold, then x = 0 is
uniformly asymptotically stable, and is thus exponentially stable (by the equivalence of these
two notions of stability for linear systems).

Fortunately, by hypothesis, we have:

αI ≤ P (t) ≤ βI

⇒α|x|2 ≤ x?P (t)x︸ ︷︷ ︸
≡ v(x,t)

≤ β|x|2
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where we have left multiplied each term by x? and right multiplied each term by x to obtain
the second expression.

In addition, we have:

v̇(x, t) = ẋ?P (t)x+ x?Ṗ (t)x+ x?P (t)ẋ

= x?(Ṗ (t) + A?(t)P (t) + P (t)A(t))x

= −x?Q(t)x

≤ −α|x|2

The proof is done.

”(1)⇒ (2)” : (see Appendix) This portion of the proof, which requires Lyapunov’s Lemma,
is placed in the Appendix.

�

The time-varying Lyapunov Lemma, as presented above, can be used to demonstrate
the boundedness of P (t) if the given system is time-invariant. However, we will directly
demonstrate this below, since we presented an incomplete version of the proof for the time-
varying Lyapunov Lemma.

Lemma 4.48. Consider the system ẋ = Ax, where A ∈ Rn×n and σ(A) ∈ C−. Then the unique
solution to Lyapunov’s Equation, A?P + PA = −Q, where Q > 0, is given by:

P =

∫ ∞
0

eA
?tQeAt dt

In particular, the above integral is well-defined.

Proof. Define the time-dependent matrix:

S(t) ≡
∫ ?

0

eA
?τQeAτ dτ

=

∫ ?

0

eA
?(t−τ)QeA(t−τ) dτ

Differentiating S(t) with respect to t (by again applying differentiation under the integral sign),
we have:

Ṡ(t) = A?S + SA+Q.

Since σ(A) ∈ C−, the terms eA
?(t−τ) and eA(t−τ) are bounded above by exponential terms, so:

P ≡ S(∞) =

∫ ∞
0

eA
?τQeAτ dτ

is well-defined. The existence (convergence) of P implies that:

A?P + PA+Q = lim
t→∞

Ṡ(t) = 0.
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It remains to demonstrate the uniqueness of P . Consider the linear mapping L : Rn×n → Rn×n,
defined by:

L(X) = A?X +XA.

Let M ∈ Rn×n. Repeating the above procedure, we find that:

X̃ ≡
∫ ∞

0

eτA
?

(−M)eτA dτ

satisfies L(X̃) = M . Thus, L is surjective. Since the domain and codomain of the linear
mapping L have the same dimension, this implies that L is injective. This establishes the
uniqueness of P .

�

Remark. See the appendix for a more direct, but also more mathematically intensive, proof of
the uniqueness of P .

Theorem 4.49 (Lyapunov Lemma (Theorem 5.36, pgs. 211-212)). Let A,P,Q ∈ Rn×n, with
Q > 0, and consider the matrix equation:

A?P + PA = −Q. (4.4)

The following statements are equivalent:

1. ẋ = Ax is exponentially stable.

2. σ(A) ⊂ C−.

3. There exists some Q > 0 such that:

A?P + PA = −Q

admits a unique solution P > 0.

4. For each Q > 0:
A?P + PA = −Q

admits a unique solution P > 0.

Proof. We have already established that (1) ⇔ (2), and it is trivial that (4) ⇒ (3). Lemma ??
establishes (3) ⇒ (1). It remains to show that (2) ⇒ (4).

The lemma above implies that, for linear, time-invariant systems, the solution is of the
form:

P =

∫ ∞
0

eA
?tQeAt dt

It is clear that P ≥ 0. To show that P > 0, first note that since Q > 0, there exists some
non-singular M such that Q = M?M . Now, let x 6= 0 be arbitrarily given such that:

0 = x?Px =

∫ ∞
0

x?eA
?tQeAtxdt =

∫ ∞
0

|MeAtx|2 dt

Thus, MeAtx. Since M and eAt are non-singular, we have x = 0. This verifies that P > 0. �
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Alternative proof to Lyapunov’s Theorem, ”(4) ⇒ (2)”:

Proof. Consider the value function V : Rn → R given by:

V (x, t) = x?Px

Given Q > 0, let P > 0 be the solution to Lyapunov’s Equation, A?P + PA = −Q. As derived
above, we have:

V̇ (x, t) = −x?Qx.
We proceed to bound V̇ (x, t) by V (x, t) to establish an exponential limit for V (x), and, in turn,
|x|. Since, P,Q > 0:

λmin(P ) · |x|2 ≤ x?Px︸ ︷︷ ︸
≡V (x,t)

≤ λmax(P ) · |x|2

λmin(Q) · |x|2 ≤ x?Qx︸ ︷︷ ︸
≡ V̇ (x,t)

≤ λmax(Q) · |x|2

We thus have:

V̇ (x) = −x?Qx ≤ −λmin(Q) · |x|2 ≤ − λmin(Q)

λmax(P )︸ ︷︷ ︸
≡ k1

·V (x)

⇒ V (x) ≤ V (x0) · e−kt

where we have defined k1 ≡ λmin(Q)/λmax(P ). But V (x) = x?Px, so V (x0) = x?0Px0, and thus
the above equation implies:

λmin(P ) · |x|2 ≤ V (x) ≤ V (x0) · e−kt ≤ λmax(P ) · |x0|2e−kt

Taking k2 = λmax(P )/λmin(P ), we have:

|x(t)| ≤
√
k2e
− 1

2
k1t

Thus, ẋ = Ax is exponentially stable. �

Numerical computation using Part 4 of the above lemma, which essentially involves
solving an n× n system of linear equations, is more efficient than Part 2 of the above lemma,
which involves finding the roots of an n-degree polynomial.

We conclude this section by stating without proof a generalization of the Lyapunov
lemma, called the Taussky Lemma. It is useful when σ(A) 6⊂ C−.

Theorem 4.50 (Taussky Lemma Lemma 5.37, pg. 212). Let A,Q ∈ Rn×n such that Q > 0.
If A has no eigenvalues on the imaginary axis, then the unique symmetric solution P to the
Lyapunov Equation:

A?P + PA = −Q
has as many positive eigenvalues as the number of eigenvalues of A in C−, and as many negative
eigenvalues as the number of eigenvalues of A in C+.
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Proof. See ”O. Taussky. A remark on a theorem of Lyapunov. Journal of Mathematical
Analysis and Applications. 2: 015-107, 1961. �

Instability Theorem:

The Basic Lyapunov Theorem tells us that, if the value function v(x, t) satisfies certain
constraints, then the system satisfies certain notions of stability. A partial converse is stated in
the following theorem, i.e. if the valued function v(x, t) is ”sufficiently ill-behaved” in a certain
sense, the system is guaranteed to be unstable. This theorem will be used again to prove the
instability of non-linear systems that can be approximated as unstable linear systems, via the
indirect method of Lyapunov (see Appendix).

Theorem 4.51 (Basic Instability Theorem (Theorem 5.29, pg. 206)). If there exists a
value function v(x, t) satisfying each of the conditions below:

1. v(x, t) is decrescent,

2. v̇(x, t) is locally positive definite,

3. There exist points x arbitrarily close to 0 such that v(x, t0) > 0,

then the equilibrium point 0 is unstable at time t0.

Proof. Since v(x, t) is decrescent and v̇(x, t) is locally positive definite, there exist r, s > 0 and
α, β ∈ K such that:

v(x, t) ≤ β(|x|), x ∈ Br,

v̇(x, t) ≥ α(|x|), x ∈ Bs.

To show that 0 is an unstable equilibrium point, we must prove there exists some ε > 0 such
that, for every δ > 0, there exists some x0 ∈ Bδ and some corresponding time Tδ ≥ t0 such that
if |x0| < δ, then x(Tδ) ≥ ε.

Choose ε = min{r, s}, and fix δ > 0 arbitrarily. By the third condition on v(x, t), there
exists some x0 ∈ Bδ such that v(x0, t0) > 0. If |x0| ≥ ε, the proof is completed by taking
Tδ = t0. Otherwise, x0 ∈ Bε = Br ∩Bs. Now, suppose by contradiction that x(t) ∈ Bε for each
t ≥ t0. Then we have:

v̇(x(t), t) ≥ 0,

⇒v(x(t), t) ≥ v(x0, t0) > 0.

Since v(x, t) is decrescent, and therefore continuous, there must exist some δ′ > 0 such that
|x(t)| < δ′ implies v(x(t), t) < v(x0, t0). The above inequality states that v(x(t), t) ≥ v(x0, t0),
so we must have |x(t)| ≥ δ′. Thus:

v̇(x, t) ≥ α(|x|) ≥ α(δ′) > 0,

⇒ v(x(t), t)) = v(x0, t0) +

∫ t

t0

v̇(x(τ), τ)dτ

≥ v(x0, t0) + α(δ′) · (t− t0).
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In particular, when:

t = t0 +
ε− v(x0, t0)

α(δ′)

we have v(x(t), t) ≥ ε, a contradiction. The proof is done.
�

Indirect Lyapunov’s Method:

If a system is only slightly non-linear, in the sense that there exists some A(t) such that:

ẋ = A(t)x+ f1(x, t), with :

lim
|x|→0

sup
t≥0

|f1(x, t)|
|x|

= 0,

then local uniform asymptotic stability can be determined by examining the global uniform
asymptotic stability of the linear system:

ż = A(t)z

Roughly speaking, we derive a slightly weaker sense of stability for a slightly non-linear system
from the stability of the linear system that it resembles. This is rigorously justified by the
following theorem, which also establishes a partial converse—If a slightly non-linear system can
be approximated as an unstable linear system, then that slightly non-linear system must also
be unstable.

Theorem 4.52 (Indirect Lyapunov’s Method (Theorems 5.41, 5.42, pgs. 215-217)).
Suppose the non-linear system ẋ = f(x, t), x(t0) = x0 has the linear approximation:

ẋ = f(x, t) = A(t)x+ f1(x, t), with

lim
|x|→0

sup
t≥0

|f1(x, t)|
|x|

= 0.

Then the following statements hold:

1. If ∂f(x,·)
∂x

∣∣
x=0

is bounded in time, and 0 is a uniformly asymptotically stable equilibrium
point of the linearized system:

ẑ(t) =
∂f1(x, t)

∂x

∣∣∣∣∣
x=0

z(t),

then 0 is also a locally uniformly asymptotically stable equilibrium point of the original
non-linear system ẋ = f(x, t), x(t0) = x0.

2. If ∂f(x,·)
∂x

∣∣
x=0

is constant in time, and has at least one eigenvalue in C+, then 0 is an
unstable equilibrium point of the original nonlinear system ẋ = f(x, t), x(t0) = x0.

Proof. (See Appendix). �
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4.8 Lecture 15 Discussion

Example (Discussion 10, Problem 2). Show that, if A(t) = −A(t)T , then ẋ(t) = A(t)x(t) is
internally stable.

Solution:
We directly evaluate the time derivative of the square of the norm of the state:

d

dt
|x|2 = ẋTx+ xT ẋ = xTATx+ xTAx

= xT (AT + A)x = 0.

Thus, |x| is constant with respect to time, so the system is stable.

Example (Discussion 10, pg. 6, Fall 2009 Prelims, Prof. Arcak). Consider the LTI
system:

ẋ = Ax+Bu,

y = Cx.

1. Suppose there exists some P > 0 and a constant α such that:

ATP + PA < αP (4.5)

(a) Which region in the complex plane do the eigenvalues of A lie in?

(b) Suppose (4.5) holds with α = 0, and in addition, PB = CT . Show that the given
system is asymptotically stable for any feedback u = −ky, where k ≥ 0.

2. Suppose, instead of (4.5), P > 0 satisfies the equality:

ATP + PA = O

(a) Which region in the complex plane do the eigenvalues of A lie in?

(b) Does the above equality guarantee asymptotic stability for the feedback u = −ky,
with a positive gain k > 0? If not, what additional conditions would you need?

Solution:

1. (a) Let λ ∈ σ(A); then there exists some v 6= 0 such that Av = λv. Substituting into
(4.5), we have:

0 > v?(A?P + PA− αP )v = (2Re(λ)− α)v?Pv

⇒Reλ <
1

2
α.
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(b) Substituting u = −ky = −kCx into the given system, we have:

ẋ = (A− kBC)x

Since (4.5) holds with α = 0, we have:

A?P + PA < 0,

⇒ (A− kBC)?P + P (A− kBC) + k(C?B?P + PBC) < 0,

⇒ (A− kBC)?P + P (A− kBC) + 2kC?C < 0,

⇒ (A− kBC)?P + P (A− kBC) < 0,

since C?C ≥ 0. The above result thus implies that, for each λ ∈ σ(A − kBC),
we have Re λ < 1

2
α = 0. Thus, the given feedback renders the system asymptotic

stable.

2. (a) Our solution for 1 a) implies that Re λ = 0 for each λ ∈ σ(A). In other words, the
eigenvalues of A lie on the imaginary axis.

(b) Our solution for 1 b) implies that:

(A− kBC)?P + P (A− kBC) + 2kC?C = O

To achieve asymptotic stability, we require

(A− kBC)?P + P (A− kBC) < 0,

i.e. C?C > 0. This occurs if and only if C has full column rank.

Example (Discussion 10, pg. 7, Fall 2015 Prelims, Prof. Carmena).

1. Is the network shown in the figure BIBO stable? If not, find a bounded input that will
excite an unbounded output.

2. Is the homogeneous state equation shown below asymptotically stable? Marginally stable?

ẋ =

−1 0 1
0 0 0
0 0 0

x
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3. Is the following state equation controllable? Observable? If not, reduce it to a controllable
and observable form.

Solution :

1. Let i1 and i2 be the current flowing through the 1H inductor and the 1F capacitor,
respectively, both in the downward direction. By Kirchhoff’s Circuit Law (KCL) and
Kirchhoff’s Voltage Law (KVL), we have:

y = L
di1
dt

=
1

C

∫ t

0

i2 dt,

u = i1 + i2

Define the states of the systems to be x1 = i1, x2 = i̇1. Then:

ẋ1 = x2,

ẋ2 =
1

L
ẏ =

1

LC
(u− i1) = − 1

LC
x1 +

1

LC
u,

y = Li̇1 = Lx2.

In matrix form, we have: [
ẋ1

ẋ2

]
=

[
0 1
− 1
LC

0

]
︸ ︷︷ ︸

≡A

[
x1

x2

]
+

[
0
1
LC

]
︸ ︷︷ ︸
≡B

u

y =
[
0 L

]︸ ︷︷ ︸
≡C

[
x1

x2

]

The transfer function of the system is:

H(s) = B(sI − A)−1C

=
[
0 L

] [ s −1
1
LC

s

]−1 [
0
1
LC

]
=

1

C
· s

s2 + 1
LC

,

with poles at ±i1/
√
LC, both of which are on the imaginary axis. Thus, the system is

not BIBO stable. Since its poles are at ±i1/
√
LC, an example of a bounded input that

would excite an unbounded output would be a sinuosidal function with angular frequency
1√
LC

.

2. Observe that:

A ≡

−1 0 1
0 0 0
0 0 0
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Then ẋ = Ax.

Since A is upper triangular, its eigenvalues can be read off the diagonal—σ(A) = {−1, 0}.
The eigenvalue 0 is repeated twice, but each is associated with a Jordan block of size 1.
Thus, the system is stable (although not asymptotically stable).

3. By inspection, when s = λ1, the third row of the controllability matrix pencil
[
sI − A B

]
is a zero row, and the first column of

[
sI − A
C

]
is a zero column. Thus,

[
sI − A B

]
and[

sI − A
C

]
lack full row rank and full column rank, respectively, when s = λ1; as a result,

the given state equation is neither controllable nor observable.

Example (Discussion 10, pg. 8, Spring 2017 Prelims, Prof. El Ghaoui). Consider a
continuous-time LTI system ẋ(t) = Ax(t), t ≥ 0, with no input (such a system is said to be
autonomous), and output y(t) = Cx. We wish to evaluate the energy contained in the system’s
output, as measured by the index:

J(x0) ≡
∫ ∞

0

y(t)Ty(t)dt =

∫ ∞
0

x(t)TQx(t)dt

where Q ≡ CTC � 0.

1. Show that if the system is stable, then J(x0) < ∞ for any given x0. Hint : Show that
‖y(t)‖2 ≤ c‖x0‖2e

σmaxt, where σmax is the maximum real part of the eigenvalues λi of A,
and c > 0 is some constant.

2. Show that if the system is stable and there exists a matrix P � 0 such that:

ATP + PA+Q � 0,

then it holds that J(x0) ≤ xT0 Px0. Hint : Consider the quadratic form V (x(t)) =
x(t)TPx(t), and evaluate its derivative with respect to time.

3. Explain how to compute a minimal upper bound on the state energy, for the given initial
conditions.

Remark. Here, we interpret ”stable” as ”asymptotically stable.”

Solutions :
We also assume that A ∈ Rn×n, C ∈ Rp×n, and that, in general, p 6= n.

1. Observe that:

y(t) = Cx(t) = CetAx0,

⇒ J(x0) =

∫ ∞
0

y(t)Ty(t)dt =

∫ ∞
0

‖CetAx0‖2dt
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Now, since the system is stable, there exists some σmax > 0 such that all eigenvalues of
etA decay exponentially at a rate faster than σmax. Thus, since each term in CetAx0 is
a linear combination of eλit, where σ(A) = {λi|i = 1, · · · , n}, it follows that the infinite
integral J(x0) converges.

2. Following the hint, we have:

∵
d

dt
(xTPx) = ẋTPx+ xTPẋ = xT (ATP + PA)x ≤ −xTQx,

⇒J(x0) =

∫ ∞
0

xTQxdt ≤
∫ ∞

0

− d

dt
(xTPx)dt = xT0 Px0

3. Let x0 = Px0, where P is an invertible matrix whose columns are the eigenvectors (or
generalized eigenvectors) of A, in a correct order i.e. A = P−1JP for some square matrix
J in Jordan form. For convenience, we choose to focus on the 1-norm of the state energy,
defined by: ∫ ∞

0

|x(t)|21 dt =

∫ ∞
0

∣∣etAx0

∣∣2
1
dt =

∫ ∞
0

|P−1etJPx0|21 dt

≤ ‖P−1‖1 ·
∫ ∞

0

‖etJ‖2
1 dt · |Px0|21

≤ ‖P−1‖1 ·
∫ ∞

0

(
n−1∑
k=0

σkmaxt
k

k!

)2

e−2σmaxt dt · |Px0|21

where, in the worst case, J may contain a single Jordan block of size n, and the maximum

column sum of etJ thus contains n non-zero elements of the form σkmaxt
k

k!
, for each k =

0, 1, · · · , n− 1.

Example (Discussion 10, pg. 9, Fall 2013 Prelims, Prof. Arcak).

1. Consider the linear system ẋ = Ax, where:

A =

[
α β
−β α

]
,

with α, β ∈ R. For which values of α, β is the system stable, asymptotically stable, and
unstable?

2. Suppose α = 0. If we fix some T > 0 and take samples of the trajectories every T units
of time, we obtain:

x[n] ≡ x(nT )

for each n = 0, 1, 2, · · · .
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(a) Find the matrix Ad for the discrete-time model x[n+ 1] = Adx[n] as a function of β
and T .

(b) For which values of β and T are the solutions x[n] periodic in n?

Solution:

1. The characteristic function of A is:

χA(s) ≡ det(sI − A) = (s− α)2 + β2

We thus have σ(A) = {α ± βi}. If α < 0, the system is asymptotically stable; if α > 0,
the system is unstable. If α = 0, and β 6= 0, then the system state oscillates sinusoidally;
if α = β = 0, then A = 0, so x(t) remains constant. In summary, the system is stable,
asymptotically stable, and unstable when α = 0, α < 0, and α > 0, respectively.

2. Since the original system is ẋ = Ax, we have x(t) = e(t−t0)Ax(t0).

(a) Taking t0 = nT and t = (n+ 1)T , we have:

x[n+ 1] = x((n+ 1)T ) = eTAx[n]

Thus, Ad = eTA. We can evaluate this matrix exponential using the Cayley-Hamilton
Theorem; notice that, with α = 0, the characteristic equation becomes χA(s) =
s2 + β2. Let q(s) and a1, a0 ∈ C be given such that:

eTs = (s2 + β2) · q(s) + α1s+ α0,

Substituting s = ±iβ, we have:

eiβT = iα1β + α0

e−iβT = −iα1β + α0

We thus have α1 = 1
β

sin βT and α2 = cos βT , so

eTA =

(
1

β
sin βT

)
A+ (cos βT ) I =

[
cos βT 1

β
sin βT

1
β

sin βT cos βT

]
(b) If x[n] is periodic in n, there must exist some positive integer N ∈ N for which

x[n+N ] = x[n] for each n = 0, 1, 2, · · · . Since x[n+N ] = eNTA · x[n], we must have
eNTA = I.

Repeating the above procedure, we find that eNTA can be found by simply replacing
T with NT in the expression for eTA, i.e.:

eNTA =

[
cosNβT 1

β
sinNβT

1
β

sinNβT cosNβT

]
Setting eNβT = I, we find that βT = 2π

N
. In other words, x[n] is periodic in n if and

only if βT is a positive rational multiple of 2π.
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Example (Discussion 10, pg. 10, Spring 2017 Prelims, Prof. Fearing).

1. Given an LTI system ẋ = Ax, and a matrix M > 0 such that V ≡ xTMx satisfies V̇ < 0
for any trajectory, determine the possible range of eigenvalues for A.

2. Consider the continuous-time linear system defined by:[
ẋ1

ẋ2

]
=

[
−1 0
0 −2

] [
x1

x2

]
+

[
1
2

]
u

(a) For u(t) = 0, determine the state trajectory with:

xa(t = 0) =

[
2
1

]
, xb(t = 0) =

[
1
2

]
.

(b) For u(t) = 1 for t ≥ 0, determine the state trajectory with:

xa(t = 0) =

[
2
1

]
, xb(t = 0) =

[
1
2

]
.

(c) Given an initial condition x0, explain how you would find a u(t) such that x(t)
asymptotically approaches a finite fixed value, say for:

x0 =

[
2
1

]
, xf =

[
2
0

]
.

(d) Given an initial condition x0, explain whether it is possible to find a u(t) such that
x(t) asymptotically approaches a finite fixed value, say for:

x0 =

[
2
1

]
, xf =

[
2
0

]
,

with fixed x1(t) = 2 for t ≥ 0?

Solution:

1. Differentiating V with respect to time, we have:

0 > V̇ = ẋTMx+ xTMẋ = xT (AM +MA)x,

where x ∈ Rn is arbitrary. Let λ ∈ σ(A), and let v be a corresponding eigenvector. Then:

0 > vT (AM +MA)v = vT (2λM)v.

Since vTMv > 0, we have λ < 0.
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2. (a) If u = 0, then:

ẋ1 = −x1,

ẋ2 = −2x2,

Thus, we have:

x1(t) = x1(0)e−t

x2(t) = x2(0)e−2t

(b) If u = 1, then:

ẋ1 = −x1 + 1,

ẋ2 = −2x2 + 2,

Thus, we have:

x1(t) = x1(0)e−t + t

x2(t) = x2(0)e−2t + 2t

(c) Suppose by contradiction that there exists a function u(·) that drives the system

from x0 =
[
2 1

]T
to xf =

[
2 0

]T
Then:

ẋ1 = −x1 + u(t),

ẋ2 = −2x2 + 2u(t),

Rearranging terms and taking t→∞, the above two equations become contradictory:

lim
t→∞

u(t) = lim
t→∞

ẋ1(t) + lim
t→∞

x1(t) = 0 + 2 = 2,

lim
t→∞

u(t) =
1

2
· lim
t→∞

ẋ2(t) + lim
t→∞

x2(t) = 0 + 0 = 0.

Thus, there exists no input driving x(t) from x0 to xf asymptotically.

(d) The answer to c implies that there exist no such u(·). However, even without the
answer to c, we can show this to be true.

Suppose by contradiction that such an input u exists. Since:

ẋ1 = −x1 + u,

and we want x1(t) = 2, ẋ1(t) = 0 at each time t, we must apply u = 2, with the
result that:

ẋ2 = −2x2 + 4

Since x2(0) = 1, we thus have:

x2(t) = e−2t + 4t

as the unique solution to x2(t). Thus, x2(t) → ∞ as t → ∞, contradicting the fact

that x(t) is supposed to asymptotically approach xf =
[
2 0

]T
.
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Chapter 5

Controllability and Observability

5.1 Lecture 16

In this lecture, we wish to understand how, given a dynamical system, we can design an input
u(t) such that the system produces a desirable output y(t). Notice that u(t) affects y(t) through
x(t).

Note. Below, uτ will denote the function u in the time interval τ . Notice that τ is often an
open, closed, or half-open-half-closed interval, e.g. (t0, t), [t0, t], or [t0, t).

Definition 5.1 (Steering). Let (U,Σ,Y , s, r) be a dynamical system representation, and let
t0, t1 be given with t0 < t1. The input u[t0,t1](·) steers (x0, t0) to (x1, t1) if:

x1 = s(t1, t0, x0, u[t0,t1])

Definition 5.2 ((Complete) Controllability on [t0, t1]). The system representation D is
(completely) controllable on [t0, t1] if, for each x0, x1 ∈ Σ, there exists some u[t0,t1] ∈ U
that steers x0 at t0 to x1 at t1.

Proposition 5.3. Given a dynamical system D = (U,Σ,Y , s, r), the following are equivalent:

1. D is controllable on [t0, t1].

2. For each x0 ∈ Σ, the map:

x(·) = s(t1, t0, x0, u[t0,t1](·)) : U → Σ

is surjective.

Memoryless Feedback and Controllability:

In general, the input u(·) may be an output feedback, i.e. u(y, t), or a state feedback,
i.e. u(x, t). Consider two memoryless maps:

FS : Σ→ U
FO : Y → U

157
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and the following block diagrams, which represent state feedback and output feedback, respectively:

Figure 5.1: State Feedback

Figure 5.2: Output Feedback

In the top and bottom figures, the input u(·) corresponds to the state and output
feedback, respectively, whereas v(·) is known as the auxilliary input. This simply means that
v(·) is the input we apply to the closed-loop system:

u(x, t) = v(t)− FS(x(t))

u(y, t) = v(t)− FO(y(t))

Below, we introduce several equivalent definitions for the controllability of a state.
We first discuss an important concept, known as the well-posedness assumption, on which

the validity of many of these results depend.

Definition 5.4 (Well-Posed). Let D = (U ,Σ,Y , s, r) be a dynamical system representation,
and let DS and DO be memoryless feedback systems constructed from D, as given above. D is
said to be well-posed if, for each initial state x0, initial time t0, and overall input v(·), the
systems DS and DO have unique inputs and outputs.

If a system is not well-posed, it is said to be ill-posed.
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The well-posedness assumption captures the intuitive notion that, for the closed feedback
loop to make sense, there should be some delay about the feedback loop. For example, if there
were no delay in the closed state feedback loop, the input u at some time t would produce a
state x, at the same time t, and then this state would be fed back to affect u, again at the same
time t. This results in circular (and thus contradictory) logic.

Example (An Ill-Posed System). Suppose by contradiction that the following linear dynamical
system:

ẋ = 0,

y = u,

with Fs(·) = Fo(·) = −1, is well-posed. Then y = v+ u, a contradiction to the fact that y = u,
and v is arbitrary.

Theorem 5.5. Let D = (U ,Σ,Y , s, r) be a dynamical system representation, and let DS and DO

be well-posed memoryless feedback systems constructed from D. Then the following statements
are equivalent:

1. D is controllable on [t0, t1].

2. DS is controllable on [t0, t1].

3. DO is controllable on [t0, t1].

Proof.
”(1)⇔ (2)” :

We will first establish that (1)⇒ (2). Fix x0, x1 ∈ Σ. Since D is controllable on [t0, t1],
there exists some ũ[t0,t1](·) that steers x0 at t0 to x1 at t1. To demonstrate the controllability of
DS, we must show that there exists some input ṽ(t) to DS that steers (x0, t0) to (x1, t1). This
can be done by defining:

ṽ(t) = ũ(t) + FS(x(t))

= ũ(t) + FS(s(t, t0, x0, ũ[t0,t]))

Conversely, if DS were controllable, then for each x0, x1 ∈ Σ, there exists some control
ṽ[t0,t1] that steers (x0, t0) to (x1, t1) on DS. Thus, the input ũ(t) generated internally by DS

steers (x0, t0) to (x1, t1) on DS, so D is controllable.

”(1)⇔ (3)” :
The proof here is similar to the proof for ”(1)⇔ (2)”; simply replace the state feedback

FS with the output feedback FO, and the state transition map s(t, t0, x0, ũ[t0,t1]) with the
response map ρ(t, t0, x0, ũ[t0,t1]).

�
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Now consider the case where the state feedback, instead of being a function mapping x
to some control signal FS(x(t)), is in fact a dynamical system FS with representation:

FS = (Σ,Σ1,U , sF , rF )

Contrast this with the original system D = (U ,Σ,Y , s, r). In short, FS takes states x ∈ Σ of D
as inputs, and produce inputs u ∈ U of D as outputs. We denote FS’s own state space by Σ1.

In fact, the above theorem holds even when the feedback loop is itself a dynamical
system.

Theorem 5.6. Let D = (U ,Σ,Y , s, r) be a dynamical system representation, and let DS be a
dynamical feedback system constructed from D. Then the following statements are equivalent:

1. D is controllable on [t0, t1].

2. DS is controllable on [t0, t1].

Definition 5.7 ((Complete) Observability on [t0, t1]). The dynamical system D = (U,Σ,Y , s, r)
is said to be (completely) observable on [t0, t1] if, for each u[t0,t1](·) ∈ U and each y[t0,t1](·) ∈
Y, the initial state x0 ≡ x(t0) is uniquely determined by u(·) and y(·).

Proposition 5.8. The dynamical system D = (U,Σ,Y , s, r) is observable on [t0, t1] if and only
if the response map:

y(·) = ρ(·, t0, x0, u[t0,t1](·)) : Σ→ Y

is injective.

Intuitively, this means that, given any output in a given time interval [t0, t1], the state
can be uniquely determined.

Memoryless Feedback and Memoryless Feedforward

Just as the output y can be connected to the input u via the feedback loop Fo(·), the
input u can be ”fed forward” to the output y via a feedforward loop, as shown below.
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Figure 5.3: Memoryless Output Feedback and Memoryless Feedforward

It is a curious fact that neither memoryless output feedback nor memoryless feedfoward
alters the observability of the system.

Theorem 5.9. Let D = (U ,Σ,Y , s, r) be a dynamical system representation, and let Do and
Df be well-posed memoryless output feedback and input feedforward systems constructed from
D. Then the following statements are equivalent:

1. Do is observable on [t0, t1].

2. Df is observable on [t0, t1].

However, state feedback may affect observability. For instance, it is possible to transform
a completely observable system D into a closed-loop state feedback system DS that is not
completely observable. Here, D and DS are defined as given above:

Figure 5.4: State Feedback
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The reason is that the connection between the auxiliary input v(·) (i.e. the input to the
closed-loop state feedback system DS) and the actual input u(·) (i.e. the input into the original
system D) is related via the system state x, which remains unknown to the observer.

Consider the counterexample below, which makes use of a state feedback chosen to place
the state into the null space of the output matrix C.

Example (State Feedback Changes Observability). Consider the time-invariant system:

ẋ =

[
0 0
1 0

]
︸ ︷︷ ︸
≡A

x+

[
2
1

]
︸︷︷︸
≡B

u,

y =
[
0 1

]︸ ︷︷ ︸
≡C

x,

u =
[
1 0

]︸ ︷︷ ︸
≡Fs

x

Since the auxiliary input v(·) is given by:

v = u− Fsx

the dynamics of D can be rewritten as:

ẋ =

[
0 0
1 0

]
x+

[
2
1

](
v −

[
1 0

]
x
)

=

[
−2 0
0 0

]
︸ ︷︷ ︸
≡A−BFs

x+

[
2
1

]
︸︷︷︸
≡B

v,

y =
[
0 1

]
x,

Using observability tests described in the next lecture, we can show that the original system D
is completely observable, but the closed-loop system DS is not.
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5.2 Lecture 17

For a time-varying system R = [A(·), B(·), C(·), D(·)], recall that the state transition and
response maps as:

x(t) = Φ(t, t0)x0 +

∫ t1

t0

Φ(t, τ)B(τ)u(τ)dτ

y(t) = C(t)Φ(t, t0)x0 +

∫ t1

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

Define the mappings:

Lc : U[t0,t1] → Rn

Lo : Rn → Y[t0,t1]

as follows. For each t ≥ 0, we have:

Lc(u[t0,t1]) =

∫ t1

t0

Φ(t, τ)B(τ)u(τ)dτ

(Lox0)(·) = C(·)Φ(·, t0)x0

= y(·)−
∫ ·
t0

C(·)Φ(·, t0)B(τ)u(τ)dτ −D(t)u(t)

Intuitively, Lc captures the notion that inputs u(t) can be chosen to alter (”control”) the state
x(t), whereas y(t) can be obtained (”observed”) through the state x(t). In mathematical terms,
R(Lc) is the subspace of all states that can be controlled, while N(Lo) is the subspace of all
states that cannot be observed. This intuition suggests that R(Lc) and N(Lo) are related
to the controllability and observability of the system, respectively. In particular, if Lc is
surjective, and Lo is injective (i.e. R(Lc) = Rn and N(Lo) = {0}), then the system is completely
controllable and completely observable, respectively. However, from a practical point of view,
the surjectiveness of Lc and injectiveness of Lo are difficult to verify, since R(Lc) and N(Lo)
are infinite-dimensional spaces.

Fortunately, from linear algebra, we know that:

R(Lc) = R(LcL
?
c)

N(Lo) = N(L?oLo)

Thus, instead of evaluating the dimensions of R(Lc) and N(Lo), we can instead attempt to
evaluate R(LcL

?
c) and N(L?oLo). This is easier, since LcL

?
c and L?oLo are simply n × n (semi-

positive definite) matrices. We call Wc ≡ LcL
?
c and W0 ≡ L?oLo the Controllability Grammian

and the Observability Grammian, respectively.
To evaluate Wc and Wo, we need to find suitable expressions for L?c and L?o. These can

be found using the original definition of the Hermitian adjoint of a vector. Let Hu denote the
Hilbert space inhabited by inputs in the range [t0, t1], and let u[t0,t1] ∈ Hu and v ∈ Rn be
arbitrarily given. Then:
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〈L?cv, u[t0,t]〉Hu = 〈v, Lcu[t0,t]〉Rn

= v?
∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

=

∫ t

t0

(B(τ)?Φ(t, τ)?v)?u(τ)dτ

=
〈
B(·)?Φ(t, ·)?v, u[t0,t]

〉
H

⇒ (L?cv)(·) = B(·)?Φ(t, ·)?v

Similarly, let Hy denote the Hilbert space inhabited by inputs in the range [t0, t1], and
let y[t0,t1] ∈ Hy and v ∈ Rn be arbitrarily given. Then:

〈L?o y[t0,t1], v〉Rn = 〈y[t0,t1], Lov〉Hy

=

∫ t

t0

y(τ)?(Lov)(τ)

=

∫ t

t0

y(τ)?C(τ)Φ(τ, t0)v dτ

=

(∫ t1

t0

Φ(τ, t0)?C(τ)?y(τ)

)?
v

=

〈∫ t1

t0

Φ(τ, t0)?C(τ)?y(τ)dτ, v

〉
Rn

⇒ L?0 y[t0,t1] =

∫ t1

t0

Φ(τ, t0)?C(τ)?y(τ)dτ

We thus have the following definitions.

Definition 5.10 (Controllability Grammian, Observability Grammian). For a time-
varying system R = [A(·), B(·), C(·), D(·)], recall that the state transition and response maps
as:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

y(t) = C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

Define the Controllability Grammian, denoted by Wc(t0, t1) : Rn → Rn and the Observability
Grammian, denoted by Wo(t0, t1) : Rn → Rn as:

Wc(t0, t) ≡ LcL
?
c =

∫ t

t0

Φ(t, τ)B(τ)B?(τ)Φ?(t, τ)dτ

Wo(t0, t) ≡ L?oLo =

∫ t

t0

Φ?(τ, t0)C?(τ)C(τ)Φ(τ, t0)dτ
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respectively.

Remark. By definition, Wc(t0, t1) = LcL
?
c and Wo(t0, t1) = LoL

?
o, so Wc(t0, t1) and Wo(t0, t1)

are both semi-positive definite.

Theorem 5.11 (Controllability of Linear Time-Variant Systems). For a time-varying
system R = [A(·), B(·), C(·), D(·)], the following statements are equivalent:

1. R is completely controllable (c.c.) on [t0, t1].

2. For each x0 ∈ Rn, there exists some input u[t0,t1] that steers (x0, t0) to (0, t1).

3. For each x1 ∈ Rn, there exists some input u[t0,t1] that steers (0, t0) to (x1, t1).

4. The mapping Lc : U[t0,t1] → Rn is surjective, i.e.:

R(Lc) = Rn

5. The Controllability Grammian Wc(t0, t1) is invertible for each t, i.e.:

rank(Wc(t0, t1)) = n

for each t. In fact, Wc(t0, t1) > 0.

Proof.
Fix t1, t0 such that t1 ≥ t0 ≥ 0, and arbitrarily x0, x1 ∈ Σ. Note that, if x1 = x(t), then:

x1 = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (5.1)

(1)⇔ (2)⇔ (3):

Note that the following are equivalent:

x1 = Φ(t, t0)x0 + Lcu(·)
0 = Φ(t, t0)

(
x0 − Φ−1(t, t0)x0

)
+ Lcu(·)

x1 − Φ(t, t0)x0 = Lcu(·)

Since x0, x1 can be any state in Σ, this demonstrates the equivalence of 1, 2, and 3.

(1)⇔ (4):

Since the state x0, x1 ∈ Σ in (5.1) are arbitrarily chosen, a necessary condition for
complete controllability is the surjectivity of R(Lc):

R(Lc) = Rn
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Intuitively, this is required for complete controllability, since x0, x1 ∈ Σ can be any vector in
Rn.

However, this is also sufficient, since if x1 and x0 are given at t1 and t0, respectively,
then there exists some y[t0,t1] such that:

x1 − Φ(t, t0)x0 = Lcu

A rearrangement of terms gives us (5.1).

(4)⇔ (5):

From linear algebra, R(LcL
?
c) = R(Wc), which establishes the equivalence of (4) and (5).

�

For linear time-invariant systems, we can provide an even more computationally efficient
method of determining the controllability and observability of a system. This involves defining
the observability matrix and controllability matrix of a system, as shown below.

Definition 5.12 (Controllability Matrix, Observability Matrix). Let a linear time-
invariant system D = (A,B,C,D) be given. Define the Controllability Matrix, denoted
by ΣC : Rn×nni and the Observability Matrix, denoted by ΣO : Rnno×n, as follows:

ΣC =
[
B AB · · · ABn−1

]
ΣO =


C
CA
...

CAn−1


Remark. Notice that:

R(ΣC) ≡ R
( [
B AB · · · An−1B

] )
= R(B) +R(AB) + · · ·+R(An−1B)

N(ΣO) ≡ N




C
CA
...

CAn−1




= N(C) ∩N(CA) ∩ · · · ∩N(CAn−1)

We are now ready to state a stronger version of the above theorem regarding controllability,
as it pertains to linear time-invariant systems.

Theorem 5.13 (Controllability of Linear Time-Invariant Systems). For a time-invariant
system R : ẋ = Ax+Bu, the following statements are equivalent:
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1. R is completely controllable (c.c.) on [t0, t1].

2. For each x0 ∈ Rn, there exists some input u[t0,t1] that steers (x0, t0) to (0, t1).

3. For each x1 ∈ Rn, there exists some input u[t0,t1] that steers (0, t0) to (x1, t1).

4. The mapping Lc : U[t0,t1] → Rn is surjective, i.e.:

R(Lc) = Rn

5. The Controllability Grammian Wc(t0, t1) ∈ Rn×n is invertible for each t, i.e.:

rank(Wc(t0, t1)) = n

for each t. In fact, Wc(t0, t1) > 0.

6. Wc(t0, t1) > 0, and, if σ(A) ∈ C−, then Wc(t0, t1) is the unique solution to the Lyapunov
equation:

AWc +WcA
? = −BB?

7. The Controllability matrix ΣC ∈ Rn×nni is of full row rank:

rank(ΣC) = rank
( [
B AB · · · An−1B

] )
= n.

8. For each s ∈ C, the matrix
[
sI − A B

]
, known as the Controllability Matrix Pencil

of (A,B), has full row rank, i.e.

rank
( [
sI − A B

] )
= n.

This is known as the Popov-Belovich-Hautus (PBH) test for controllability.
Since sI − A lacks full row rank if and only if s ∈ σ(A), the condition ”for each s ∈ C”
can be replaced by the condition ”for each s ∈ σ(A)” without any loss in generality.

9. For any polynomial p(s) of degree n, there exists some F ∈ Rni×n such that:

χA+BF (s) = p(s)

Proof.

(1)⇔ (2)⇔ (3)⇔ (4)⇔ (5):

See the proofs given for Theorem 5.11.

(5)⇔ (6)
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If (5) holds, then AWc + WcA
T = −BBT , with rank(Wc(t0, t1)) = n, so Wc(t0, t1) > 0.

Moreover, by the lemma preceding the Time-Varying Lyapunov Lemma (Lemma 4.48), Wc is
the unique solution to AWc +WcA

T = −BBT .
Conversely, if Wc(t0, t1) > 0, then rank(Wc(t0, t1)) = n.

(5)⇔ (7)

For time invariant systems, Φ(t1, τ) = e(t1−τ)A, so the Controllability Grammian becomes:

Wc(t0, t1) =

∫ t1

t0

e(t1−τ)ABB?e(t1−τ)A? dt

Now, observe the equivalence of the following statements, which establishes the desired result
by contradiction. Since Wc(t0, t1) ≥ 0:

Wc(t0, t1) =

∫ t1

t0

e(t1−τ)ABB?e(t1−τ)A? dτ > 0 is false,

⇐⇒∃x 6= 0 3 x?Wc(t0, t1)x =

∫ t1

t0

|x?e(t1−τ)AB|2 dτ = 0,

⇐⇒∃x 6= 0 3 x?eτAB = 0,∀τ ∈ [0, t1 − t0], (5.2)

⇐⇒∃x 6= 0 3 x?AkB = 0,∀k = 1, · · · , n− 1,

⇐⇒∃x 6= 0 3 x? ∈ LN(
[
B AB · · · An−1B

]︸ ︷︷ ︸
≡ΣC

)

⇐⇒ rank(
[
B AB · · · An−1B

]︸ ︷︷ ︸
≡ΣC

) < n, (5.3)

Since ΣC ∈ Rn×nni , we have ΣC ≤ n; this implies that exactly one of the statements
”rank(ΣC) < n” and ”rank(ΣC) = n” are true. The equivalence of the above statements thus
forms a proof by contradiction for the claim ”(5)⇔ (7)”.

(7)⇔ (8)

(7)⇒ (8) can be straightforwardly demonstrated via proof by contradiction. If (8) fails
to hold, then there exists some λ ∈ σ(A), with corresponding left eigenvector v? 6= 0, such that
v?B = 0. This implies that, for each k = 1, · · · , n− 1, we have:

v?AkB = λk(v?B) = 0

and thus:
v?ΣC = v?

[
B AB · · · An−1B

]
= 0,

contradicting (7).
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(8)⇒ (7) can also be shown via proof by contradiction, although not as straightforwardly.
Suppose that (7) fails to hold, i.e.:

rank(ΣC) = rank(
[
B AB · · · An−1B

]
) < n

We wish to establish that (8) fails to hold, by considering a matrix representation of the
Controllability Matrix Pencil

[
sI − A B

]
, that separates the controllable and uncontrollable

subspaces of A. Notice that since (5) fails to hold, there exist collections of vectors:

βΣC ≡ {v1, · · · , vk}
β′ ≡ {vk+1, · · · , vn}
β ≡ βΣC ∪ β′

= {v1, · · · , vk, vk+1, · · · , vn}
where k < n, and βΣC and β form ordered bases for R(ΣC) and Rn, respectively. To complete
the picture, let V ≡ span(β′). We thus have:

Rn = R(ΣC)⊕ V1

(Recall that ⊕ means direct sum.)
Now, notice that:

R(ΣC) = R(B) +R(AB) + · · ·+R(An−1B)

is an A-invariant subspace containing R(B). This allows us to simultaneously transform A into
a block-upper-triangular form, while reducing several rows of B to 0. In particular, if we let T
be the invertible square matrix whose columns are the vectors in the ordered basis B (placed
in the same order as they appear in B, then:

Ã ≡ T−1AT =

[
Ã11 Ã12

O Ã22

]
,

B̃ ≡ T−1B =

[
B̃1

O

]
,

In particular, the zero matrix block in Ã arises from the invariance of R(B) = span(ΣC),
whereas the zero matrix block in B̃ arises from the fact that, with respect to the ordered basis
B = BΣC ∪ B, only the first k coordinates of elements in R(B) can be nonzero.

Now, notice that:

rank
( [
sI − A B

] )
=rank

(
T
[
sI − Ã B̃

] [T−1 O
O I

])
=rank

( [
sI − Ã B̃

] )
=rank

([
sI − Ã11 −Ã12 B̃

O sI − Ã22 O

])
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This shows that
[
sI − A B

]
lacks full row rank (at least) whenever s ∈ σ(Ã22), i.e. (7) does

not hold.

(5)⇔ (9)

(See Lecture 20)
�

An analogous theorem exists for the equivalence of conditions that determine the observability
of the system.

Theorem 5.14 (Observability of Linear Time-Invariant Systems). For a time-invariant
system R : ẋ = Ax, y = Cx, the following statements are equivalent:

1. R is completely observable (c.o.) on [t0, t1].

2. The mapping Lo : U[t0,t1] → Rn is injective, i.e.:

N(Lc) = {0}

3. The Observability Grammian Wo(t0, t1) = (L?oLo)(t0, t1) ∈ Rn×n is invertible for each t,
i.e.:

rank(Wo(t0, t1)) = n

for each t. In fact, Wo(t0, t1) > 0.

4. Wo(t0, t1) > 0, and, if σ(A) ∈ C−, then Wo(t0, t1) is the unique solution to the Lyapunov
equation:

A?Wo +WoA = −C?C.

5. The Observability matrix ΣO ∈ Rnno×n is of full column rank:

rank(ΣO) = rank




C
CA
...

CAn−1


 = n.

6. For each s ∈ C, the matrix

[
sI − A
C

]
, known as the Observability Matrix Pencil of

(A,B), has full column rank, i.e.

rank

([
sI − A
C

])
= n.

This is known as the Popov-Belovich-Hautus (PBH) test for observability. Since
sI −A lacks full column rank if and only if s ∈ σ(A), the condition ”for each s ∈ C” can
be replaced by the condition ”for each s ∈ σ(A)” without any loss in generality.
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7. For any polynomial p(s) of degree n, there exists some L ∈ Rn×no such that:

χA+LC(s) = p(s)

Proof. The proof of this theorem can be demonstrated in a manner analogous to the proof
of Theorem 5.13. However, the results can also follow by observing the duality between
controllabiity and observability, a concept captured by the following theorem. �

Definition 5.15 (Adjoint System (Dual System)). The adjoint system (or dual system)
of the linear time-varying system:

Σ :

{
ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

is defined as:

Σ :

{
ẋ(t) = −A?(t)x(t)− C?(t)u(t)

y(t) = B?(t)x(t) +D?(t)u(t)

Note. Given a system S, the dual system of its dual system is S itself with a change of sign for
the state ([4], Chapter 2, Comment 125, pg. 27):

− ˙̃x(t) = A(t)
(
− x̃(t)

)
+B)(t)u(t),

ỹ(t) = C(t)
(
− x̃(t)

)
+D(t)u(t)

Theorem 5.16 (Properties of Adjoint Systems). Let Σ and Σ? be dual linear time-varying
systems. Define Φ(t, t0), Lc(t, t0), and Lo(t, t0) to be the state transition matrix, Controllability
Grammian, and Observability Grammian, of Σ, respectively, and define Φ(t, t0), Lc(t, t0), and
Lo(t, t0) similarly for Σ. Then:

1. Φ(t, t0) = Φ?(t0, t).

2. Lc(t0, t) = Φ?(t0, t)Lo(t0, t)Φ(t0, t).

3. Lo(t, t0) = Φ(t0, t)Lc(t0, t)Φ
?(t0, t).

It follows that Σ : (A,B,C,D) is observable if and only if Σ : (−A?,−C?, B?, D?) is
controllable.

Proof.

1. Recall that Φ(t, t0) and Φ(t, t0) are the unique time-dependent matrices satisfying:

d

dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I

d

dt
Φ(t, t0) = −A?(t)Φ(t, t0), Φ(t0, t0) = I
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Thus, to show that Φ(t, t0) = Φ?(t0, t), we must show that Φ?(t0, t) satisfies the second
differential equation and initial condition. We already know that Φ?(t0, t) = I; for the
differential equation, we retrace the solution to Discussion 5, Problem 6, as follows:

∵ I = Φ(t, t0)Φ(t0, t),

⇒ O =
d

dt
Φ(t, t0)Φ(t0, t) + Φ(t, t0)

d

dt
Φ(t0, t)

= A(t)Φ(t0, t)Φ(t0, t) + Φ(t, t0)
d

dt
Φ(t0, t)

= A(t) + Φ(t, t0)
d

dt
Φ(t0, t).

Rearranging terms, we have:

d

dt
Φ(t0, t) = −Φ(t0, t)A(t),

⇒ d

dt
Φ?(t0, t) = −A?(t)Φ?(t0, t).

where we have used the fact Φ(t, t0)−1 = Φ(t0, t) in the last step.

2. We have:

Lc(t0, t) =

∫ t

t0

Φ(t, τ)
(
− C?(τ)

)(
− C?(τ)

)?
Φ ?(t, τ)dτ

=

∫ t

t0

Φ?(τ, t)C?(τ)C(τ)Φ(τ, t)dτ

= Φ?(t0, t)

(∫ t

t0

Φ?(τ, t0)C?(τ)C(τ)Φ(τ, t0)dτ

)
Φ(t0, t)

= Φ?(t0, t)Lo(t0, t)Φ(t0, t)

3. We have:

Lo(t, t0) =

∫ t

t0

Φ ?(τ, t0)
(
B?(τ)

)?
B?(τ)Φ(τ, t0)dτ

=

∫ t

t0

Φ(t0, τ)B(τ)B?(τ) Φ?(t0, τ)dτ

= Φ(t0, t)

(∫ t

t0

Φ(t, τ)B(τ)B?(τ) Φ?(t, τ)dτ

)
Φ?(t0, t)

= Φ(t0, t)Lc(t0, t)Φ
?(t0, t)
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Since Φ(t0, t)Φ(t, t0) = I, Φ(t0, t) is invertible. Thus, Lc(t0, t) is of full rank if and only
if Lo(t0, t) is of full rank, and Lo(t0, t) is of full rank if and only if Lc(t0, t) is of full rank.
Part 5 of Theorem 5.13 therefore implies that Σ : (A,B,C,D) is observable if and only if
Σ : (−A?,−C?, B?, D?) is controllable..

�

This result allows us to intuitively (and, with a little work, rigorously) demonstrate
the equivalence of Theorem 5.13 and Theorem 5.14. The corollary itself establishes Part 3 of
Theorem 5.14, which states that a LTI system is observable if and only if its Obseravability
Grammian has full rank. Part 6 of Theorem 5.14, which states the PBH test for observability
also follows from the above corollary, by observing that the observability matrix pencil of an
LTI system (A,B,C): [

sI − A
C

]
is of full column rank, for each s ∈ C, if and only if the controllability matrix pencil of its
adjoint system (−A?,−C?, B?): [

sI + A? −C?
]
,

for each s ∈ C (here, we take D = D? = O in the definition of the adjoint system). Part 5 of
Theorem 5.14, which concerns the column rank of the observability matrix, follows similarly
from the above corollary.

Finally, in the event that the system is not completely controllable or completely observable,
it is reasonable to ask whether or not a subset of the entire state space is controllable or
observable. The following theorems address this concept (see Lecture 11 in Professor Tomlin’s
original notes).

Theorem 5.17. For a time-invariant system R : ẋ = Ax + Bu, and each fixed t0, t1 with
t0 < t1:

R(Wc[t0, t1]) = R(ΣC)

Proof. Since, for any linear map A : V → W , we have R(A) ⊕ N(A?) = V , we can instead
verify that N(W ?

c [t0, t1]) = N(ΣO
?).

Observe that, for each v ∈ Rn, the following statements are equivalent (i.e. for each
v ∈ Rn, they are either all true or all false):

v?Wc[t1, t0] = 0,

⇐⇒v?
[∫ t1

t0

e(t1−τ)ABB?e(t1−τ)A? dτ

]
v = 0,

⇐⇒
∫ t1

t0

|v?e(t1−τ)AB|2 dτ = 0,

⇐⇒v?e(t1−τ)AB = 0, ∀ t ∈ [t0, t1],

⇐⇒v?
[
B,AB, · · · , An−1B

]
= 0.
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The logic used in the forward direction of the above implications is straightforward; that of
the backward direction involves the Cayley-Hamilton Theorem and the fact that Wc[t0, t1] is
positive semidefinite. �

An analogous result holds for the observability of a system’s output.

Theorem 5.18. For each system R : ẋ = Ax, y = Cx, we have N(W0(t0, t1)) = N(ΣO).

The following theorem illustrates how R(ΣC) (= R(Wc[t0, t1])) can be used to find states
that are controllable in a system that is not completely controllable.

Theorem 5.19. For a time-invariant system R : ẋ = Ax + Bu, if x1, x2 ∈ ΣC, then there
exists an input u[t0,t1] that steers ẋ = Ax+Bu from (x0, t0) to (x1, t1).

Proof. Since x0, x1 ∈ R(Wc[t0, t1]) = R(Lc[t0, t1]), and R(Wc[t0, t1]) = R(ΣO) is A-invariant,
there exists some u[t0,t1], defined on [t0, t1], such that:

Lcu(·) = x1 − e(t−t0)Ax0,

⇒x1 = e(t−t0)Ax0 + Lcu(·)

= e(t−t0)Ax0 +

∫ t1

t0

e(t−τ)ABu(τ)dτ,

i.e. u[t0,t1] steers ẋ = Ax+Bu from (x0, t0) to (x1, t1).
�

Finally, we discuss the controllability of a system over different time intervals.

Theorem 5.20. Let R : ẋ = Ax+Bu be a time-invariant system, and suppose t0 ≤ t′0 < t′1 ≤ t1.
Then, if R is completely controllable on [t′0, t

′
1], it is completely controllable on [t0, t1].

Proof. Suppose R is completely controllable on [t′0, t
′
1]. Let x0, x1 be arbitrarily given. We will

show that a suitable input can be achieved by using zero input in the intervals [t0, t
′
0] and [t′1, t1],

i.e.:
u[t0,t′0] = u[t′1,t1] = 0

Solving the differential equation R : ẋ = Ax+Bu in the intervals [t0, t
′
0] and [t′1, t1], subject to

the boundary conditions x(t0) = x0, x(t1) = x1, we have:

ẋ = Ax+Bu = Ax

⇒ x(t) =

{
e(t−t0)Ax0, t ∈ [t0, t

′
0],

e(t−t1)Ax1, t ∈ [t′1, t1]

Now, since R is completely controllable on [t′0, t
′
1], there exists an input u[t′0,t

′
1] that steers the

system from (e(t−t0)Ax0, t
′
0) to (e(t′1−t1)Ax1, t

′
1). In summary, we have thus demonstrated a

sequence of three controls that steer the system as follows:

(x0, t0) −→ (e(t−t0)Ax0, t
′
0) −→ (e(t′1−t1)Ax1, t

′
1) −→ (x1, t1)

�
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Remark. The converse is not always true, i.e. a time-varying system that is controllable on a
time interval may not necessarily be controllable on a strict subset of that time interval.

Consider, as a counterexample, the time-varying (but ”piecewise time-invariant”) system:

ẋ = A(t)x+B(t)u, x(0) = x0.

where A(t) and B(t) are given by:

A(t) = 0, ∀ t ≥ 0,

B(t) =

{
0, t ∈ [0, 1),

1, t ≥ 1.

It is straightforward to see that, when t ≥ 0:

x(t) =

{
x0, t ∈ [0, 1),

x0 +
∫ t

1
u(τ)dτ, t ≥ 1,

Then, for each t ≥ 1, and arbitrarily fixed final state xf , the constant control:

u ≡ xf − x0

t− 1

will drive the system from (0, x0) to (t, xf ). Thus, the system is controllable on [0, t] for any
t > 1.

However, the system is clearly not controllable on the smaller interval [0, 1], since x =
x(0) regardless of our choice of input during that period of time.
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5.3 Lectures 16, 17 Discussion

Example (Discussion 11, Problem 2). Show that, for any linear map A : U → V , we have:

R(A?A) = R(A?)

Solution :
Below, we directly show that R(A?A) ⊂ R(A?) and R(A?) ⊂ R(A?A). Alternatively,

one can also show that N(AA?) = N(A?), and then invoke the fact that V = R(A)
⊥
⊕ N(A?)

and U = R(A?)
⊥
⊕ N(A), and demonstrate that the orthogonal complement subspace of any

fixed subspace is unique.
” ⊂ ” : Suppose u ∈ R(A?A) ⊂ U . Then there exists some u′ ∈ U such that

A?Au′ = u. This implies that u is the image of Au′ through A?, so u ∈ R(A?).

” ⊃ ” : Suppose u ∈ R(A?). Then there exists some v ∈ V such that u = A?v.

Since V = R(A)
⊥
⊕N(A?), there exists some v1 ∈ R(A) and v2 ∈ N(A?) such that v = v1 + v2.

Moreover, since v1 ∈ R(A), there must exist some u′ ∈ U such that v1 = Au′. Combining these
facts, we have:

u = A?v = A?(v1 + v2) = A?Au′ + A?v2 = A?Au′.

Thus, u ∈ R(A?A).

Example (Discussion 11, Problem 3). Consider the controllability and observability Grammians
Wc,Wo of a linear time-invariant system (A,B,C) over the time period [0, T ]. Prove that the
σ(WcW0) is invariant with respect to the similarity transformation:

(A,B,C) → (TAT−1, TB,CT−1),

where T is non-singular.

Solution:
We have, for the Controllability Grammian of the transformed system:

Wc[0, t] =

∫ t

0

eTAT
−1(t−τ) · TB · (TB)? · e(TAT−1)?(t−τ) dτ

= T

(∫ t

0

eA(t−τ)T−1 · TB ·B?T ? · (T ?)−1eA
?(t−τ) dτ

)
T ?

= T

(∫ t

0

eA(t−τ)BB?eA
?(t−τ) dτ

)
T ?

= T ·Wc[0, t] · T ?

Similarly, we can show that:

Wo[0, t] = (T ?)−1 ·Wc[0, t] · T−1

Thus, we have:
WcWo = T (WcWo)

−1T−1,

so σ(WcWo = σ(WcWo).
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Example (Discussion 11, Problem 4). A system (A,B) is one with dynamics of the form:

ẋ = Ax+Bu

For each of the following statements, provide either a proof or a counterexample.

1. Suppose the system (A,B) is controllable. Is the system (A2, B) controllable?

2. Suppose the system (A2, B) is controllable. Is the system (A,B) controllable?

Solution :

1. No. As a counterexample, let:

A2 =

[
0 1
0 0

]
, B =

[
0 1

]
Using the PBH test for controllability, we have:[

sI − A B
]

=

[
s −1 0
0 s 1

]
[
sI − A2 B

]
=

[
s 0 0
0 s 1

]
For each s ∈ C, the controllability matrix pencil

[
sI − A B

]
has full row rank; however,

when s = 0, the matrix pencil
[
sI − A2 B

]
drops rank. We have thus established a

counterexample such that (A,B) is controllable, but (A2, B) is not.

2. The statement is true. To see this, observe that if (A2, B) is controllable, then:

rank(
[
B A2B · · · A2(n−1)B

]
) = n.

However, by the Cayley-Hamilton Theorem, for each k ∈ N, the matrix Ak can be
expressed as a linear combination of {I, A, · · · , An−1B}, so:

R(
[
B A2B · · · A2(n−1)B

]
) ⊂ R(

[
B AB · · · An−1B

]
),

⇒ n = rank(
[
B A2B · · · A2(n−1)B

]
) ≤ rank(

[
B AB · · · An−1B

]
)

But
[
B AB · · · An−1B

]
∈ Rn×nni , so its rank is at most n; the above inequality thus

implies that its rank is in fact n. Thus, it has full row rank, and so (A,B) is controllable.

Example (Discussion 11, Problem 5). Let L1 = (A1, b1, c
T
1 ) and L2 = (A2, b2, c

T
2 be completely

controllable and completely observable single-input-single-output (SISO) systems. Discuss the
controllability and observability of the systems:

L3 = (A3, B3, C3) =

([
A1 0
0 A2

]
,

[
b1

b2

]
,
[
cT1 cT2

])
,

L4 = (A4, B4, C4) =

([
A1 0
0 A2

]
,

[
b1 0
0 b2

]
,

[
cT1 0
0 cT2

])
for the following two cases:
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1. A1, A2 have no common eigenvalues.

2. A1, A2 have at least one common eigenvalues.

Solution :
We apply the PBH test for controllability and observability to both L3 and L4. Here,

we assume A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 :

L3 :
[
sI − A B3

]
=

[
sI − A1 0 b1

0 sI − A2 b2

]
,

[
sI
C3

]
=

sI − A1 0
0 sI − A2

cT1 cT2

 ,
L4 :

[
sI − A B4

]
=

[
sI − A1 0 b1 0

0 sI − A2 0 b2

]
,

[
sI
C4

]
=


sI − A1 0

0 sI − A2

cT1 0
0 cT2

 ,
Solution :

We discuss only the controllability of L3 and L4. Analogous results that hold for
observability can be found through duality.

1. L3:

Observe the equivalence of the following statements:

L3 is not controllable

⇔∃s ∈ C, αT = (α1, · · · , αn1), βT = (β1, · · · , βn), not both 0, such that:

0 =
[
αT βT

] [
sI − A B

]
=
[
αT (sI − A1) βT (sI − A2) αT b1 + βT b2

]
If α = 0 or β = 0, the other vector must be 0; in this case, the first inequality can be
reduced to rank(

[
sI − A b1

]
) < n, or rank(

[
sI − A b2

]
) < n, contradicting the fact

that L1 and L2 are both controllable. Thus, α 6= 0 and β 6= 0.

In summary, L3 is uncontrollable if and only if there exist nonzero vectors α ∈ Rn1 and
β ∈ Rn2 such that:

αT (sI − A1) = 0,

βT (sI − A2) = 0,

αT b1 + βT b2 = 0.

This, in turn occurs if and only if σ(A1)∩ σ(A2) 6= φ. Observe that, if this holds, we can
always scale αT and βT to ensure the third equality holds.

This result implies that, despite the complete controllability of L1 and L2, it is possible
for L3 to not be completely controllable, as long as A1, A2, b1, b2 satisfy certain criteria.
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These criteria can be used to explicitly used to construct a counterexample; for instance,
we could consider the rather trivial case:

A1 = A2 = 0, b1 = b2 = 1

where n1 = n2 = 1.

2. Repeating the above procedure, we arrive at the following four equalities instead:

αT (sI − A1) = 0,

βT (sI − A2) = 0,

αT b1 = 0,

βT b2 = 0,

where α and β cannot both be 0. Again, the above logic can be used to argue that α
and β, in fact, must both be nonzero. The first and third statements in the above list of
equalities thus imply that L1 is uncontrollable, while the second and fourth imply that L2

is uncontrollable; both of these conclusions are contradictions to the assumptions given
in the problem.

It follows that if L1 and L2 are completely controllable, the same must be true for L4.

Example (Discussion 11, Problem 6). Consider the control system:[
ẋ1

ẋ2

]
=

[
−2 1
0 −1

] [
x1

x2

]
+

[
0
1

]
u(t)

Find some input u : [0, 1] → R that takes the zero-state to (1, 1) at time 1. (Hint: Try
u(t) = a1e

t + a2e
2t.

Solution:

Taking the (single-sided) Laplace transform of the two differential equations, we have:

X1(s) =
X2(s)

(s+ 2)

U(s)

(s+ 1)(s+ 2)
,

X2(s) =
U(s)

(s+ 1)
.

where X1(s), X2(s), U(s) represent the Laplace transform of x1(t), x2(t), u(t) respectively. Since
u(t) is a linear combination of et and e2t, its Laplace transform must be of the form:

U(s) =
a1s+ a0

(s− 1)(s− 2)
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Substituting into the given differential equations, and applying Heaviside’s method of partial
fraction decomposition, we have:

X1(s) =
a1s+ a0

(s+ 1)(s− 1)(s− 2)

=
−1

6
a1 + 1

6
a0

s+ 1
+
−1

2
a1 − 1

2
a0

s− 1
+

2
3
a1 + 1

3
a0

s− 2

X2(s) =
a1s+ a0

(s+ 1)(s+ 2)(s− 1)(s− 2)

=
−1

6
a1 + 1

6
a0

s+ 1
+

1
6
a1 − 1

12
a0

s+ 2
+
−1

6
a1 − 1

6
a0

s− 1
+

1
6
a1 + 1

12
a0

s− 2

Taking the inverse Laplace transform, we have:

x1(t) =

(
−1

6
a1 +

1

6
a0

)
e−t +

(
−1

2
a1 −

1

2
a0

)
et +

(
2

3
a1 +

1

3
a0

)
e2t

x2(t) =

(
−1

6
a1 +

1

6
a0

)
e−t +

(
1

6
a1 −

1

12
a0

)
e−2t +

(
1

6
a1 −

1

6
a0

)
et +

(
1

6
a1 +

1

12
a0

)
e2t

Substituting t = 1 and collecting terms, we have:

1 =

(
−1

6
e−1 − 1

2
e+

2

3
e2

)
a1 +

(
1

6
e−1 − 1

2
e+

1

3
e2

)
a0

≈ 3.506a1 + 1.165a0,

1 =

(
−1

6
e−1 +

1

6
e−2 +

1

6
e+

1

6
e2

)
a1 +

(
1

6
e−1 − 1

12
e−2 − 1

6
e+

1

12
e2

)
a0

≈ 1.646a1 + 0.213a0.

Rewriting the above equations in a matrix form, we find that:[
a1

a0

]
≈
[
3.506 1.165
1.646 0.213

]−1 [
1
1

]
=

[
−0.182 0.995
1.406 −2.995

] [
1
1

]
=

[
0.813
−1.589

]
Substituting back to U(s), we have:

U(s) =
a1s+ a0

(s− 1)(s− 2)
=
−a1 − a0

s− 1
+

2a1 + a0

s− 2
=

0.776

s− 1
+

0.038

s− 2
,

⇒u(t) = 0.776et + 0.038e2t

Remark.

1. The initial conditions (x1, x2)(0) = (0, 0) and final conditions (x1, x2)(1) = (1, 1) technically
imply that we need to solve a system of four linear equations. However, by taking the
(single-sided) Laplace transform, we automatically take into account the initial conditions,
leaving us with the final conditions. This is the reason we only required two variables,
a1, and a2.



5.3. LECTURES 16, 17 DISCUSSION 181

2. In fact, other inputs, such as those of the form u(t) = a1t+ a0 or u(t) = a1e
t + a2t would

also suffice.
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5.4 Lecture 18

In this section, we will discuss observers and least L2-norm inputs.

Observers:

Consider the following linear time-variant system without inputs:

ẋ = A(t)x,

y = C(t)x,

In the following discussion, we assume that W0[t0, t1] is completely observable, i.e. W−1
0 [t0, t1] is

well-defined. In the case that this is not true, we can simply replace W−1
0 [t0, t1] with W †

0 [t0, t1],
the pseudo-inverse of W0[t0, t1] (see, for instance [5], Section 6.7, pgs. 413-417 for details).

By the definition of the observability map:

y(·) = L0x0 = C(·)Φ(·, t0)x0.

The minimum least-square estimate of x0 from y0 is thus:

x0 =
(
L?0[·, t0] · L0[·, t0]

)−1
L?0[·, t0])y(·)

= W−1
0 [t0, t] ·

∫ t

t0

Φ?(τ, t0)C?(τ)y(τ)dτ

Define x̂(t) to be the optimal estimate of x(t) based on {y(τ) : t0 ≤ τ ≤ t}. Then:

x̂(t0) = W−1
0 [t, t0]L?0[t, t0]y(·)

⇒ x̂(t) = Φ(t, t0)W−1
0 [t, t0]L?0[t, t0]y(·)

Below, we wish to establish a recursive relation for x̂(t), to characterize the difference between
the time evolution of the system state x(t) and that of the optimal estimate x̂(t). Applying the
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product rule for differentiation, we have:

d

dt
x̂(t) = A(t)Φ(t, t0)W−1

0 [t, t0] · L?0[t, t0]y(·)

+ Φ(t, t0)

(
d

dt
W−1

0

)
[t, t0] · L?0[t, t0]y(·)

+ Φ(t, t0)W−1
0 [t, t0]Φ?(t, t0)C?(t)y(t)

= A(t)x̂(t)

+ Φ(t, t0)
(
−W−1

0 Ẇ0W
−1
0

)
[t, t0] · L?0[t, t0]y(·)

+ Φ(t, t0)W−1
0 [t, t0]Φ?(t, t0)C?(t)y(t)

= A(t)x̂(t)

− Φ(t, t0)(W−1
0 [t, t0] · Φ?(t, t0)C?(t)C(t) Φ(t, t0) ·W−1

0 [t, t0]) · L?0[t, t0]y(·)︸ ︷︷ ︸
= x̂(t)

+ Φ(t, t0)W−1
0 [t, t0]Φ?(t, t0)C?(t)y(t)

= A(t)x̂(t) + Φ(t, t0)W−1
0 [t, t0]Φ?(t, t0)︸ ︷︷ ︸

P (t): Kalman Filter gain

C?(t)
(
y(t)− C(t)x̂(t)

)︸ ︷︷ ︸
observed error

In other words, the optimal state estimate evolves with a rate of change differing from that of the
original system by an amount proportional to the state estimation error. This proportionality
is described by the Kalman Filter gain P (t), a positive semi-definite matrix.

The evolution of P (t) can be characterized as follows:

Ṗ (t) = A(t)P (t) + P (t)A?(t)

− Φ(t, t0)W−1
0 [t, t0]Φ?(t, t0)C?(t)C(t)Φ(t, t0)W−1

0 [t, t0]Φ?(t, t0)

= A(t)P (t) + P (t)A?(t)− P (t)C?(t)C?(t)C(t)P (t)

Notice that since W0[t, t0] = 0, the Kalman filter gain is, in fact, not well-defined at t = 0.
Thus, instead of directly observing the evolution of P (t), we instead observe the evolution of
Q(t) ≡ P−1(t):

Q̇(t) = −Q(t)A(t)− A?(t)Q(t) + C?(t)C(t)

where Q(0) = 0, since W0[t, t0] = 0.
If there are inputs to the linear system, we simply subtract the effect of the input on the

system from the total observation:

y(t) = C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

⇒ z(t) ≡ y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ −D(t)u(t)

= C(t)Φ(t, t0)x0
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The above analysis follows; we simply replace each (total observation) y(t) with (observation
characterizing the evolution of x(t)) z(t).

Least L2 norm input to steer from x0 to x1:

Consider the linear time-variant dynamical system:

ẋ(t) = A(t)x+B(t)u,

y(t) = C(t)x+D(t)u.

We wish to solve for the optimal control, in the least L2-norm sense, that drives the system
from (x0, t0) to (x1, t1):

x(t1) = Φ(t1, t0)x(t0) +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ

= Φ(t1, t0)x(t0) + Lc[t, t0]u(·)
⇒ Lc[t, t0]u(·) = x1 − Φ(t1, t0)x0

In the event that Lc is not invertible, the (unique) optimal solution for u(·) must lie in N(Lc)
⊥ =

R(L?c), i.e. there must exist some w ∈ Rn such that L?c [t, t0]w = u(·). We thus have:

(LcL
?
c)[t, t0]w0 = x1 − Φ(t1, t0)x0

⇒w0 =
(
LcL

?
c

)−1
[t, t0]

(
x1 − Φ(t1, t0)x0

)
⇒u(·) = L?c [t, t0]

(
LcL

?
c

)−1
[t, t0]

(
x1 − Φ(t1, t0)x0

)
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5.5 Lecture 19

In Lecture 17, we established that a linear time-invariant system (A,B,C,D), with n-dimensional
state space Σ, is completely controllable if and only if:

R(ΣC) ≡ R(
[
B AB · · · An−1B

]
) = Rn

and completely observable if and only if:

N(ΣO) ≡ N




C
CA
...

CAn−1


 = {0}

We now wish to quantitatively investigate whether a linear time-invariant system (A,B,C,D)
can be partially controllable or observable if it is not completely so.

In the most general case, it is possible that (A,B,C,D) is neither completely controllable
nor completely observable. In this case, we wish to categorize states as either ”controllable,”
”observable,” both, or neither. To that end, consider the definitions below.

Definition 5.21 (Reachable from 0, Reachable, Unobservable, Indistinguishable
States).

1. Given an initial time and state (x0, t0), the state x1 is reachable from 0 on [t0, t1] are
those for which there exists some input u(·)[t0,t1] such that:

x1 = Lc[t0, t1]u(·),

i.e. x1 ∈ R(ΣC).

2. Given an initial time and state (x0, t0), the state x1 is reachable on [t0, t1] are those for
which there exists some initial state x0 and input u(·)[t0,t1] such that:

x1 = Lc[t0, t1]u(·) + e(t−t0)Ax0,

i.e. x1 ∈ R(ΣC) + e(t−t0)Ax0.

3. Given initial and final times t0, t1, respectively, the state x0 is said to be unobservable
at t1 from (x0, t0) if the corresponding zero input response is 0, i.e.:

L0[t0, t1]x0 = 0

i.e. x0 ∈ N(ΣO).

4. Given initial and final times t0, t1, respectively, the states x01 and x02 are said to be
indistinguishable at t1 from (x0, t0) if the corresponding zero input responses are the
same, i.e.:

L0[t0, t1]x01 = L0[t0, t1]x02,

i.e. x02 ∈ N(ΣO) + x01.
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Next, we wish to establish certain properties of controllable and observable subspaces—
namely, the fact that they are A-invariant.

Theorem 5.22. Given a linear time-invariant dynamical system (A,B,C,D):

1. R(ΣC) is the smallest A-invariant subspace of Σ that contains R(B).

2. N(ΣO) is the largest A-invariant subspace of Σ that contains N(C).

Proof.

1. There are four claims to verify:

• R(ΣC) is a subspace of Σ.

• R(ΣC) contains R(B).

• R(ΣC) is A-invariant.

• R(ΣC) is the smallest subspace of Σ that satisfies the above two properties, i.e. any
other subspace satisfying the above properties contains R(ΣC).

The first two claim are true by the definition R(ΣC = R(B)+R(AB)+· · ·+R(An−1B).

To verify the third claim, let us adopt the following notation, for any mapping A :
V → W and subset S ⊂ V :

A(S) ≡ {Ax|x ∈ S} = R(A|S)

The third claim essentially states that A(R(ΣC)) ⊂ R(ΣC). This follows from the fact
that:

A(R(B)) ≡ R(AΣC)

=
[
R(AB) R(A2B) · · · R(AnB)

]
⊂
[
R(B) R(AB) · · · R(An−1B)

]
(5.4)

⊂
[
R(B) R(AB) R(A2B) · · · R(An−1B)

]
(5.5)

= R(B),

where (5.5) follows from Cayley-Hamilton Theorem, which implies that An is a linear
combination of I, B, · · · , An−1B. This in turn implies that:

R(AnB) ⊂
[
R(B) R(AB) R(A2B) · · · R(An−1B)

]
= R(B)

It remains to demonstrate the fourth statement. Let V be any A-invariant subspace of Σ
that contains R(B). Then, since V is A-invariant, it must also contain:

Ak(R(B)) = R(Ak(B))

for any k ∈ N. It thus contains:

R(ΣC) = R
( [
B AB · · · An−1B

] )
,

completing the proof.
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2. Again, we have four statements to verify:

• N(ΣO) is a subspace of Σ.

• N(ΣO) contains N(C).

• N(ΣO) is A-invariant.

• N(ΣO) is the largest subspace of Σ that satisfies the above two properties, i.e. any
other subspace satisfying the above properties must be contained in N(ΣO).

Again, the first two claims follows from the definition of N(ΣO):

N(ΣO) = N(C) ∩N(CA) ∩ · · · ∩N(CAn−1)

To show that the third claim holds, suppose x ∈ N(ΣO). Then:

Cx = CAx = · · · = CAn−1x = 0,

⇒C(Ax) = C(A2x) = · · · = CAnx = 0,

i.e. Ax ∈ N(ΣO), since, by the Cayley-Hamilton Theorem, An is a linear combination of
I, A, · · · , An−1. This shows that A(N(ΣO)) ⊂ N(ΣO), i.e. N(ΣO) is A-invariant.

To verify the fourth claim, let W be any A-invariant subspace of Σ that contains
N(C). Thus, C(W ) = {0}, and since W is A-invariant, i.e. Ak(W ) ⊂ W for each k ∈ N,
we have:

C(AkW ) ⊂ C(W ) = {0},

i.e. W ⊂ N(CAk) for each k ∈ N. Thus:

W ⊂ N(A) ∩N(CA) ∩ · · · ∩N(CAn−1 = N(ΣO),

completing the proof.

�

The above proof allows us to decompose the state space Σ according to whether the
states are reachable from 0, controllable, both, or neither. Now, let us define:

ΣC ≡ R(ΣC)

ΣO′ ≡ N(ΣO)

we have ΣC 6= Rn and ΣO′ 6= {0}, so there exist non-zero subspaces of the state space Σ,
denoted as ΣC′ ,ΣO (not unique), such that:

Σ = ΣC + ΣC′ = ΣO′ + ΣO,

Intuitively speaking, ΣC ,ΣC′ ,ΣO′ ,ΣO correspond to the controllable, uncontrollable, observable,
and unobservable subspaces of the state space, respectively.
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Although the state subspaces ΣC ≡ R(O) and ΣO′ ≡ N(ΣO) are uniquely given by the
system parameters A,B,C,D, the state subspaces ΣC′ and ΣO are not. This is because, while
it is indeed true that any state in ΣC ,ΣC′ ,ΣO′ ,ΣO would be controllable from 0, uncontrollable
from 0, observable, and unobservable on [t0, t1], respectively, it is not true that states uncontrollable
from 0 are restricted to ΣC′ , nor is it true that the observable states are restricted to ΣO. This,
in turn, is because the sum of a controllable-from-0 and an uncontrollable-from-0 state is a
state that is not controllable from 0; similarly, the sum of an unobservable and an observable
state gives an observable state (as can be verified by substituting into the above definitions).

Now, we divide the state space Σ into subspaces based on controllability and observability:

ΣCO = ΣC ∩ ΣO,

ΣCO′ = ΣC ∩ ΣO′ ,

ΣC′O = ΣC′ ∩ ΣO,

ΣC′O′ = ΣC′ ∩ ΣO′ ,

where the subscripts C,O,C ′, O′ indicate that the subspace is controllable, observable, uncontrollable,
or unobservable, respectively. Among these four subspaces, however, only ΣCO′ = ΣC ∩ ΣO′ is
uniquely defined. However, regardless of our choice of ΣCO,ΣC′O, and ΣC′O′ , we always have:

Σ = ΣCO ⊕ ΣCO′ ⊕ ΣC′O ⊕ ΣC′O′

Below, we find suitable matrix representations for the parameters of the systems dynamics,
A,B,C,D, to illuminate the controllability and observability of the system.

Kalman Decomposition Theorem

Let BCO,BCO′ ,BC′O,BC′O′ be ordered bases for ΣCO,ΣCO′ , ΣC′O,ΣC′O′ , respectively.
Then:

BC ≡ BCO ∪ BCO′ ,
BO′ ≡ BCO′ ∪ BC′O′ ,
B ≡ BCO ∪ BCO′ ∪ BC′O ∪ BC′O′ ,

with the union taken in that order, are ordered bases for ΣC , ΣO′ , and Σ, respectively.
Let [A]B, [B]B, and [C]B be the matrix representations of A,B,C, respectively, with

respect to the ordered basis B. Since ΣC ≡ R(ΣC) is A-invariant, the 2nd Representation
Theorem (Theorem 4.10) implies that these matrix representations are of the form:

[A]B =


A11 A12 A13 A14

A21 A22 A23 A24

O O A33 A34

O O A43 A44

 , [B]B =


B1

B2

O
O

 ,
[C]B =

[
C1 C2 C3 C4

]
,
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Similarly, since ΣO′ ≡ N(ΣO) is A-invariant, these matrix representations must also be of the
form:

[A]B =


A11 O A13 O
A21 A22 A23 A24

A31 O A33 O
A41 A42 A43 A44

 , [B]B =


B1

B2

B3

B4

 ,
[C]B =

[
C1 O C3 O

]
,

Combining the above two facts, we have:

[A]B =


A11 O A13 O
A21 A22 A23 A24

O O A33 O
O O A43 A44

 , [B]B =


B1

B2

O
O

 ,
[C]B =

[
C1 O C3 O

]
,

The controllability and observability of these four subspaces can be expressed using the
following diagrams:
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Finally, we will show that the transfer function of a system only depends on the subspace
of the state space that is both observable and controllable. However, to do so, we must first
establish the following formula regarding the inverse of block-upper-triangular matrices. We
invoke a simplified case of Schur Decomposition.

Lemma 5.23 (Schur Complement, Simplified Form). Consider A,B ∈ R(n+k)×(n+k):

A =

[
A11 A12

O A22

]
, B =

[
B11 O
B21 B22

]
,

where A11, B11 ∈ Rn×n, A12 ∈ Rn×k, B21 ∈ Rk×n, and A22, B22 ∈ Rk×k. If A11 and A12 are
invertible, then so is A, and:

A−1 =

[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

]
, B−1 =

[
B−1

11 O
−B−1

22 B21B
−1
11 B−1

22

]
(5.6)

Proof. We can straightforwardly verify that (5.6) gives the correct expression for the left inverse
of A, as shown below:[

A−1
11 −A−1

11 A12A
−1
22

0 A−1
22

] [
A11 A12

O A22

]
=

[
In O
O Ik

]
= In+k.

Since A is a square matrix, the existence of its left inverse implies that its right inverse must
also exist, and equal its left inverse.

For B, we simply take the transpose of A, the apply the equation derived for A−1.

�

We are now ready to show that the transfer function of a system only depends on the
subspace of the state space that is both observable and controllable.
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Theorem 5.24. Consider an LTI system (A,B,C) with dynamics:

ẋ = Ax+Bu,

y = Cx

and Kalman decomposition:

[A]B =


A11 O A13 O
A21 A22 A23 A24

O O A33 O
O O A43 A44

 , [B]B =


B1

B2

O
O

 ,
[C]B =

[
C1 O C3 O

]
,

Then the transfer function of (A,B,C) is:

H(s) ≡ C(sI − A)−1B = C1(sI − A11)−1B1

Proof. First, we observe that change of coordinates does not affect the controllability, observability,
or transfer function of a system. Thus, it suffices to verify that

[C]B(sI − [A]B)−1[B]B = C1(sI − A11)−1B1

Define K(s) = (sI−[A]B)−1. Since Schur Decomposition implies that the inverse of an invertible
block-upper-triangular (respectively, block-lower-triangular) matrix must also be block-upper-
triangular (respectively, block-lower-triangular), K must have a form similar to A, i.e.:

K =


K11 O K13 K14

K21 K22 K23 K24

O O K33 O
O O K43 K44


Thus, we have:

H(s) = [C]B(sI − [A]B)−1[B]B = [C]BK(s)[B]B

=
[
C1 O C3 O

] 
K11 O K13 K14

K21 K22 K23 K24

O O K33 O
O O K43 K44

 (s)


B1

B2

O
O


= C1(sI − A11)−1B1

where we have again used the Schur Complement to show that K11(s) = (sI − A11)−1.
�

We conclude our discussion by pointing out several important properties of the Kalman
canonical form.
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Theorem 5.25.

1. Suppose a system R : ẋ = Ax + Bu has controllability matrix ΣC with rank nc < n, and
Kalman decomposition of the form:

[A]B =

[
A11 A12

O A22

]
, [B]B =

[
B1

O

]
where B is an ordered basis for Rn, the first nc columns of which form a basis for ΣC.
Then (A11, B1) is completely controllable.

2. Suppose a system R : ẋ = Ax, y = Cx has observability matrix ΣO with rank no < n, and
Kalman decomposition of the form:

[A]B =

[
A11 O
A21 A22

]
, [C]B =

[
C1 O

]
where B is an ordered basis for Rn, the last no columns of which form a basis for ΣO.
Then (A11, C1) is completely observable.

Proof.

1. Let T ∈ Rn be the (invertible) matrix consisting of the columns of B in the same order.
Then:

[A]B = V −1AV, [B]B = V −1B

Now, observe the following sequence of equalities:

rank
( [
B1 A11B1 · · · Anc−1

11 B1

] )
= rank

( [
B1 A11B1 · · · Anc−1

11 B1 Anc11B1 · · · An−1
11 B1

] )
= rank

([
B1 A11B1 · · · Anc−1

11 B1 Anc11B1 · · · An−1
11 B1

O O · · · O O · · · O

])
= rank

( [
[B]B [A]B[B]B · · · [A]n−1

B [B]B
] )

= rank
(
V
[
[B]B [A]B[B]B · · · [A]n−1

B [B]B
] )

= rank
( [
B AB · · · An−1B

] )
= nc

The first equality follows from the Cayley-Hamilton theorem; since A11 ∈ nc × nc, the
columns of {Anc11B, · · · , An−1

11 B} are all linear combinations of the columns of {B,AB, · · · , Anc−1B}.
Thus, adding these additional columns will not affect the (overall) column rank. The
second equality follows from the fact that the row rank of a matrix remains the same if
extra rows of zero row vectors are added. The second-to-last equality follows from the
fact that multiplication with an invertible matrix does not change rank.
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2. This portion of the proof can be demonstrated similarly, or shown by considering the
adjoint system of R.

�

Corollary 5.26.

1. Here, we use the same notation used in Part a) of the previous theorem. Then the
controllability matrix pencil: [

sI − A B
]

lacks full row rank if and only if s ∈ σ(A22). For this reason, the eigenvalues in A22 are
thus called the uncontrollable modes of the system.

2. Here, we use the same notation used in Part b) of the previous theorem. Then the
observability matrix pencil: [

sI − A
C

]
lacks full column rank if and only if s ∈ σ(A22). For this reason, t The eigenvalues in A22

are thus called the unobservable modes of the system.

Proof.

1. By retracing the proof of the above theorem, we have:

rank
( [
sI − A B

] )
= rank

(
V
[
sI − [A]B [B]B

] )
= rank

( [
sI − [A]B [B]B

] )
= rank

([
sI − A11 −A12 B1

O sI − A22 O

])
Since (A11, B1) is completely controllable,

[
sI − A11 B1

]
has full row rank for each s ∈ C,

and thus so does
[
sI − A11 −A12 B1

]
, since adding additional elements to each row of[

sI − A11 B1

]
does not change their linear independence (so long as these extra elements

are added in the same relative positions, which, in this case, they are). Thus,
[
sI − A B

]
loses row rank if and only if sI − A22 loses row rank, i.e. if and only if s ∈ σ(A22).

2. This portion of the proof can be demonstrated similarly, or shown by considering the
adjoint system of R.

�
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5.6 Lecture 20

Definition 5.27 (Stabilizable). The linear time-invariant system (A,B) is called stabilizable
if all uncontrollable modes are already stable, i.e. if all unstable modes are controllable. Mathematically,
we have:

rank
( [
sI − A B

] )
for each s ∈ σ(A) ∩ C+.

Definition 5.28 (Detectable). The linear time-invariant system (A,C) is called detectable if
all unobservable modes are already stable, i.e. if all unstable modes are observable. Mathematically,
we have:

rank

([
sI − A
C

])
for each s ∈ σ(A) ∩ C+.

Definition 5.29. Two systems R and R, with states represented by x and x, respectively, are
said to be equivalent if there exists some:

R :

{
ẋ = T−1ATx+ T−1Bu,

y = CTx+Du,
,

R :

{
ẋ = Ax+Bu,

y = Cx+Du,
.

The systems R and R′ can be considered the same system, subject to the change of basis x = Tx
in the state space.

Proposition 5.30 (Eigenvalue Placement by State Feedback). Consider the system R :
(A,B), given by:

ẋ = Ax+ bu

where A ∈ Rn×n, b ∈ Rn and uinR, i.e. this is a single-input-single output (SISO) system.
Then the following statements are equivalent:

1. (A, b) is completely controllable.

2. There exists a matrix representation of A in the controllable canonical form, i.e. there
exists some invertible T ∈ Rn×n such that:

Ã = T−1AT =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αn −αn−1 −αn−2 · · · −α1


, b̃ = T−1b =



0
0
0
...
0
1


,
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where α1, α2, · · · , αn are coefficients that appear in the characteristic polynomial of A and Ã,
i.e.:

χA(s) = sn + α1s
n−1 + · · ·+ αn−1s+ αn

Proof.

” ⇒ ” : Suppose (A, b) is completely controllable. We will demonstrate the existence
of T by implicit construction, i.e. we will explore the form that T must satisfy, in terms of A
and b, if it exists.

From the controllable canonical form of Ã, and Ã = T−1AT , b = Ten, we have:

Ãen = en−1 − α1en,

Ãen−1 = en−2 − α2en,
...

Ãe2 = e1 − αn−1en,

T b̃ = b

⇒



Ab = Ten−1 − α1b,

ATen−1 = Ten−2 − α2b,
...

ATe2 = Te1 − αn−1b,

Ten = b

⇒



Ten = b,

Ten−1 = (A+ α1I)b,

Ten−2 = ATen−1 + α2b = A2b+ α1Ab+ α2b,
...

T e1 = ATe2 + αn−1b = An−1b+ α1A
n−2b+ · · ·+ αn−1b,

⇒T =
[
b Ab · · · An−1b

]︸ ︷︷ ︸
≡ΣC



αn−1 αn−2 · · · α2 α1 1
αn−2 αn−3 · · · α1 1 0
αn−3 αn−4 · · · 1 0 0
...

... . .
. ...

...
...

α1 1 · · · 0 0 0
1 0 · · · 0 0 0


Since (A,B) is completely controllable, ΣC is invertible, and thus if we define T to be

as shown above, it must also be invertible (the other matrix is upper left diagonal, and is thus
always invertible).

”⇐ ” : Conversely, suppose we have:

Ã = T−1AT =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αn −αn−1 −αn−2 · · · −α1


, b̃ = T−1b =



0
0
0
...
0
1


.
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Then we find that:

b̃ =



0
0
...
0
0
1


Ãb̃ =



0
0
...
0
1
−α1


, Ã2b̃ =



0
0
...
1
−α1

α2 + α2
1


In short, for each i = 0, · · · , n− 1, the first n− i− 1 elements of the vector Ãib̃ are 0, and the
(n− i)-th element is 1. It follows that:

ΣC =
[
b̃ Ãb̃ · · · Ãn−1b̃

]
is lower right triangular with 1 as its (i, n − i)-th entry, for each i; thus, it has full rank, so
(A, b) is controllable.

Finally, notice that since A and Ã are related via a similarity transform, we have:

χA(s) = χÃ(s) = sn + α1s
n−1 + · · ·+ αn−1s+ αn,

as can be verified via induction on the matrix blocks composing Ã.

�

Theorem 5.31. Let (A, b) be completely controllable, where A ∈ Rn×n and b ∈ Rn, and let π(s)
be any monic polynomial of degree n with real coefficients. Then there exists a unique feedback
fT ∈ R1×n such that:

χA+bfT (s) = π(s)

Moreover, f is given by:

fT = −eTnΣ−1
C π(A)

Proof. Let π1, · · · , πn ∈ R be given such that:

π(s) = sn + π1s
n−1 + · · ·+ πn−1s+ πn.

Again, we demonstrate the existence of fT via explicit construction. First, notice that:

χA+bfT (s) = χT−1(A+bfT )T = χÃ+b̃f̃T

where, in addition to Ã = T−1AT, b̃ = T−1b, as defined in the previous theorem, we have also
defined:

f̃T ≡ fTT =
[
fn · · · f1

]
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We wish to determine the identity of f1, · · · , fn, as doing so would determine f̃T and thus
(using the formula for T in the above theorem) f . To that end, observe that:

∵ Ã+ b̃f̃T =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αn + fn −αn−1 + fn−1 −αn−2 + fn−2 · · · −α1 + f1


It thus follows that:

χA+bfT = sn + (α1 − f1)sn−1 + · · ·+ (αn−1 − fn−2)s+ (αn − fn)

Since we want:
χA+bfT = π(s) = sn + π1s

n−1 + · · ·+ πn−1s+ πn

We thus must take fi = αi − πi for each i = 1, · · · , n, i.e. we want:

f̃T = fTT =
[
αn − πn · · · α1 − π1

]
Since T is invertible, we have thus found an explicit, achievable (from a design point of view)
formula for fT .

�

Remark. In particular, the state feedback that achieves the χA+bfT (s) = π(s) is:

fT = −
[
0 · · · 0 1

] [
b Ab · · · An−1b

]−1
π(A)

(assuming, naturally, that (A, b) is controllable). This can be shown as follows. Observe that:

eT1 Ã = eT2 ,

eT1 Ã
2 = eT2 Ã = eT3 ,

...

eT1 Ã
n = eT2 Ã

n−1 = · · · = eTn−1Ã =
[
−αn · · · −α1

]
Thus, we want:

f̃T = fTT =
[
αn − πn · · · α1 − π1

]
= −πneT1 − πn−1e

T
2 − · · · − π2e

T
n−1 − π1e

T
n −

[
−αn · · · −α1

]
= −πneT1 − πn−1e

T
1 Ã− · · · − π2e

T
1 Ã

n−2 − π1e
T
1 Ã

n−1 − eT1 Ãn

= −eT1
[
πn + πn−1Ã+ · · ·+ π1Ã

n−1 + Ãn
]

= −eT1 π(Ã)
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Multiplying on the right by T−1, we have:

fT = −eT1 π(Ã)T−1 = −eT1 π(T−1AT )T−1 = −eT1 T−1π(A)

= −eT1



αn−1 αn−2 · · · α2 α1 1
αn−2 αn−3 · · · α1 1 0
αn−3 αn−4 · · · 1 0 0
...

... . .
. ...

...
...

α1 1 · · · 0 0 0
1 0 · · · 0 0 0



−1

[
b Ab · · · An−1b

]−1
π(A)

= −eTnΣ−1
C π(A)

since the first row of the inverse of the left upper triangular matrix whose elements consist of
1, α1, · · · , αn−1 is eTn .

Remark. We considered negative state feedback (u = −Fx) above; for the rest of this lecture,
we will use positive state feedback (u = Fx). To avoid confusion, readers should keep this
distinction in mind, though using either gives the same results for controllability and stabilizability.

Note (Notation). Below, we will use the notation ΣC(A,B) ≡
[
B AB · · · An−1B

]
.

Theorem 5.32 (State Feedback and Controllability). Consider an LTI system (A,B)
with state feedback:

ẋ = Ax+Bu,

u = Kx+ v.

Then R
(
ΣC(A,B)

)
= R

(
ΣC(A+BK,B)

)
. In particular, (A+BK,B) is completely controllable

if and only if (A,B) is.

Proof. First, for each i = 1, · · · , n− 2, the expression (A+BK)iB can be expanded as follows:

(A+BK)iB = AiB + Ai−1BMi,i−1 + · · ·+BMi,0,

⇐⇒AiB = (A+BK)iB + Ai−1B(−Mi,i−1) + · · ·+B(−Mi,0),

for some matrices Mi,0,Mi,1, · · · ,Mi,i−1 ∈ Rni×ni , where we have labeled the second subscript
of each M to match the corresponding power of A in each term. We thus have:

R
(
(A+BK)iB

)
⊂ R(AiB) +R(Ai−1B) + · · ·+R(B),

R(AiB) ⊂ R
(
(A+BK)iB

)
+R(Ai−1B) + · · ·+R(B),

Replacing i with j = 0, · · · , i − 1 in the second statement, and substituting the resulting
relations back into the second statement itself, we have:

R
(
(A+BK)iB

)
⊂ R(AiB) +R(Ai−1B) + · · ·+R(B),

R(AiB) ⊂ R
(
(A+BK)iB

)
+R

(
(A+BK)i−1B

)
+ · · ·+R(B),



5.6. LECTURE 20 199

Thus:

R(ΣC(A+BK,B) = R
(
(A+BK)n−1B

)
+ · · ·+R

(
(A+BK)B

)
+R(B)

= R(An−1B) + · · ·+R(AB) +R(B)

= R(ΣC(A,B)),

concluding the proof. �

Remark. Alternatively, we could have demonstrated the equivalence of the controllability of
(A + BK,B) with that of (A,B) (a weaker claim than R

(
ΣC(A + BK,B)

)
= R

(
ΣC(A,B)

)
)

by applying the PBH test. For each s ∈ C, we have:[
sI − (A+BK), B

]
=
[
sI − A,B

] [In×n 0
−K Ini×ni

]
.

Since the matrix

[
In×n 0
−K Ini×ni

]
is invertible, it follows that

[
sI − (A+BK), B

]
is of full row

rank if and only if
[
sI − A,B

]
is of full row rank. The PBH test thus gives the desired result.

Theorem 5.33 (Output Feedback and Controllability). Consider the LTI system with
output feedback:

ẋ = Ax+Bu,

u = Ly + v.

The following statements hold:

1. R
(
ΣC(A+BLC,B)

)
= R

(
ΣC(A,B)

)
.

2. N
(
ΣO(A+BLC,C)

)
= N

(
ΣO(A,C)

)
.

Thus, (A+BLC,C) is completely controllable or completely observable if and only if (A,B) is.

Proof.

1. This follows from Theorem 5.32; take K = LC.

2. We use a similar strategy as the one used to prove Theorem 5.32. By expanding C(A +
BLC)i, we find that:

C(A+BLC)i = CAi +Mi,i−1CA
i−1 + · · ·+Mi,0C

⇔ CAi = C(A+BLC)i + (−Mi,i−1)CAi−1 + · · ·+ (−Mi,0)C

for some Mi,i−1, · · · ,Mi,0 ∈ Rno×no . This implies that:

N(CAi) ∩N(CAi−1) ∩ · · · ∩N(C) ⊂ N
(
C(A+BLC)i

)
,

N
(
C(A+BLC)i

)
∩N(CAi−1) ∩ · · · ∩N(C) ⊂ N(CAi).
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Replacing i with j for each j = 0, · · · , i−1 in the second statement above, and substituting
the resulting relations back into the second statement itself, we find that:

N(CAi) ∩N(CAi−1) ∩ · · · ∩N(C) ⊂ N
(
C(A+BLC)i

)
,

N
(
C(A+BLC)i

)
∩N

(
C(A+BLC)i−1

)
∩ · · · ∩N(C) ⊂ N(CAi).

which shows that:

N
(
ΣO(A+BLC,C)

)
= N

(
C(A+BLC)n−1

)
∩ · · · ∩N

(
C(A+BLC)

)
∩N(C)

= N(CAn−1) ∩ · · · ∩N(CA) ∩N(C)

= N
(
ΣO(A,C)

)
,

completing the proof.

�

Example (Lecture 20, pg. 7). Consider the system:[
ẋ1

ẋ2

]
=

[
−1 a
3 −2

] [
x1

x2

]
+

[
0
1

]
u

For which values of a are we able to place the poles of the closed loop system in any desired
location? In particular, try to design a state feedback that relocates the poles of the system to
λ = −2,−3.

Solution :
We apply state feedback, as shown in the figure below:

Let the feedback be given by u = −Fx, where F =
[
f1 f2

]
. We have ẋ = (A− BF )x,

where:

A−BF =

[
−1 a
3 −2

]
−
[
0
1

] [
f1 f2

]
=

[
−1 a

3− f1 −2− f2

]
⇒ χA−BF (s) = det

([
s+ 1 −a
f1 − 3 s+ 2 + f2

])
= s2 + (3 + f2)s+

(
2 + f2 + a(f1 − 3)

)
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We want the characteristic function to assume the form:

(s+ 2)(s+ 3) = s2 + 5s+ 6,

If a 6= 0, we can take:

F =
[
f1 f2

]
=
[

2
a

+ 3 2
]

Thus, the state feedback control law is:

u = −Fx =
[
f1 f2

] [x1

x2

]
= −f1x1 − f2x2

= −
(

2

a
+ 3

)
x1 − 2x2

Note that this result depends on the condition a 6= 0. On the other hand, if a = 0, we have:

χA−BF (s) = s2 + (3 + f2)s+ (2 + f2)

= (s+ 1)
(
s+ (2 + f2)

)
Thus, regardless of our choice of f1, f2, we cannot move the pole at s = −1. However, we can
still relocate the pole at s = −2 to an arbitrary location, say, s = λ, by taking f2 = −λ− 2.

In summary, if a = 0, the pole originally at λ = −1 is fixed, while the pole at λ = 2
can be relocated to an arbitrary location via state feedback. On the other hand, if a 6= 0, then
both poles can be moved to arbitrary locations.

Example (Lecture 20, pg. 10). Consider the following system:

ẋ1 = 2x1 + 3x2 + 2x3 + x4 + u,

ẋ2 = −2x1 − 3x2 − 2u,

ẋ3 = −2x1 − 2x2 − 4x3 + 2u,

ẋ4 = −2x1 − 2x2 − 2x3 − 5x4 − u,
y = 7x1 + 6x2 + 4x3 + 2x4,

as shown in the figure below. Find its transfer function, and interpret the result.
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Solution :

The given dynamics can be expressed in matrix form, as shown below:


ẋ1

ẋ2

ẋ3

ẋ4

 =


2 3 2 1
−2 −3 0 0
−2 −2 −4 0
−2 −2 −2 −5


︸ ︷︷ ︸

≡A


x1

x2

x3

x4

+


1
−2
2
−1


︸ ︷︷ ︸
≡B

u,

y =
[
7 6 4 2

]︸ ︷︷ ︸
≡C


x1

x2

x3

x4


Rather than solve for the transfer function by directly taking the Laplace transform of

the complicated-looking matrices above, we will first try to find a similarity transform for the
system by diagonalizing A. Recall that the equivalent system representation for an LTI system
Σ : (A,B,C,D), with state transformation x = Px, is Σ : (PAP−1, PB,CP−1, D). In this
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case, we wish to associate P with the matrix transformation from x to x, i.e.:

A =


2 3 2 1
−2 −3 0 0
−2 −2 −4 0
−2 −2 −2 −5



=


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


︸ ︷︷ ︸

≡P−1


−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4


︸ ︷︷ ︸

≡A


4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1


︸ ︷︷ ︸

≡P

⇒ A = PAP−1 =


−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

 ,

B = PB =


1
0
1
0

 ,
C = CP−1 =

[
1 1 0 0

]
Since equivalent systems have the same transfer functions, we have:

H(s) = C(sI − A)−1B =
1

s+ 1

In other words, since ẋ = Ax+Bu, y = Cx, we have:

ẋ1 = −x1 + u,

ẋ2 = −2x2,

ẋ3 = −3x3 + u,

ẋ4 = −4x4,

y = x1 + x2

We interpret the above results as follows.

x1 : Affected by the input, Visible in the output,

x2 : Not affected by the input, Visible in the output,

x3 : Affected by the input, Not visible in the output,

x4 : Not affected by the input, Not visible in the output,
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The figure below demonstrates the relationship between x1, x2, x3, and x4:

In some cases, the controllability of a system can be explicitly associated with, or
interpreted by, physical characteristics of the system we are describing. Consider, for instance,
the next example.

Example (Lecture 20, pg. 13). Consider the following system, which is physically uncontrollable.
This is because the only forces and torques (”inputs”) are internal to the system, and Newton’s
Third Law—every action has an equal and opposite reaction—implies that the center of mass
of a closed system cannot be changed by internal forces or torques.
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Let x1, x2 be the center of masses of m1,m2, respectively, as shown above, and let
x3 ≡ ẋ1, x4 ≡ ẋ2 denote their respective velocities. The dynamics of the system can then be
modeled as:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = − k

m1

(x1 − x2)− f

m1

,

ẋ4 = − k

m2

(x2 − x1) +
f

m2

.

Check the controllability of the system, and interpret your results.

Solution:
Rewriting the above equations in matrix form, we have:

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1
− k
m1

k
m1

0 0
k
m2

− k
m1

0 0


︸ ︷︷ ︸

≡A


x1

x2

x3

x4

+


0
0
− 1
m1
1
m2


︸ ︷︷ ︸
≡B

u.

We can check the controllability of the system by finding the rank of the controllability matrix:

ΣC ≡
[
B AB A2B A3B

]

=


0 − 1

m1
0 k

m1

(
1
m1

+ 1
m2

)
0 1

m2
0 − k

m2

(
1
m1

+ 1
m2

)
− 1
m1

0 k
m1

(
1
m1

+ 1
m2

)
0

1
m2

0 − k
m2

(
1
m1

+ 1
m2

)
0


Since the second and fourth rows are −m1/m2 times the first and third rows, respectively, ΣC

is of rank 2, and thus lacks full row rank. The system is thus uncontrollable.
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We can interpret this result by, once again, applying a similarity transform to the original
dynamics. This time, we wish to transform the system into an equivalent representation whose
first two states x1, x2, measure the center of mass of the system:

x1 =
m1x1 +m2x2

m1 +m2

and the displacement between the two masses:

x2 = x1 − x2

Analogous to our original system, we will define x3, x4, to be the rate of change of x1, x2.
Mathematically, this requires us to consider the transformation:

x1

x2

x3

x4

 =


m1

m1+m2

m2

m1+m2
0 0

1 −1 0 0
0 0 m1

m1+m2

m2

m1+m2

0 0 1 −1


︸ ︷︷ ︸

≡P


x1

x2

x3

x4



As stated in the above example, the equivalent system representation for an LTI system
Σ : (A,B,C,D), with state transformation x = Px, is Σ : (PAP−1, PB,CP−1, D). After some
algebra, we have:

A = PAP−1 =


0 0 1 0
0 0 0 1
0 0 0 0

0 0 0 −k
(

1
m1

+ 1
m2

)
 ,

B = PB =


0
0
0

−
(

1
m1

+ 1
m2

)


Notice that only the fourth element in B is nonzero; this implies that the internal forces, which
constitute the only input to this system, can only affect:

ẋ4 = x3 − x4 =
d

dt
(x1 − x2)

That is, although the internal forces will change the relative positions of x1 and x2, the center
of mass of the entire system, x1, remains completely unaffected. To control x1, an external
force is needed.

Example (Lecture 20, pg. 16). Consider the system:

ẋ =

[
−1 0
0 −3

]
︸ ︷︷ ︸

≡A

+

[
1
1

]
︸︷︷︸
≡B

u
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1. Is the given system controllable?

2. If the given system is controllable, determine the negative state feedback gain matrix
F =

[
f1 f2

]
that relocates the poles to s = −2,−2.

Solution :

1. The controllability matrix of the given system is:

ΣC =
[
B AB

]
=

[
1 −1
1 −3

]
,

which has full row rank. Thus, the system is completely controllable.

2. We have:

A− bfT =

[
−1− f1 −f2

−f1 −3− f2

]
⇒ χA−bfT (s) = det

([
s+ (1 + f1) f2

f1 s+ (3 + f2)

])
= s2 + (4 + f1 + f2) + (3f1 + f2 + 3)

We want the characteristic function to be:

(s+ 2)2 = s2 + 4s+ 4

Thus, we should take f1, f2 such that:

f1 + f2 = 0

3f1 + f2 = 1,

i.e. F =
[
f1 f2

]
=
[

1
2
−1

2

]
.

Remark. Part b) of the above problem can also be directly solved by transforming A,B to
their control canonical form. As verified in Theorem 5.31, we have: (Note that the sign of F
is inverted, because the theorem considers positive feedback, while here we consider negative
feedback)

F = eT2 Σ−1
C π(A)

=
[
0 1

] [1 −1
1 −3

]−1

(A2 + 4A+ 4I)

= −1

2

[
0 1

] [−3 1
−1 1

] [
1 0
0 1

]
=
[

1
2
−1

2

]
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Example (Lecture 20, pg. 20). An approximate linear model of the longitudinal dynamics of
certain aircraft, for a particular set of conditions, has the linearized state and control vectors:

x =


p
r
β
φ

 , u =

[
δ
µ

]

where the variables given above have the following physical interpretations:

States: p — incremental roll rate,

r — incremental yaw rate,

β — incremental sideslip angle,

φ — incremental roll angle

Inputs: δa — aileron angle

δr — rudder angle

The state space equation for this model is ẋ = Ax+Bu, where:

A =


−10 0 −10 0

0 −0.7 9 0
0 −1 −0.7 0
1 0 0 0

 , B =


20 2.8
0 −3.13
0 0
0 0


1. Suppose a malfunction prevents manipulation of the input δr. Is it possible to completely

control the aircraft using only δa?

2. If you had your choice of only one of the following sensors, which would you use? Explain.

• A rate gyro which measures the roll rate p.

• A bank indicator which measures φ.

A figure for the aircraft is provided below:
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Solution :

1. We can analyze the controllability of the given system in the case where we are only
allowed to control δa by considering the controllability matrices for the system in this
case.

LetB1, B2 denote the first and second columns ofB, respectively. Then the controllability
matrices under the assumption that we can control on only δa would be:

ΣC1 =
[
B1 AB1 A2B1 A3B1

]
=


20 −200 2000 −20000
0 0 0 0
0 0 0 0
0 20 −200 2000

 ,
respectively. Since ΣC1 has rank 2, and thus lacks full row rank, the system is uncontrollable.

2. Similarly, we can analyze the observability of the given system in the case where we are
only allowed to observe q or θ by considering the observability matrices for the system
under the above two cases.

First, note that ”only observing p” and ”only observing θ” correspond to the following
matrices for C:

C1 =
[
1 0 0 0

]
,

C2 =
[
0 0 1 0

]
,

respectively. In this case, the observability matrices under the assumption that we can
control on only δ and only µ are:

ΣC1 =


C1

C1A
C1A

2

C1A
3

 =


1 0 0 0
−10 0 −10 0
100 10 107 0
−1000 −114 −984.9 0

 ,

ΣC2 =


C2

C2A
C2A

2

C2A
3

 =


0 0 0 1
1 0 0 0
−10 0 −10 0
100 10 107 0


Since ΣO1 lacks full row rank (it has rank 3), while ΣO2 has full row rank, we conclude
that only having a bank indicator which measures φ is preferable to only having a rate
gyro which measures the roll rate p.

Remark. The above example, taken from Bryson’s text on aircraft dynamics, describes the
lateral dynamics of a conventional take-off and landing (CTOL) aircraft, which simply means
that the aircraft takes off and lands on a runway (as opposed to vertical take-off and landing
aircrafts). These aircraft are designed such that the longitudinal dynamics (e.g. pitch, up-and-
down motion) with its lateral motion. For instance, BOEING has designed such aircraft such
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that the lateral and longitudinal dynamics can be controlled independently. This is not the
case for sophisticated military aircraft.

The roll rate p in this example is the rate at which the plane rotates about the axis
passing through its front (nose) and end (tail). The yaw rate r, meanwhile, describes rotation
about a vertical axis passing through the midsection of the plane, i.e. ”turning side to side.”
The sideslip angle β describes the difference between the direction in which the aircraft is
pointing and the direction in which the aircraft is currently headed. The aileron angle δa
is associated with the flaps at the aircraft’s tail that move up and down, while the rudder
angle δr is associated with the flaps at the aircraft’s tail that move up and down. The roll
angle (or bank angle) φ is the angle associated with, and changing at a rate equal to, the roll
rate p. In particular, the roll rate p and roll angle φ are of interest because they provide the
first indication that an aircraft will very soon be turning. This is attributed to the actual
coupling between the longitudinal and lateral movement of the aircraft, a coupling ignored in
the aforementioned model in which the lateral and longitudinal dynamics were assumed to be
completely independent.

More details can be found in Professor Claire Tomlin’s Video Lecture 31 (30:30—41:22),
in which she explains the terminology and concepts associated with this exercise.

https://www.youtube.com/watch?v=VaNAxkGmsAQ&index=31&list=PLrmdED6yqL3UImn8cJtrBDuoye9QKJ9MJ
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5.7 Lectures 18, 19, 20 Discussion

Example (Discussion 12, Problem 1). Consider the LTI system given by:

ẋ =

[
0 1
−1 −1

]
+

[
0
1

]
u,

y =

[
1 0
0 0

]
x

1. Is the system controllable? Is it observable?

2. Can the closed loop poles of the system be placed at λ1 = −2, λ2 = −2 using output
feedback alone?

Now, consider the same plant with an additional state measurement state such that:

y =

[
1 0
0 1

]
x

3. Is the system still controllable and observable?

4. Can the closed loop poles of the system be placed at λ1 = −2, λ2 = −2?

5. Explain how the closed loop poles of the system could be placed at λ1 = −2, λ2 = −2
using only a single sensor, i.e., using only a one-dimensional output.

Solution :

1. The controllability and observability matrices are, respectively:

ΣC =
[
B AB

]
=

[
0 1
1 −1

]
,

ΣO =

[
C
CA

]
=


1 0
0 0
0 1
0 0


Since ΣC has full row rank and ΣO has full column rank, the system is both controllable
and observable.

2. This problem can be solved by considering the properties that must be satisfied by an
output feedback that places the poles of the resulting closed-loop system at λ1 = −2, λ2 =
−2, if it exists.

Formally, consider an arbitrary output feedback u = Fy, where F =
[
f1 f2

]
∈ R1×2.

The dynamics of the closed-loop system is thus:

ẋ = Ax+Bu = Ax+B(Fy) = (A+BFC)y,
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where:

A+BFC =

[
0 1
−1 −1

]
+

[
0
1

] [
f1 f2

] [1 0
0 0

]
=

[
0 1

−1 + f1 −1

]
,

χA+BFC(s) = s(s+ 1) + (f1 + 1)

= s2 + s+ (f1 + 1).

However, we want λ1 = −2, λ2 = −2, or equivalently, the characteristic equation of the
output feedback loop must be s2 + 4s + 4. Clearly, this cannot be achieved with any
choice of f1, since the coefficient of s in χA+BFC(s) remains 1 regardless of our choice.

3. The given change in C does not affect ΣC , but it does affect ΣO, which becomes:

ΣO =

[
C
CA

]
=


1 0
0 1
0 1
1 −1


Since ΣC still have full row rank and ΣO has full column rank, the system is still both
controllable and observable.

4. Unlike the case in sub-problem 2, we can place the poles at λ1 = −2, λ2 = −2 via ouptut
feedback. This is because the controllability of ΣA implies that state feedback can be
used to place the resulting closed loop poles anywhere in the complex plane. Now, since
C = I2, the output y is in fact identically equal to the state x; thus, for this problem,
output and state feedback are synonymous.

The particular state feedback required to relocate the poles can be found in a manner
similar to that shown in the above sub-problems. Suppose F =

[
f1 f2

]
is the desired

output feedback. Since the resulting system is ẋ = (A+BFC)x, where:

A+BFC =

[
0 1
−1 −1

]
+

[
0
1

] [
f1 f2

] [1 0
0 1

]
=

[
0 1

−1 + f1 −1 + f2

]
,

χA+BFC(s) = s(s− f2 + 1) + (−f1 + 1)

= s2 + s(−f2 + 1) + (−f1 + 1).

we require that F =
[
f1 f2

]
=
[
−3 −3

]
to allow χA+BFC(s) = s2 + 4s + 4 = (s + 2)2,

a result equivalent to pole placement at λ1 = −2, λ2 = −2.

5. If the output is one-dimensional, then the matrix C, which maps states to outputs, must
have dimensions 1× 2, while the output feedback matrix, which maps outputs to inputs,
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must be scalar. Thus, in general, we have:

C =
[
c1 c2

]
,

F =
[
f
]

for some c1, c2, f . This problem essentially asks us to find a suitable combination of c1, c2, f
such that the characteristic function of the resulting closed-loop system is χA+BFC(s) =
(s+ 2)2 = s2 + 4s+ 4. To that end, let us calculate A+BFC:

A+BFC =

[
0 1
−1 −1

]
+

[
0
1

] [
f
] [
c1 c2

]
=

[
0 1

−1 + fc1 −1 + fc2

]
,

χA+BFC(s) = s(s− fc2 + 1) + (−fc1 + 1)

= s2 + s(−fc2 + 1) + (−fc1 + 1).

Thus, we need to choose c1, c2, f such that fc1 = fc2 = −3. We can choose, for instance,
c1 = 1, c2 = 1, f = −3.

Example (Discussion 12, Problem 2). An approximate linear model of the longitudinal
dynamics of certain aircraft, for a particular set of conditions, has the linearized state and
control vectors:

x =


v
α
θ
q

 , u =

[
δ
µ

]

where the variables given above have the following physical interpretations:

States: v — change in forward velocity,

α — change in angle of attack,

θ — change in pitch angle,

q — change in pitch rate

Inputs: δ — deflection of the elevators

µ — throttle position

The state space equation for this model is ẋ = Ax+Bu, where:

A =


−0.045 0.036 −32 −2
−0.4 −3 −0.3 250

0 0 0 1
0.002 −0.04 0.001 −3.2

 , B =


0 0.1
−03 0

0 0
−10 0
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1. Suppose a malfunction prevents manipulation of the input δ. Is it possible to completely
control the aircraft using only µ? What if only δ is available?

2. If you had your choice of only one of the following sensors, which would you use? Would
it make a difference? Explain.

• A rate gyro which measures the pitch rate q.

• A pitch indicator which measures θ.

Solution :

1. We can analyze the controllability of the given system in the case where we are only
allowed to control µ or δ by considering the controllability matrices for the system under
the above two cases.

LetB1, B2 denote the first and second columns ofB, respectively. Then the controllability
matrices under the assumption that we can control on only δ and only µ are:

ΣC1 =
[
B1 AB1 A2B1 A3B1

]
=


0 18.92 166 −491.33
−30 −2410 15525 −49106

0 −10 33.2 −9.81
−10 33.2 −9.81 −589.25

 ,

ΣC2 =
[
B1 AB2 A2B2 A3B2

]
=


0.1 0 0 0
0 −0.04 0.1718 −0.277
0 0 0 0.001
0 0 0.001 −0.01


respectively. Whereas ΣC1 is non-singular, ΣC2 is very close to losing rank on two of its
rows. A conservative answer would be that complete control is theoretically possible with
only δ or only µ, but doing so would be extremely difficult using µ.

2. Similarly, we can analyze the observability of the given system in the case where we are
only allowed to observe q or θ by considering the observability matrices for the system
under the above two cases.

First, note that ”only observing q” and ”only observing θ” correspond to the following
matrices for C:

C1 =
[
0 0 0 1

]
,

C2 =
[
0 0 1 0

]
,

respectively. In this case, the observability matrices under the assumption that we can
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control on only δ and only µ are:

ΣC1 =


C1

C1A
C1A

2

C1A
3

 =


0 0 0 1

0.002 −0.04 0.001 −3.2
0.001 0.248 −0.055 0.237
−0.099 −0.753 −0.379 61.185

 ,

ΣC2 =


C2

C2A
C2A

2

C2A
3

 =


0 0 1 0
0 0 0 1

0.002 −0.040 0.001 −3.2
0.010 0.248 −0.055 0.237


Notice that C2A = C1, which then implies that C2A

n+1 = C1A
n for each n ∈ N. This

implies that:

N(ΣO2) =
n−1⋂
i=0

N(C2A
i) =

n⋂
i=0

N(C2A
i) = N(C2)

⋂(
n⋂
i=1

N(C2A
i)

)

= N(C2)
⋂(

n−1⋂
i=0

N(C1A
i)

)
= N(C2)

⋂
N(ΣO1)

⊂ N(ΣO1)

where we have used the Cayley-Hamilton theorem to assert that
⋂n
i=1N(C2A

i−1) ⊂
N(C2A

n) to justify the second equality.

In plain English, compared to the case where we only observe q (corresponding to
the larger N(ΣO1)), we obtain a strictly smaller set of completely unobservable sets if we
observe only θ (corresponding to the smaller N(ΣO2)). In that sense, it is better to only
measure θ than to only measure q.

However, if we are only considering the observability of the two systems by asking
whether ΣC1 and ΣC2 have full column rank, it makes no difference.
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5.8 Lecture 21

Lemma 5.34 (Heymann Lemma). Let (A,B) be completely controllable, with B =
[
b1, · · · , bni

]
,

and suppose B has full rank. Then there exists a linear state feedback u = kx+ v such that the
resulting closed-loop system

ẋ = (A+BK)x+Bv,

is controllable via b1v1, i.e. (A+BK, b1) is completely controllable.

Proof. We offer a proof of construction. Define:

z1 = b,

zi+1 = Azi + bvi,

where, for each i ≥ 1, we choose vi such that {z1, · · · , zi, zi+1} is linearly independent.
We claim that the induction continues until i = n. This is because, if the induction

continues up to some i ∈ {1, · · · , n}, we have for each vi ∈ Rni :

Azi +Bvi ∈ span{z1, · · · , zi}︸ ︷︷ ︸
≡M

⊂ Σ,

Observe the following facts:

1. M is a subspace of Σ; this follows from its definition as the span of a set of vectors.

2. M is A-invariant, since if we take vi = 0, we find Azi ∈M .

3. R(B) ∈ M . This is because, if not, then there exists some vi ∈ Rni such that Bzi 6∈ M .
But then zi+1 = Azi +Bzi 6∈M , in contradiction to our hypothesis.

By Theorem 5.22, R(ΣC) is the smallest A-invariant subspace of Σ that contains R(B).
This implies that R(ΣC) ⊂M , and so i = rank(M) ≥ rank(ΣC) = n, where the final equality
follows from the complete controllability of (A,B). However, since M is a subspace of Σ, clearly
i ≤ n. We thus have i = n, as desired.

Now, since M = Σ, we find that {z1, · · · , zn} are linearly independent. Thus, fix some
arbitrary v ∈ Σ, and define:

F ≡
[
z1 · · · zn−1 zn

]−1 [
v1 · · · vn−1 v

]
⇒
[
z1 · · · zn−1 zn

]
F =

[
v1 · · · vn−1 v

]
As a result, we have:

z1 = b,

z2 = Az1 +Bv1 = (A+BF )b,

z3 = Az2 +Bv2 = (A+BF )v2 = (A+BF )2b,

...

zn = Azn−1 +Bvn−1 = (A+BF )zn−1 = (A+BF )n−1b
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This can be rearranged as: [
b (A+BF )b · · · (A+BF )n−1

]
,

=
[
z1 z2 · · · zn

]
In other words, the controllability matrix pencil for (A+BF, b) has rank n, i.e. full row rank.
We conclude that (A+BF, b) is completely controllable.

�

Remark. The above lemma tells that, if (A,B) is completely controllable and b ∈ R(B), then
we can find a suitable state feedback F that moves the eigenvalues of A to wherever we want.

Formally, given A ∈ Rn×n, B ∈ Rn×ni , and any monic polynomials π(s) with real
coefficients, choose b ∈ R(B) arbitrarily, and let v be given such that b = Bv. Then there
exists some F1 ∈ Rni×n such that (A+BF1, b) is completely controllable.

Now, by the remark following Theorem 5.31, choose:

fT2 = eTn
[
b (A+BF1)b · · · (A+BF )n−1b

]−1
π(A+BF1).

Then, observe that:
σ(A+BF1 + bfT2 ) = σ(A+B(F1 + vfT2 ))

consist of the roots of π(s); in other words, F = F1 + vfT2 places the closed loop eigenvalues of
the system at π(s).

Lemma 5.35. Given an LTI system R : ẋ = Ax+Bu, if (A,B) is not completely controllable,
then for each state feedback F ∈ Rni×n, the resulting closed-loop dynamics contain all uncontrollable
modes, i.e. if λ ∈ σ(A), with rank

( [
λI − A B

] )
< n, then λ ∈ σ(A + BF ) for each

F ∈ Rni×n.

Proof. Suppose rank
( [
sI − A B

] )
< n for some s ∈ C. Then there exists some v 6= 0 such

that:

vT
[
sI − A B

]
= 0,

⇒vT
[
sI − (A+BK) B

]
= vT

[
sI − A B

] [ I O
−K I

]
= 0,

so rank
( [
sI − (A+BK) B

] )
< n as well. This implies that s ∈ σ(A+BK), since sI − (A+

BK) can only have rank less than n when s ∈ σ(A+BK).
�

Theorem 5.36 (PBH Test for Stabilizability). Given an LTI system (A,B), the following
two statements are equivalent (the first is simply the definition of stabilizability):

1. rank
([
sI − A B

])
= n, ∀s ∈ C+.

2. ∃F ∈ Rni×n such that σ(A+BK) ⊂ C−.
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Proof.

”⇐ ” : Suppose by contradiction that there exists some λ ∈ C+ such that rank(λI−A,B)
< n. Then, by the above lemma, λ ∈ σ(A+BF ), contradicting the fact that σ(A+BK) ∈ C−.

”⇒ ” :
Now, suppose rank

( [
sI − A B

] )
= n for each s ∈ C+. The theory of Kalman

decomposition, we can find an invertible matrix T whose columns consist of basis vectors formed
from bases vectors of the controllable and uncontrollable subspaces, in that order. Thus, the
matrix representations of A and B with respect to T are then of the form:

[A] =

[
A11 A12

O A22

]
, [B] =

[
B1

0

]
,

with A11 ∈ Rnc×nc , A12 ∈ Rnc×(n−nc), A22 ∈ R(n−nc)×(n−nc) and B1 ∈ Rnc×ni , where nc ∈
{1, · · · , n} is the dimension of the controllable subspace. By hypothesis, all of the uncontrollable
modes are in the left half complex plane, so σ(A22) ∈ C−, and (A11, B1) is completely controllable.
Thus, there exists some F1 ∈ Rni×nc such that σ(A11 + B1F1) ∈ C−. Fix some arbitrary
F2 ∈ Rni×(n−nc), and choose F ≡

[
F1 F2

]
. Then:

A+BF =

[
A11 +B1F1 A12 +B1F2

O A22

]
with σ(A+BF ) = σ(A11 +B1F1) ∪ σ(A22) ∈ C−. �

Theorem 5.37 (PBH Test for Detectability). Given an LTI system (A,C), the following
two statements are equivalent (the first is simply the definition of detectability):

1. rank

([
sI − A
C

])
= n, ∀s ∈ C+.

2. ∃L ∈ Rn×no such that σ(A+ LC) ⊂ C−.

Proof.

” ⇐ ” : Again, the proof follows by contradiction. If there exists some s ∈ C+ such

that

[
sI − A
C

]
lacks full column rank, then there exists some v 6= 0 such that, for this s ∈ C+,

and any L ∈ Rn×no : [
sI − A
C

]
v = 0

⇒
[
I −L
O I

] [
sI − A
C

]
v = 0

⇒
[
sI − (A+ LC)

C

]
v = 0,
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i.e. rank

([
sI − (A+ LC)

C

])
< n. This implies s ∈ σ(A + LC), since sI − A only have rank

less than n when s ∈ σ(A+ LC). To summarize, there exists some s ∈ C+ such that, for each
L ∈ Rn×no , we have s ∈ σ(A+ LC). This is the exact opposite of the statement ”∃L ∈ Rn×no

such that σ(A+ LC) ⊂ C−”, so we are done.

”⇒ ” : Suppose rank

([
sI − A
C

])
= n for each s ∈ C+. Then, by Kalman decomposition,

we can find an invertible matrix T whose columns consist of basis vectors formed from bases
vectors of the observable and unobservable subspaces, in that order. The matrix representations
of A and C with respect to T are then of the form:

[A] =

[
A11 O
A21 A22

]
, [C] =

[
C1 O

]
,

where σ(A22) ∈ C−, with A11 ∈ Rnobs×nobs , A12 ∈ Rnobs×(n−nobs), A22 ∈ R(n−nobs)×(n−nobs), and
C1 ∈ Rno×nobs , where nobs ∈ {1, · · · , n} is the dimension of the observable subspace, and no, as
usual, is the dimension of the output. By hypothesis, all of the observable modes are in the left
half complex plane, so σ(A22) ∈ C−, and (A11, C1) is completely observable. Then there exists
some L1 ∈ Rnobs×no such that σ(A11 +L1C1) ∈ C−. Fix some L2 ∈ R(n−nobs)×no arbitrarily, and

define L ≡
[
L1 L2

]T
. Then:

A+ LC =

[
A11 + L1C1 O
A21 + L2C1 A22

]
,

with σ(A+ LC) = σ(A11 + L1C1) ∪ σ(A22) ∈ C−.
�

Theorem 5.38. An LTI system (A,C) is detectable if and only if its adjoint system (A?, C?)
is stabilizable.

Proof. Note the equivalence of the following statements:

(A,C) is detectable,

⇐⇒∀s ∈ C+, rank

([
sI − A
C

])
= n,

⇐⇒∀s ∈ C+, rank
([
s?I − A? C?

])
= n,

⇐⇒∀s ∈ C+, rank
([
sI − A? C?

])
= n,

where complex conjugation is a surjection when defined on the left half complex plane. �

Theorem 5.39. Consider the LTI system (A, b, cT ), i.e.:

ẋ = Ax+ bu,

y = cTx
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where A, b, cT are given by:

A =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1


, b =



0
0
0
...
0
1


,

cT =
[
c0 c1 c2 · · · cn−2 cn−1

]

Then the transfer function of (A, b, cT ) is:

H(s) = cT (sI − A)−1b

=
cn−1s

n−1 + · · ·+ c1s+ c0

sn + an−1sn−1 + · · ·+ a1s+ a0

Proof. Observe that (sI − A)−1b is simply the n-th column of (sI − A)−1. Let its entries be
denoted by x1, · · · , xn. Then, we have:



s −1 0 · · · 0 0
0 s −1 · · · 0 0
0 0 s · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · s −1
a0 a1 a2 · · · an−2 s+ an−1


︸ ︷︷ ︸

= sI−A

·



· · · · · · · · · · · · · · · x1

· · · · · · · · · · · · · · · x2

· · · · · · · · · · · · · · · x3

· · · · · · · · · · · · · · ·
...

· · · · · · · · · · · · · · · xn−1

· · · · · · · · · · · · · · · xn


︸ ︷︷ ︸

= (sI−A)−1

= I

⇒



s −1 0 · · · 0 0
0 s −1 · · · 0 0
0 0 s · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · s −1
a0 a1 a2 · · · an−2 s+ an−1


·



x1

x2

x3

...
xn−1

xn


=



0
0
0
...
0
1
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Thus, we have the following system of linear equations:

sx1 − x2 = 0,

sx2 − x3 = 0,
...

sxn−1 − xn = 0,

a0x1 + a1x2 + · · · an−2xn−1 + (s+ an−1)xn = 1

,

⇒



x2 = sx1,

x3 = sx2 = s2x1,
...

xn = sxn−1 = · · · sn−1x1,

a0x1 + a1x2 + · · · an−2xn−1 + (s+ an−1)xn

= (a0 + a1s+ · · ·+ an−1s
n−1 + sn)x1 = 1

,

⇒xi =
si−1

sn + an−1sn−1 + · · ·+ a1s+ a0

, i = 1, · · · , n

Substituting back into our expression for H(s), we find that:

H(s) = cT (sI − A)−1b

=
[
c0 c1 · · · cn−1

]

x1

x2

...
xn



=
[
c0 c1 · · · cn−1

]
· 1

sn + an−1sn−1 + · · ·+ a1s+ a0


1
s
...

sn−1


=

cn−1s
n−1 + · · ·+ c1s+ c0

sn + an−1sn−1 + · · ·+ a1s+ a0

�

Remark. The transfer function does not necessarily reveal all the eigenvalues of A (and thus
does not necessarily reveal all uncontrollable / unobservable modes), since pole-zero cancellation
may have occurred.
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5.9 Lecture 22

Observer Design:

In previous sections, we discussed how controllable (or stabilizable) LTI systems can
be steered from one point in space and time to another via state feedback (e.g. u = Fx), as
shown below:

Often, the state itself is inaccessible for direct measurement, and must be somehow
estimated. In this section, we discuss how a signal reconstruction device, called an observer,
can be designed to estimate these inaccessible states. Moreover, we show that if the LTI system
is observable, the observer can be designed such that its state estimation error asymptotically
approaches 0 as t→∞.

Consider an LTI plant R : (A,B,C), with dynamics as shown below:

ẋ = Ax+Bu,

y = Cx,
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where, as before, u, x, y denote the input, state, and output, respectively. We can then construct
a full-order observer (i.e. an observer with states of the same dimensions as those in the
original system). The observer takes as its input the inputs and outputs of the original system,
and attempts to evolve its states in such a way that the difference (”error”) between the
observer state and system state vanishes asymptotically. Mathematically, we wish to choose
the observer’s dynamics:

˙̂z = Mẑ +Nu+ Ty,

where M ∈ Rn×n, N ∈ Rn×ni , T ∈ Rn×no , such that the error :

e ≡ ẑ − x

approaches 0 asymptotically as t→∞.

Observer with State Feedback—The Separation Theorem:

To see what choice of M,N, T would allow this to occur, we consider the system and
observer dynamics together, as follows:[

ẋ
˙̂z

]
=

[
A O
TC M

] [
x
ẑ

]
+

[
B
N

]
u

Now, suppose we apply a negative feedback based on the observer estimate, i.e. u = −F ẑ + r,
where v is known as the reference or auxiliary input. Applying this input, and using the change
of variables e ≡ ẑ − x, we have:

∵

[
ẋ
˙̂z

]
=

[
A −BF
TC M −NF

] [
x
ẑ

]
+

[
B
N

]
v, and

[
x
ẑ

]
=

[
I 0
I I

] [
x
e

]
,

⇒
[
ẋ
ė

]
=

[
I 0
I I

]−1 [
A −BF
TC M −NF

] [
I 0
I I

] [
x
e

]
+

[
I 0
I I

]−1 [
B
N

]
v

=

[
I 0
−I I

] [
A−BF −BF

TC +M −NF M −NF

] [
x
e

]
+

[
B

−B +N

]
v

=

[
A−BF −BF

−(A− TC) +M + (B −N)F M + (B −N)F

] [
x
e

]
+

[
B

−B +N

]
v

Since we want the error to decay exponentially regardless of the state or input, set:

−(A− TC) +M + (B −N)F = O,

−B +N = O,

σ
(
M + (B −N)F

)
⊂ C−

Rearranging terms, we have:

M = A− TC,
N = B,

σ(A− TC) ⊂ C−



224 CHAPTER 5. CONTROLLABILITY AND OBSERVABILITY

Notice that the final requirement can be achieved if (A,C) is observable. In that case, by
substituting back the above choices of M,N, T , we find that our desired full-order observer
must evolve according to the dynamics:

˙̂z = (A− TC)ẑ +Bu+ TCx

= Aẑ +Bu+ T (y − Cẑ),

⇒
[
ẋ
e

]
=

[
A−BF −BF

O A− TC

] [
x
e

]
+

[
B
O

]
v,

which can be physically implemented by feeding the difference between the outputs of the
system and observer back into the observer as an input; a figure is provided below.
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The above derivation shows that the set of eigenvalues of the composite system is simply:

σ(A−BF ) ∪ σ(A− TC).

Thus, the problem of arbitrarily assigning the closed-loop poles of a system using feedback can
be ”separated” into two parts:

1. Designing an observer to provide a set of asymptotically-accurate state estimates, by
designing the observer (estimation) poles σ(A− TC), and

2. Designing a pole-assigning state feedback matrix as though the true states were available
for direct measurement, by designing theclosed loop poles σ(A−BF ).

Notice that σ(A−TC) = σ((A−TC)T ) = σ(AT−CTT T ) whenever A is a square matrix,
and C, T are of appropriate dimension. Thus, the pole placement algorithm for observer design
is identical to the pole placement algorithm for state feedback design, with A,B, F replaced by
AT , CT , T T , respectively. For this reason, the standard observer configuration is said to be the
dual of the state feedback configuration.

Remark (Guidelines for Pole Placement). The following guidelines are useful for deciding
where the closed-loop poles, σ(A−BF ) and the closed-loop (estimator poles) σ(A−TC) should
be placed:

1. Closed-loop (Estimator) Poles:

• The larger the gain, the larger the control input—this is because u = −Fx, i.e. the
control input u is proportional to the gain matrix F .

• The more the poles are moved from open-loop systems (with ”A”) to closed-loop
systems (with ”A − BF”), the larger the gain matrix F . This arises from the fact
that the following is a sequence of continuous mappings:

Elements in square matrix A

−→ The characteristic polynomial of A, i.e. χA(s)

−→ The roots of χA(s), i.e. the eigenvalues of A

2. Estimator Poles:

• Estimator poles are generally chosen to be to the left (on the complex plane, i.e. with
a more negative real part) than the controller poles. This is because we wish the
estimator error to have a faster rate of decay compared with the desired dynamics.

• In practice, however, it is often a bad idea to move estimator poles too far to the
loeft, since this increases the bandwidth of the estimator, causing more sensor noise
to pass on to the control actuator.
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Example (Inverted Pendulum with Disturbance). Consider a slightly modified version of
the inverted pendulum example given in Lecture 10, where θ is the angle of deviation of the
pendulum from its vertical (pointing upwards) position, α denotes some constant disturbance,
and the states are defined as:

(x1, x2, x3) = (θ, θ̇, d),

with dynamics given by:

ẋ1 = x2,

ẋ2 = Ω2x1 − αx2 + x3 + u,

ẋ3 = 0.

y = x1

In matrix form, we have: ẋ1

ẋ2

ẋ3

 =

 0 1 0
Ω2 −α 1
0 0 0


︸ ︷︷ ︸

=A

x1

x2

x3

+

0
1
0


︸︷︷︸
=B

u,

y =
[
1 0 0

]︸ ︷︷ ︸
=C

x1

x2

x3


Thus, if we design the observer dynamics with T =

[
T1 T2 T3

]T
, we have:

˙̂z = Aẑ +Bu+ T (y − Cẑ) = (A− TC)ẑ +Bu+ Ty

=

 −T1 1 0
Ω2 − T2 −α 1
−T3 0 0

 ẑ +

0
1
0

u+

T1

T2

T3

 y
Example. Consider the following system:

ẋ =

0 0 0
1 0 0
0 1 −1

x+

1
0
0

u,
y =

[
0 0 1

]
x

1. Design an observer with poles at −4 and −4± j2.

2. Design a state feedback so that the closed loop poles are located at −2 and −2± j2.

Solution:
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1. The poles of the observer the eigenvalues of A−TC, which, if T =
[
T1 T2 T3

]T ∈ R1×3,
equals:

A− TC =

0 0 0
1 0 0
0 1 −1

−
T1

T2

T3

 [0 0 1
]

=

0 0 −T1

1 0 −T2

0 1 −1− T3


with characteristic polynomial:

χA−TC(s) = det

 s 0 T1

−1 s T2

0 −1 s+ 1 + T3


= s
(
s(s+ 1 + T3) + T2

)
+ T1

= s3 + (1 + T3)s2 + T2s+ T1

Now, to place the poles at −4 and −4± 2, we want this characteristic polynomial to be:

(s+ 4)(s− (−4 + j2))(s− (−4− j2))

=(s+ 4)((s+ 4)2 + 4) = (s+ 4)(s2 + 8s+ 20)

=s3 + 12s2 + 52s+ 80

Comparing the two polynomials, we see that we should set:

T =

T1

T2

T3

 =

80
52
11


2. The closed-loop poles the eigenvalues of A − BF , which, if F =

[
F1 F2 F3

]
∈ R3,

equals:

A−BF =

0 0 0
1 0 0
0 1 −1

−
1

0
0

 [F1 F2 F3

]

=

−F1 −F2 −F3

1 0 0
0 1 −1


with characteristic polynomial:

χA−BF (s) = det

s+ F1 F2 F3

−1 s 0
0 −1 s+ 1


= (s+ F1)s(s+ 1) + F2(s+ 1) + F3

= s3 + (F1 + 1)s2 + (F1 + F2)s+ (F2 + F3)
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Now, to place the poles at − and −4± 2, we want this characteristic polynomial to be:

(s+ 2)(s− (−2 + j2))(s− (−2− j2))

=(s+ 2)((s+ 2)2 + 4) = (s+ 2)(s2 + 4s+ 8)

=s3 + 6s2 + 16s+ 16

Comparing the two polynomials, we see that we should set:

F =
[
F1 F2 F3

]
=
[
5 11 5

]

Reduced Order Observer Design:

In the above analysis, we constructed full-order observers for LTI systems, i.e. observers
with states of the same dimension as the states in the original LTI system. However, this may
be needlessly complicated, especially if several of the states are directly measured in y.

To be more specific, since y = Cx, where C ∈ Rp×n we can derive rank(C) linearly
independent relations among the different dimensions of the state x at any given time. We can
assume C has full row rank, i.e. rank(C) = p, since if not, we can simply remove redundant
outputs from our system representation via Gaussian elimination. Now, instead of designing
a full-order observer with n states, we can instead design a reduced-order observer with n −
rank(C) = n − p states, which, together with the direct observations y = Cx, allow us to
reconstruct an estimate of the system state with asymptotically decaying error. The general
idea is to design an observer some T = R(n−p)×n such that:[

T
C

]
∈ Rn×n

is invertible. Note that the matrix T ∈ R(n−p)×p here maps the output of the partial state
observer to the estimate of the state, as shown in the figure below. It is not the output
feedback used in the full observer case; for the partial state observe, we use ”L” instead, as
described below.
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As with the full observer case, we consider the estimator dynamics to be of the form:

˙̂z = Mz +Nu+ Ly

for some M ∈ Rp×p, N ∈ Rp×ni , L ∈ Rp×no . (Note that, since the estimator state z and system
state x now have different dimensions, M is no longer n× n.) We wish to choose M,N,L such
that the error :

e ≡ ẑ − Tx

asymptotically approaches 0 as t→∞. To do so, we retrace the steps taken in the derivation
of the full-state observer. Since:

ẋ = Ax+Bu,

y = Cx,

˙̂z = Mẑ +Nu+ Ly,

and e = ẑ − Tx, we have:

∵

[
ẋ
˙̂z

]
=

[
A O
LC M

] [
x
ẑ

]
+

[
B
N

]
u, and

[
x
ẑ

]
=

[
I O
T I

] [
x
e

]
,

⇒
[
ẋ
ė

]
=

[
I 0
T I

]−1 [
A O
LC M

] [
I 0
T I

] [
x
e

]
+

[
I 0
T I

]−1 [
B
N

]
u

=

[
I 0
−T I

] [
A O

LC +MT M

] [
x
e

]
+

[
I 0
−T I

] [
B
N

]
u

=

[
A O

MT − TA+ LC M

] [
x
e

]
+

[
B

−TB +N

]
u

In other words:

ẋ = Ax+Bu,

ė = (MT − TA+ LC)x+Me+ (N − TB)u.

Since we wish to design M,N,L such that e → 0 as t → ∞, the above dynamics suggests
choosing M,N,L such that ė = Me, with M to be asymptotically stable (i.e. with σ(M) ∈ C−).
In other words, we want:

1. N = TB.

2. MT − TA+ LC = O.

3. σ(M) ∈ C−

The following design steps provide one method of achieving the above objectives:

1. Choose M such that σ(M) ∈ C−.
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2. Choose L.

3. Solve for T from MT − TA+ LC = O.

4. Solve for N in N = TB.

5. Check that

[
T
C

]
is invertible, e.g. by showing that:

det

([
T
C

])
6= 0.

While this design procedure may appear reasonable for simple systems, it is not recommended

in general, since it gives the designer no control over the matrix

[
T
C

]
. Thus, if

[
T
C

]
is close to

being singular, its inverse would result in a huge gain in the backward loop.

Consider instead the following design.

Reduced Order Observer Design—Algorithm:

1. Find an equivalent representation for the plant as follows; as before, we assume C to be
of full column rank (i.e. rank(C) = p):

Σ :

{
ẋ = Ax+Bu,

y = Cx
,

{
ẋ = Ax+Bu,

y = Cx

where x = Sx and:

A = S−1AS ≡
[
A11 A12

A21 A22

]
B = S−1B =

[
B1

B2

]
C = CS =

[
C1 O

]
for some invertible S ∈ Rn×n, and invertible C1 ∈ Rp×p. That C = CS =

[
C1 O

]
,

with C1 invertible, can always be achieved by choosing the invertible S ∈ Rn×n, when
multiplied to the right of C, to rearrange the columns of C in such a way that the first
p columns become linearly independent, and the remaining columns are annihilated. (In
linear algebra, we call this the column echelon form of C). By construction, A11 ∈
Rp×p, B1 ∈ Rp×m, C1 ∈ Rp×p

2. Choose T,M :
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Design an observer for x, i.e. construct a state estimate ẑ such that ẑ → x
asymptotically as t → ∞. Specifically, we choose T =

[
T1 I

]
for some T1 ∈ R(n−p)×p.

This is done to force

[
T
C

]
to assume the form:

[
T
C

]
=

[
−T1 I
C1 O

]
,

which would then always be invertible, as I and C1 both have full row rank. It remains
to solve for T1, which we can do using the criterion MT − TA+ LC = O:

O = MT − TA+ LC

= M
[
−T1 I

]
−
[
−T1 I

] [A11 A12

A21 A22

]
+ L

[
C1 O

]
=
[
−MT1 + T1A11 − A21 + LC1 M + T1A12 − A22

]
In particular, M = A22−T1A12, and we wish for M to have eigenvalues strictly on the left
half complex plane. Notice that this is simply a standard pole placement problem; that
is, if (A22, A12) is observable, then there exists some T1 such that σ(M) = σ(A22−T1A12)
can be placed wherever we want.

We conclude our analysis by showing that, if (A,C) is observable, then (A22, A12) is
indeed observable. This is because, for each s ∈ C:

n = rank

sI − A11 −A12

−A21 sI − A22

C1 O

 = rank

O −A12

O sI − A22

I O


= p+ rank

([
−A12

sI − A22

])
= p+ rank

([
sI − A22

A12

])
⇒ rank

([
sI − A22

A12

])
= n− p,

as applying elementary row operations to a matrix does not affect its rank. Thus,[
sI − A22

A12

]
has full column rank.
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3. Solve for L:

From the above derivation, we have:

−MT1 + T1A11 − A21 + LC1 = O,

⇒L = (MT1 − T1A11 + A21)C−1
1

4. Solve for N :

Finally, we have:

N = TB =
[
−T1 O

] [B1

B2

]
= −T1B1 +B2

Example. Design a reduced order observer for the system:

ẋ =

[
0 1
−2 0

]
+

[
0
1

]
u,

y =
[
1 0

]
x

Solution :
Observe that n = 2, p = 1, and C is already in column echelon form.

1. Since C is already in column echelon form with p = 1, we have C1 = 1.

2. Let T =
[
−T1 1

]
, and observe that:

A =

[
A11 A12

A21 A22

]
=

[
0 1
−2 0

]
Thus, if we choose a particular stable M , e.g. M = −1, we can solve for T1 as follows:

1 = M = A22 − T1A12 = 0− t1 · 1 = −t1,
⇒ T1 = 1.

3. Solve for L:

L = (MT1 − T1A11 + A21)C−1

= (−1 · 1− 1 · 0 + (−2)) · 1−1

= −3.

4. Solve for N :

N = −T1B1 +B2 = −1 · 0 + 1 = 1.



Chapter 6

Additional Topics

6.1 Lecture 11

In this final lecture, we combine everything we have learned in previous lectures and examine a
classical problem in control theory—the linear quadratic regulator (LQR). This lecture draws
largely from Professor Daniel Liberzon’s text ”Calculus of Variations and Optimal Control, A
Concise Introduction” [6].

Note. We will assume t0 = 0, and positive state feedback, throughout the following derivations.

Finite-Horizon LQR Problem—Riccati Differential Equation Method

Definition 6.1 (Finite-Horizon LQR Problem). The finite-horizon linear quadratic
optimal control problem is defined as follows—Given the system:

ẋ = Ax+Bu, x(0) = x0,

y = Cx,

evolving in the time interval [0, t1] with x ∈ Rn, u ∈ Rni, and (A,B) controllable, (A,C)
observable, find the input function u(·) : [0, t1] that minimizes a quadratic cost functional:

J
(
u(·)

)
=

∫ t1

0

[
x?Qx+ u?Ru

]
dt+ x(t1)?Sx(t1)

satisfying Q ≡ C?C ≥ 0, R > 0 for each t ∈ [0, t1], and S ≥ 0. (The argument t is abbreviated
in the integrand, for ease of notation).

Just as the Lyapunov equation can be motivated by a quadratic value function, here we
attempt to rewrite the final cost x(t1)TSx(t1) in terms of some initial cost, plus an integrated
term. In particular, consider the following theorem.

233
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Theorem 6.2 (Finite-Horizon LQR Solution: RDE Method). Let P (t) ∈ Rn×n be the
solution to the final state Riccati differential equation (RDE):

Ṗ + A?P + PA− PBR−1B?P +Q = 0, P (t1) = S.

Then the optimal control to the finite-horizon LQR problem is the linear time-varying control:

uopt(t) = −R−1B?Px(t)

where the argument t is hidden in R,B, P , for convenience of notation. The corresponding
optimal cost is:

J(uopt,[0,t]) = x?0P (0)x0

Proof. By directly expanding the cost function, we have:

J(u[0,t1]) =

∫ t1

0

(x?Qx+ u?Ru)dt+ x(t1)?Sx(t1)

=

∫ t1

0

(x?Qx+ u?Ru)dt+ x(0)?P (0)x(0) +

∫ t1

0

d

dt
(x?Px)dt

=

∫ t1

0

(x?Qx+ u?Ru)dt+ x(0)?P (0)x(0)

+

∫ t1

0

[
(Ax+Bu)?Px+ x?P (Ax+Bu) + x?Ṗ x

]
dt

=

∫ t1

0

(x?Qx+ u?Ru)dt+ x(0)?P (0)x(0)

+

∫ t1

0

[
x?A?Px+ x?PAx+ u?B?Px+ x?PBu+ x?Ṗ x

]
dt

= x(0)?P (0)x(0) +

∫ t1

0

x?
(
Ṗ + A?P + PA+Q− PBR−1B?P

)
xdt

+

∫ t1

0

[
(u+R−1B?Px)?R(u+R−1B?Px)

]
dt

= x(0)?P (0)x(0) +

∫ t1

0

[
(u+R−1B?Px)?R(u+R−1B?Px)

]
dt

where, in the second-to-last step, we have completed the square inside the second integral, to
force the integrand into a quadratic form.

The optimal control and cost are thus:

uopt ≡ arg min
u[t0,t1]

J(u[t0,t1]) = −R−1B?Px,

⇒ J(uopt) = min
u[t0,t1]

J(u[t0,t1]) = x?0Px0

Since J(u[t0,t1]) ≥ 0 for any arbitrary x0, we have P0 ≥ 0. �
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Remark. In general, Riccati differential equations are mathematically defined as the first-order
differential equations that are quadratic, i.e. of the form:

ẋ(t) = p0(t) + p1(t)x(t) + p2(t)x2(t),

where p2(t) is a non-zero function. However, here, for the purposes of solving the LQR problem,
we will restrict ourselves the particular matrix form of the RDE shown above.

Infinite-Horizon LQR Problem

Below, we state the infinite-horizon analogue of the finite-horizon LQR problem.

Definition 6.3 (Infinite-Horizon LQR Problem). The infinite-horizon linear quadratic
optimal control problem is defined as follows—Given the system:

ẋ = Ax+Bu, x(0) = x0,

y = Cx,

evolving in the time interval [0,∞) with x ∈ Rn, u ∈ Rni, and (A,B) controllable, (A,C)
observable, find the input function u[0,∞) that minimizes the quadratic cost:

J
(
u(·)

)
=

∫ ∞
0

[
x?Qx+ u?Ru

]
dt

satisfying Q ≡ C?C ≥ 0, R > 0 for each t ∈ [0,∞). (Again, the argument t is abbreviated in
the integrand, for ease of notation).

Remark. The infinite-horizon LQR problem is simply its finite-horizon LQR counterpart with
t1 → ∞ and S = 0. The reason we set S = 0 is because, in general, for the infinite-horizon
quadratic cost to be finite, we require the state and input to converge to 0.

Our strategy to solving the infinite-horizon LQR problem will be to observe its similarities
with its finite-horizon LQR problem. In particular, since we wish to take t1 →∞ in the infinite-
horizon variant of the problem, let us regard t1 as a parameter to be varied, rather than fixed (as
the was case for the finite-horizon LQR). In particular, we will denote by P (t, t1) the solution
at time t of the RDE:

Ṗ + A?P + PA− PBR−1B?P +Q = 0,

P (t1) = 0.

and let the corresponding finite-horizon LQR optimal control and minimum cost be:

ut1opt(t) = −R−1B?P (t, t1)x(t), ∀ t ∈ [0, t1],

J t1(ut1opt,[0,t1]) = x?0P (t, t1)x0.



236 CHAPTER 6. ADDITIONAL TOPICS

It is natural to conjecture that the infinite-horizon optimal cost and optimal control can
be obtained by simply applying the limit t1 →∞ to the above finite-horizon solutions:

u∞opt(t) = −R−1B?

(
lim
t1→∞

P (t, t1)

)
x(t), ∀ t ∈ [0,∞)

J∞(u∞opt,[0,∞)) = x?0

(
lim
t1→∞

P (t, t1)

)
x0.

The next theorem indicates that this conjecture is correct. To do so, we must establish
several facts, such as the existence and positive-definiteness of the limit limt1→∞ P (t, t1).

Theorem 6.4 (Infinite-Horizon LQR Solution). Suppose we are given the LTI system
described in the infinite-horizon LQR problem.

1. Consider the Riccati Differential Equation and the Algebraic Riccati Equation given below:

Ṗ = −PA− A?P −Q+ PBR−1B?P, P (t1) = 0, (6.1)

PA+ A?P +Q− PBR−1B?P = O. (6.2)

Let P (0, t1) be the solution of (6.1) at time 0. Then:

P ≡ lim
t1→∞

P (0, t1)

exists and is a positive definite solution of (6.2).

2. The optimal cost is:

J(uopt) = xT0 Px0,

which equals the t1 →∞ limit of the finite-horizon optimal cost xT0 P (0, t1)x0. An optimal
control that achieves this optimal cost is the linear time-invariant state feedback:

uopt(t) = −R−1B?Px(t),

which is the limit as t1 →∞ of the finite-horizon optimal feedback ut1(t) = −R−1B?P (t, t1)x(t)
derived in the above section on the finite-horizon LQR problem.

3. The corresponding closed-loop system ˙xopt = (A−BR−1B?P )xopt is exponentially stable.

4. P is the unique positive definite solution to (6.2).

Proof.

1. We divide the proof for this portion of the theorem into four parts. First, we observe
the behavior of P (0, t1) as t1 →∞. Then, we show that lim

t→∞
P (0, t1) exists, and satisfies

(6.2).
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• Monotonicity of x?0P (0, t1)x0 with respect to t1:

The finite-horizon optimal cost x?0P (0, t1)x0 is a monotonically non-decreasing
function of the final time t1, since, if t2 > t1:

x?0P (0, t2)x0 =

∫ t2

0

[
x?Qx+ u?Ru

]
dt ≥

∫ t1

0

[
x?Qx+ u?Ru

]
dt

= x?0P (0, t1)x0

Note that the trajectory x(t) in the above two integrands is the same non-negative
value, since we apply the same control in the interval [t0, t1], and Q ≥ 0, R > 0.

• Boundedness of x?0P (t0, t1)x0, given (A,B) controllable:

Since (A,B) is controllable, there exists some time T and a control u′[0,T ]

that steers the LTI system from (x0, 0) to (0, T ). Let u′[0,∞) denote the control that

equalsu′[0,T ] on the interval [0, T ], and 0 afterwards. If we apply u′[0,∞), we obtain a

state trajectory that is identically zero for all t ≥ T . Now, since x?0P (0, t1)x0 is the
optimal finite-horizon cost for any t1 ≥ 0, we have for each t1 ≥ T :

x?0P (0, t1)x0 ≤
∫ ∞

0

[
x?Qx+ u′?Ru′

]
dt =

∫ T

0

[
x?Qx+ u′?Ru′

]
dt <∞

This establishes the boundedness of x?0P (0, t1)x0 with respect to t1.

• Existence and Positive Definiteness of P ≡ limt1→∞ P (0, t1):

The two claims above, combined with the Monotonic Sequence Convergence
Theorem in analysis (see [8], Theorem 3.14), indicate that lim

t1→∞
x?0P (0, t1)x0 exist

for any choice of x0. Here, we wish to show that, in fact, the matrix lim
t1→∞

P (0, t1) is

also well-defined. To see this, let ei, ej ∈ Rn be any two distinct standard vectors in
Rn. Then:

e?iP (0, t1)ei = Pii(0, t1),

e?jP (0, t1)ej = Pjj(0, t1),

(ei + ej)
?P (0, t1)(ei + ej) = Pii(0, t1) + 2Pij(0, t1) + Pjj(0, t1).

where Pkl[0, t1] denotes the (k, l)-th element of P (0, t1), for any k, l ∈ {1, · · · , n}.
Since the left-hand side of each of the above equalities converges as t1 →∞, so does
the right-hand side. Thus, limt1→∞ Pij(0, t1) exists for any i, j ∈ {1, · · · , n}, and it
automatically follows that so does:

P ≡ lim
t1→∞

P (0, t1).
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One can think of the above limit as the matrix obtained by starting from the zero
matrix at some very negative initial time t0 → −∞, then propagating forward to
time 0 along the RDE (6.1).

Observe that P is positive semi-definite, since P (0, t1) is positive semi-definite
for each t1 ≥ 0, and P (t, t1) is continuous in t1 (see Fundamental Theorem of
Differential Equations, i.e. Theorem 3.4).

• P ≡ limt1→∞ P (0, t1) satisfies (6.2):

Applying t1 →∞ to both sides of the RDE (6.1), we find that limt1→∞ Ṗ (0, t1) must
also exist, and equal the zero matrix. Thus, P satisfies the ARE (6.2).

2. Observe that, for any control u[0,∞) over the infinite time horizon, we have:

J(u[0,∞)) =

∫ ∞
0

[
x?Qx+ u?Ru

]
dt ≥

∫ t1

0

[
x?Qx+ u?Ru

]
dt

≥ x?0P (0, t1)x0.

for any t1 ≥ 0. Taking t1 →∞ on both sides, we have:

J(u[0,∞)) ≥ x?0Px0.

Thus, the infinite-horizon cost must be at least x?0Px0.

Meanwhile, if we take the input to be uopt(t) ≡ −R−1B?Px(t), we have the
trajectory:

ẋ = Ax+Bu = (A−BR−1B?P )x

Thus, over any finite horizon [0, t):

J t1(uopt) =

∫ t1

0

[
x?Qx+ u?optRuopt

]
dt =

∫ t1

0

x?(Q+ PBR−1B?P )xdt

≤
∫ t1

0

x?(PA+ A?P − 2PBR−1B?P )xdt

≤ −
∫ t1

0

[
x?(A−BR−1B?P )?Px+ x?P (A−BR−1B?P )x

]
dt

≤ −
∫ t1

0

[
ẋ?Px+ x?Pẋ

]
dt

= −
∫ t1

0

d

dt
(x?Px)dt

≤ x?0Px0 − x(t1)?Px(t1)

≤ x?0Px0
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Taking t1 →∞ on both sides, we have:

J(uopt) ≤ x?0Px0.

In summary, the infinite-horizon cost J(u) must be at least x?0Px0, while the optimal
infinite-horizon cost J(uopt) is at most x?0Px0. It follows that:

J(uopt) = x?0Px0.

3. Since the system is LTI, it suffices to show that σ(A − BR−1B?P ) ∈ C−. Let λ ∈
σ(A−BR−1B?P ) be arbitrarily given, with corresponding eigenvector v 6= 0. Then, from
the ARE (6.2):

0 = v?
[
PA+ A?P +Q− PBR−1B?P

]
v

= v?
[
P (A−BR−1B?P ) + (A−BR−1B?P )?P +Q+ PBR−1B?P

]
v

= 2Re(λ) · v?Pv + v?(Q+ PBR−1B?P )v

Since P ≥ 0, Q > 0, and R ≥ 0, we have Re(λ) ≤ 0.

Now, suppose by contradiction that Re(λ) = 0. Then, from the above chain of equalities,
we have:

v?(Q+ PBR−1B?P )v = 0

. Recall that v was originally defined as an eigenvector of (A−BR−1B?P ), with corresponding
eigenvalue λ, and that Q = C?C ≥ 0 and R > 0. Thus:

(A−BR−1B?P )v = λv,

Cv = 0,

B?Pv = 0

⇒

{
Av = λv,

Cv = 0,

⇒
[
λI − A
C

]
v = 0

Since (A,C) is observable, we have v = 0 by the PBH test, in contradiction of the fact
that v 6= 0 from its definition as an eigenvector of (A−BR−1B?P ).

4. Again, we separate the proof into two claims.

• P > 0:

We have already established that P ≥ 0. Now, let an initial state x0 ∈ Rn be
given such that x?0Px0 = 0. By the above statements in this theorem, x?0Px0 is, in
fact, the infinite-horizon optimal cost, so this implies that:

0 = J(uopt) =

∫ ∞
0

[
x?C?Cx+ u?optRuopt

]
dt = 0,

⇒y = Cx = 0, uopt = 0,
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since R > 0. In other words, if the observable system (A,B) is propagated from
the initial state x0 with no control, its output is identically 0, at all times t ≥ 0.
This implies that the state x(t) itself must be identically 0, at all times t ≥ 0. In
particular, x0 = 0. This establishes P > 0, as desired.

• P is the unique positive semi-definite solution to the ARE (6.2)

Suppose there exists another P ′ ≥ 0 satisfying the ARE (6.2). Fix any initial
state x0, and consider the new finite-horizon cost function:

J ′t1(u[0,t1]) ≡
∫ t1

0

[
x?Qx+ u?Ru

]
dt+ x?(t1)Px(t1)

From the solution to the finite-horizon LQR problem, we know that the optimal cost
with respect to the above cost function is x?0P (0;P , t1)x0, where P (0;P , t1) denotes
a positive semi-definite satisfying the RDE:

Ṗ = −PA− A?P −Q+ PBR−1B?P, P (t1) = P .

However, by definition, P itself satisfies the ARE:

0 = −PA− A?P −Q+ PBR−1B?P

Thus, P (0;P , t1) = P , and so the optimal cost is x?0Px0. Since this holds for any
arbitrary t1, we conclude that this is also the infinite-horizon optimal cost.

On the other hand, we can directly calculate an expression for the infinite-
horizon cost, as follows:

∵J ′t1(u[0,t1]) ≡
∫ t1

0

[
x?Qx+ u?Ru

]
dt+ x?(t1)Px(t1),

⇒J ′∞(u[0,∞)) =

∫ ∞
0

[
x?Qx+ u?Ru

]
dt+ lim

t1→∞
x?(t1)Px(t1)

=

∫ ∞
0

[
x?Qx+ u?Ru

]
dt ≥

∫ ∞
0

[
x?Qx+ u?optRuopt

]
dt

= J∞(uopt) = x?0Px0

where the last two equalities follow from the fact that ˙xopt = (A − BR−1B?P )xopt
is exponentially stable, and so x(t1) → 0 as t1 → ∞. Now, equality holds when we
take the control u to be uopt = −R−1B?Px. The corresponding optimal cost is thus
x?0Px0.

In summary, the infinite-horizon optimal cost is x?0Px0 = x0Px0 for any initial
state x0. Taking x0 to be ei, ej, ei + ej, and repeating the logic used to prove the
boundedness of x?0P (0, t1)x0 for any x0 and t1 ≥ 0, we find that P = P .

�
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Remark.

1. If (A,B) were not controllable, the finite-horizon optimal cost x?0P (0, t1)x0 may be unbounded
above as t1 → ∞. For example, if ẋ = ax, where a > 0, then x(t) = eat is clearly
unbounded above, and so is the infinite-horizon optimal cost:

J(u[0,t1]) =

∫ t1

0

[
x?Qx+ u?Ru

]
dt

regardless of our choice of input (since B = 0 in this case). We reiterate that the reason
for this phenomenon is that (A,B) is uncontrollable.

2. In fact, the optimal control uopt(t) = −R−1B?P (t, t1)x(t) given above is unique. The
proof of this statement follows by applying the Hamilton-Jacobi-Bellman equation (see
Appendix).

Examples

Example (Finite-Horizon Optimal Cost). Consider the scalar integrator and associated cost:

ẋ = u, x(0) = x0,

J(u) =

∫ t1

0

[
x2 + u2

]
dt

for any t1 ≥ 0. Suppose we wish to minimize the cost for some fixed t1. From the above
equations, we have A = 0, B = 1, Q = 1, R = 1,M = 0. Substituting into the RDE (6.1) and
solving for P , we have:

Ṗ = P 2 − 1, P (t1) = 0,

⇒
∫ P (t1)

P (t)

1

P 2 − 1
dP =

∫ t1

t

dτ,

⇒ − tanh−1(P (t1)) + tanh−1(P (t)) = t1 − t,
⇒P (t) = tanh(t1 − t),

since P (t1) = 0. Substituting back into our expression for u(t), we have:

u(t) = − tanh(t1 − t)x(t)

as the optimal control.

Remark. It is interesting to observe that, if we had defined R = −1 instead, the RDE (6.1)

Ṗ = −P 2 − 1, P (t1) = 0,

⇒ P (t) = tan(t− t1),



242 CHAPTER 6. ADDITIONAL TOPICS

with corresponding solution:

and control u(t) = − tan(t − t1)x, which is not well-defined when t − t1 is an odd multiple of
π/2.

This illustrates the importance of postulating that R ≥ 0.

The next example uses a simple, scalar system to illustrate that, without assuming
(A,C) observable, we cannot guarantee that the input achieving the infinite-horizon optimal
cost is stabilizing.

Example (Infinite-Horizon Optimal Cost). Consider the following system and associated
cost:

ẋ = x+ u, x(0) = x0,

J(u) =

∫ ∞
0

u2(t)dt

Suppose we to calculate the finite-horizon optimal control and cost for the system. From the
above equations, we have A = 1, B = 1, Q = 0, R = 1. Substituting into the ARE (6.2), we
have:

∵PA+ A?P +Q− PBR−1B?P = O,

⇒2P − P 2 = O.

Thus, P = 0 or 2. Let us consider the cost associated with each case:

• If P = 0, the corresponding control, closed-loop dynamics, and cost are:

uopt = 0,

˙xopt = xopt,

J(uopt) = 0.

respectively. Thus, the corresponding control optimizes the infinite-horizon cost, but fails
to create a stable closed-loop system.

• If P = 2, the corresponding control and cost are:

uopt = −2xopt,

˙xopt = −xopt,
J(uopt) = 4x2

0.

respectively. Thus, the corresponding control generates an stable closed-loop system, but
fails to optimize the infinite-horizon cost.
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Finite-Horizon LQR Problem—Hamiltonian Method

Below, we present an alternative, but equivalent, formulation of the solution to the LQR
problem. This method can be found on Lecture 11, pgs. 1-12 of Professor Claire Tomlin’s
Lecture Notes, as well as Chapter 2, pgs. 29-37 of the Callier & Desoer text desoer1. First, we
define a slightly more specific version of the LQR optimal control problem.

Definition 6.5 (Finite-Horizon LQR Problem (Modified version)). The finite-horizon
linear quadratic optimal control problem (discussed in this subseciton) is defined as
follows—Given the system:

ẋ = Ax+Bu, x(0) = x0,

y = x,

evolving in the time interval [0, t1] with x ∈ Rn, u ∈ Rni, and (A,B) controllable, (A,C)
observable, find the input function u(·) : [0, t1] that minimizes a quadratic cost functional:

J
(
u(·)

)
=

∫ t1

0

[
x?C?Cx+ u?u

]
dt+ x(t1)?Sx(t1) (6.3)

where C(·) : R+ → Rn0 is a piecewise continuous function, S ≥ 0, and J(·) maps a continuous
function with domain [0, t1] and codomain Rni (namely, u[0,t1] into R. (As with before, the
argument t is abbreviated in the integrand, for ease of notation).

Before continuing, we will review our definition of the adjoint system (or dual system),
as given by (5.15), reproduced below.

Definition 6.6 (Adjoint System (Dual System)). The adjoint system (or dual system) of
the linear time-varying system:

Σ :

{
ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

is defined as:

Σ :

{
ẋ(t) = −A?(t)x(t)− C?(t)u(t)

y(t) = B?(t)x(t) +D?(t)u(t)

The following useful lemma follows. Its proof can be found on pg. 36 of the Callier &
Desoer text [4].

Lemma 6.7 (Pairing Lemma). Let Σ be the dual system of Σ, with notations for inputs,
states, and outputs given as defined above. Then:

〈x(t), x(t)〉+

∫ t

0

〈u(τ), y(τ)〉dτ = 〈x(0), x(0)〉+

∫ t

0

〈y(τ), u(τ)〉dτ

for any t, t0 ∈ R+, x(t0), x̃(t) ∈ Rn, u(·) ∈ U , and u(·) ∈ U .
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Remark. The remarkable versatility of the Pairing Lemma lies in the fact that at it holds
regardless of our choice of u(·), u(·), x(0), x(0), and thus grants us the ability to freely define
these parameters.

Proof. By duality, we have:

ẋ = −A?x− C?u,

y = B?x+D?u.

Rearranging terms and combining the above inequalities, we have:

0 = 〈ẋ+ A?x+ C?u, x〉+ 〈−y +B?x+D?u, u〉
= 〈ẋ, x〉+ 〈x,Ax〉+ 〈u,Cx〉 − 〈y, u〉+ 〈x,Bu〉+ 〈u,Du〉
= 〈ẋ, x〉+ 〈x,Ax+Bu〉+ 〈u,Cx+Du〉 − 〈y, u〉
= 〈ẋ, x〉+ 〈x, ẋ〉+ 〈u, y〉 − 〈y, u〉

=
d

dt
〈x, x〉+ 〈u, y〉 − 〈y, u〉

We recover the desired result by rearranging terms and integrating from 0 to t. �

In this alternative solution method, instead of deriving of the optimal input u[0,t1] and
cost J(u[0,t1]) directly and invoking properties of the Riccati differential equation, we will instead
observe what happens to the cost functional J(u(·)) when the input function u is perturbed by
an infinitesimal amount, i.e. u→ u+ δu.

Definition 6.8 (Global Minimizer of the Cost Functional). Given a cost functional
J(uopt(·)), a global minimizer of J(u(·)) is an input function uopt such that, for each ε > 0
and piecewise continuous δu : [0, t1]→ Rni:

J(uopt + εδu) ≥ J(uopt)

Proposition 6.9. Consider the expansion of J(u+ εδu) (with ε > 0) about ε = 0, as expressed
in the following form:

J(u+ εδu) = J(u) + ε · δJ(δu) + o(ε)

Then, for a piecewise continuous input u0,t1] to be a global minimizer of the cost functional J ,
it is necessary and sufficient that, for any piecewise continuous input perturbation δu[0,t1]:

δJ(δu) = 0

in the expansion of J(u) about uopt.

Proof. Expanding J(u+ εδu), we have:

J(u+ εδu) =

∫ t1

0

[
‖u+ εδu‖2 + ‖C(x+ εδx)‖2

]
dt+ (x+ εδx)?(t1)S(x+ εδx)(t1)

= J(u) + ε ·
[
2

∫ t1

0

(
〈u, δu〉+ 〈Cx,Cδx〉

)
dt+ 〈Sx(t1), δx(t1)

]
+ ε2 · J(δu)

≡ J(u) + ε · δJ(δu) + ε2 · J(δu) (6.4)
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where we have defined:

δJ(δu) = 2

∫ t1

0

(
〈u, δu〉+ 〈Cx,Cδx〉

)
dt+ 〈Sx(t1), δx(t1). (6.5)

Observe that ε2 · J(δu) can also be expressed as o(ε).
”⇒ ” : If u[0,t1] is a global minimizer, then, for each ε ∈ R, we have:

0 ≤ J(u+ εδu)− J(u) = ε

[
δJ(δu) +

o(ε)

ε

]
Thus, for ε → 0+, we have δJ(δu) ≥ 0; for ε → 0−, we have δJ(δu) ≤ 0. We conclude that
δJ(δu) = 0.

”⇐ ” : Suppose δJ(δu) = 0. Then, from (6.4), we have:

J(uopt + εδu) = J(uopt) + ε2 · J(δu) ≥ J(u),

i.e. uopt is minimizing.
�

Theorem 6.10 (Finite-Horizon LQR Solution: Hamiltonian Method). Consider the
2n-dimensional two point boundary value problem, given by:[

ẋ
ẋ

]
=

[
A −BB?

−C?C −A?
] [
x
x

]
, (6.6)

x(0) = x0,

x(t1) = Sx(t1),

with corresponding matrix equation:[
Ẋ

Ẋ

]
=

[
A −BB?

−C?C −A?
] [
X
X

]
, (6.7)

X(0) = I,

X(t1) = S.

where the argument t is hidden in A,B,C,X,X, for convenience of notation. Then X(t) is
invertible for each t ∈ [0, t1], and the optimal control to the finite-horizon LQR problem is the
linear time-varying control:

uopt(t) = −B?x(t) (6.8)

= −B?XX−1x(t) (6.9)

with corresponding optimal cost:

J(uopt(·)) = 〈x0, x0〉 (6.10)

= 〈X(0)X−1(0)x0, x0〉 (6.11)



246 CHAPTER 6. ADDITIONAL TOPICS

Proof. We will divide the proof of this theorem into the following three components.

• uopt(t) = −B?x(t) is the optimal control, with corresponding optimal cost J(uopt(·)) .

• X(t) is invertible for each t ∈ [0, t1].

• x(t) = XX−1x(t).

Notice that the first claim establishes (6.8) and (6.10), whereas the second and third
establish (6.9) and (6.11). We begin the proof below.

• uopt(t) = −B?x(t) is the optimal control, with corresponding optimal cost J(uopt(·)):
If a perturbation δu in the input u results in a perturbation δx in the resulting

trajectory x, the resulting trajectory is ẋ+ δẋ = A(x+ δx) +B(u+ δu). Thus, the error
system is:

δẋ = Aδx+Bδu, x(0) = x0. (6.12)

δ y = δ x

By the definition of dual system (Theorem 5.15), the dual system of (6.12) is as follows:

ẋ = −A?x− u, x(t1) = x1 (6.13)

y = B?x

Recall that this holds for any choice of x1 and u(t).

Applying the Pairing Lemma (Lemma 6.7) to (6.12), (6.13), we have:

〈x1, δx(t1)〉+

∫ t1

0

〈u, δx〉dt =

∫ t1

0

〈B?x, δu〉dt

Meanwhile, (6.5) gives the expression for the cost perturbation δJ(δu). Combining this
with the above equation from the Pairing Lemma, we have:

δJ(δu) =

∫ t1

0

〈u, δu〉+ 〈C?Cx, δx〉dt+ 〈Sx(t1), δx(t1)〉

=

∫ t1

0

〈u+B?x, δu〉+ 〈C?Cx− u, δx〉dt+ 〈Sx(t1)− x1, δx(t1)〉

Again, this holds for any choice of x1 and u(t). Now, Proposition 6.9 impliess that, to
minimize δJ(δu), we wish to find a choice of u such that δJ(δu) = 0. The form of the
above equation implies that this is easiest when we choose:

u = C?Cx,

x1 = S x(t1),
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which rids us of the second and third terms (those unrelated to δu). With this choice,
δJ(δu) now becomes:

δJ(δu) =

∫ t1

0

〈u+B?x, δu〉+ 〈C?Cx− u, δx〉dt

To ensure that this value stays 0 for any choice of δu, we must choose:

uopt = −B?x

for our control. This verifies that the optimal control is given by (6.8). The corresponding
optimal cost is thus:

J(uopt) ≡
∫ t1

0

[
〈u, u〉+ 〈Cx,Cx〉

]
dt+ x?(t1)S x(t1)

=

∫ t1

0

[
〈−B?x, u〉2 + 〈u, x〉

]
dt+ x?(t1)S x(t1)

= 〈x0, x0〉

where the final equality follows from the Pairing Lemma. This verifies (6.9).

• X(t) is invertible for each t ∈ [0, t1]:

Consider (6.7). Suppose by contradiction that there exists some τ ∈ [0, t1) such
that X(τ) is singular (since X(t1) = I, we have τ 6= t1). This implies there exists some
k 6= 0 such that X(τ)k = 0. Now, observe that:[

x(t)
x(t)

]
=

[
X(t)
X(t)

]
k

solves the differential equations in (6.6) for each t ∈ [τ, t1], with boundary conditions
changed to:

x(τ) = X(τ)k = 0,

x(t1) = X(t1)k = Sk.

Substituting into (6.9), we have:

0 = 〈x(τ), x(τ)〉 = J(u[τ,t1])

=

∫ t1

τ

[
‖u‖2 + ‖Cx‖2

]
dt+ x?(t1)Sx(t1).

Since S > 0, each of the above terms in the final integral must be zero, i.e. x(t1) = 0,
and u(t) = 0, Cx(t) = 0 for each t ∈ [τ, t1]. Thus, the original dynamics become:

ẋ(t) = Ax(t) +Bu(t) = Ax(t), x(τ) = 0,

which implies x(t1) = 0, contradicting the fact that, since X(t1) is invertible and k 6= 0:

x(t1) = X(t1)k

is nonzero. The claim follows by contradiction.
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• x(t) = XX−1x(t):

Our goal is to associate x(t) to x(t). Now, observe that:[
x(t)
x(t)

]
=

[
X(t)
X(t)

]
k

satisfy (6.7). The Fundamental Theorem of Differential Equations (Theorem 3.4) thus
implies that they must be the unique solution to (6.7). Moreover, since X(t) is non-
singular for each t ∈ [0, t1], we have:

x(t) = X(t)X−1(t)x(t),

as claimed. Equations (6.10) and (6.11) thus follow. The proof is done.

�

Remark (Comparison of the Two Approaches ([4], Chapter 2, pg. 38)). It is interesting to
compare the two approaches to the finite-horizon LQR problem. For the variant of the problem
described in (6.5), the Riccati Differential Equation (RDE) approach gives the optimal control
as:

uopt(t) = −B?Px(t),

for each t ∈ [0, t1], with P (t) as the unique positive definite solution to the (quadratic) RDE
Ṗ + PA + A?P − PBB?P + C?C = 0, P (t1) = S, whereas the Hamiltonian method gives the
optimal control as:

uopt(t) = −B?XXx(t),

for each t ∈ [0, t1], with the tuple X,X satisfying the (linear) differential equations given by
(6.7).

These two formulations are, in fact, equivalent, as can be seen by ”establishing a
bijection” between the solution to the RRDE (modified for this variant of the problem, as
given above), and the solution to the Hamiltonian approach given by (6.6).

• Hamiltonian Approach → RDE:

Let X(t), X(t) be the solution to the Hamiltonian formulation (6.7), and define
P1 ≡ XX−1. Then, from (6.7), we have:

Ṗ1 = ẊX−1 −XX−1ẊX−1

= (−C?CX − A?X)X−1 − P1(AX −BB?X)X−1

= −C?C − A?P1 − P1A+ P1BB
?P1,

with P1(t1) = X(t1)X−1(t1) = S. Thus, P1 ≡ XX−1 is the unique solution to the RDE
Ṗ + PA+ A?P − PBB?P + C?C = 0.
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Now, since P1(t1) = S is positive definite, and therefore Hermitian, so is Ṗ1. Thus,
P1(t) is Hermitian for each [0, t1]. Meanwhile, from (6.11), we have:

x?0P (t0)x0 = x?0X(t0)X−1(t0)x0 = 〈x(t0), x(t0)〉?

= J(uopt,[t0,t]])
? ≥ 0,

for any choice of initial time t0, which implies that each P (t) is positive semidefinite.
Since RDEs yield unique positive semidefinite solutions, P (t) must the unique positive
definite solution to Ṗ + PA+ A?P − PBB?P + C?C = 0, P (t1) = S.

• RDE → Hamiltonian Approach:

Conversely, suppose P is the unique positive definite solution to the RDE Ṗ+PA+
A?P − PBB?P + C?C = 0, P (t1) = S. Following the RDE formulation, we know that
the optimal control is u(t) = −B?Px(t). Thus, we have:[

Ẋ
˙(PX)

]
=

[
Ẋ

ṖX + PẊ

]
=

[
(A−BB?P )X

(−PA− A?P + PBB?P − C?C)X + P (A−BB?P )X

]
=

[
(A−BB?P )X

(−A?P − C?C)X

]
=

[
A −BB?

−C?C −A?
] [

X
PX

]
.

Thus, the tuple (X,PX) satisfies the Hamiltonian formulation (6.7). Uniqueness follows
from the Fundamental Theorem (Theorem 3.4).

Although the two approaches are equivalent, it is interesting to contemplate their differences.
The RDE Ṗ +PA+A?P −PBB?P +C?C = 0, P (t1) = S is a quadratic differential equation,
whereas in the Hamiltonian formulation, (6.7) gives a system of two linear differential equations.
In effect, the Hamiltonian approach swaps the quadratic RDE for two linear ODEs, at the cost
of solving two variables (X,X) instead of one (P ).

Finally, we conclude this section with a specific example of an optimal control problem
for a non-linear system.

Example. Consider the non-linear system:

ẋ = f(x, u, t), x(0) = x0.

Given a cost functional J(u(·)) that depends only on the final state, i.e. of the form:

J(u(·)) = g(x(t1))

= g(s(t1, 0, x0, u(·)),

find the optimal piecewise continuous control that minimizes J(u(·)).
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Solution : In general, there is no closed-form solution. However, in practice, we
can start from a reasonable guess, and try to improve on it. Let ui(·), xi(·) be an initial guess,
and perturb it as follows:

ui(·)→ ui(·) + δu(·),
xi(·)→ xi(·) + δx(·).

The problem is now to find a perturbation δu(·) to decrease the cost, i.e. such that:

g
(
xi(t1) + δx(t1)

)
< g(xi(t1))

Since ẋ = f(x, u, t), the dynamics of the perturbation are:

δx = D1f(xi, ui, t)︸ ︷︷ ︸
≡A(t)

δx+D2f(xi, ui, t)︸ ︷︷ ︸
≡B(t)

δu, δx(0) = 0,

Consider the adjoint system given by:

ẋ = −A?(t)x(t), x(t1) = Dx1g
∣∣∣
xi(t1)

,

(which holds if we set y = 0 for the original system). Let Φ(t, τ) be the state transition matrix
describing the perturbation dynamics. Then x(t) = Φ?(t, t1)x(t1) = Φ?(t, t1)Dx1g|?xi(t1), and:

δg(t1) = Dx1g|xi(t1) · δx(t1)

=

∫ t1

0

Dx1g|xi(t1) Φ(t, τ)B(τ)δu(τ)dτ

=

∫ t1

0

x(τ)?B(τ)δu(τ)dτ.

Observe that the input perturbation:

δu(t) ≡ −αB?x(t) = −αB?XX−1x(t)

= −αB?Px(t)

always renders the cost perturbation δg(t1) non-positive. However, Proposition 6.9 implies that,
to optimize the cost, it is necessary and sufficient to choose a control ui(·) such that δg(t1) = 0
for any input perturbation δu. Thus, we must require:

B?(t)P (t) = 0

as a necesary condition for reaching a local optimum. In other words, a necessary condition for
reaching a local optimum is:

ẋi = f(xi, ui, t), xi(0) = x0,

ẋ = −(D1f)(xi, ui, t)x, x(t1) = D1g|xi(t1)

with (D2f)(xi, ui, t)x(t) = 0.
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Remark (Hamilton’s Equations). Alternatively, if we define the Hamiltonian as:

H(x, u, x, t) = x?f(x, u, t),

the necessary conditions described above can be rephrased as follows—Choose a control input
ui such that ∂H

∂u

∣∣
ui

= 0, and set:

ẋ =

(
∂H

∂x

)?
, x(0) = x0,

ẋ = −
(
∂H

∂x

)?
, x(t1) = (D1g)?(x(t1)).

These are known as Hamilton’s Equations. More details can be found in Chapter 2 of [6].

Example (Optimal Control of a Single-Axis Satellite Altitude). Suppose a given single-
axis satellite, as shown below, can be approximately described by the time-invariant system:

ẋ = Ax+Bu,

y = x

where A and B are given by:

A ≡
[
0 1
0 0

]
, B ≡

[
0
1

]
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Here, we wish to choose P ≥ 0, R > 0 to minimize the infinite-horizon cost given by:

J ≡
∫ ∞

0

(x?Qx+ u?Ru)dt

The figure on the next page shows MATLAB solutions with parameters set at:

Q =

[
1 0
0 0

]
, and

R = 10, 1, 0.01,

respectively.
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6.2 Hamilton-Jacobi-Bellman Equation

Dynamic Programming:

To motivate subsequent discussions regarding the Hamilton-Jacobi-Bellman Equation,
we first explain the principles of dynamic programming as they apply to a finite-time, discrete
system with a finite number of states and a finite number of control input choices at each
state. For example, suppose the state space X and input space U consist of n and ni elements,
respectively, and that the dynamics of the system evolve according to:

xk+1 = f(xk, uk), k = {0, 1, · · · , T − 1}

where T ∈ N, and xk ∈ X, uk ∈ U for each k = {0, 1, · · · , T}. Suppose we wish to minimize
some cost function:

J(x0, u0, u1, · · · , uT−1) +K(xT ),

where J : X × UT → R and K : X → R are the running cost and terminal cost, respectively.
The most straightforward method is to enumerate all possible state trajectories going

forward from (x0, t0), and compare the resulting costs. An alternative, and more efficient,
approach to the problem is to apply dynamic programming, in the form of backwards induction.
At time T , the terminal cost is known for each state xk. Now, at time T − 1, find a state and
control pair uT−1 that minimizes the cost-to-go, i.e. the sum of the one-step running cost
from T − 1 to T , and the terminal cost at time T . Take note of the corresponding one-step
trajectories, and repeat this process for times T − 2, T − 3, · · · , 1, 0, by working backwards
using the computed costs-to-go as the terminal cost for each step. We claim that, at the end
of this procedure, we will have obtained an optimal trajectory. This is because the backward
induction process eliminates all locally sub-optimal paths, which cannot be a part of any optimal
trajectory.

Let us compare the computational complexity of each approach. For the straightforward
approach, T additions are required to compute the cost for each of roughly nTi possible trajectories,
resulting in a computational cost of approximately O(nTi T ). For the dynamic programming
approach, there are T points in time, each of which requires a backward induction step of
choosing one of n possible states and one of ni inputs, corresponding to a computational cost
of approximately O(nTi T ). Thus, for a fixed number of states and inputs (i.e. fixed n, ni), it is
clear that dynamic programming is far more efficient than the forward search. This is because
dynamic programming allows us to eliminate large subsets of trajectories that are globally sub-
optimal in each unit time interval, by rejecting fragments of these sub-optimal paths at each
point in time. A brute-force forward search algorithm cannot accomplish this, since a locally
sub-optimal path fragment may be part of a globally optimal trajectory, and vice versa.

The advantages of using dynamic programming actually extend beyond ensuring higher
computational efficiency. In fact, the backwards induction process identifies an optimal control
for each initial state x0. In other words, dynamic programming generates an optimal control in
the form of a state feedback. Thus, this approach realizes the following quote given by Richard
E. Bellman, who first introduced dynamic programming in 1953: ”In place of determining the
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optimal sequence of decisions from a fixed state of the system, we wish to determine the optimal
decision to be made at any state of the system. Only if we know the latter, do we understand
the intrinsic structure of the solution.” [3]

Remark (Curse of Dimensionality). If n and ni are large, the number of operations required
to find the optimal trajectory will still grow rapidly, regardless of whether one applies the
straightforward method or dynamic programming. This is known as ”the curse of dimensionality,”
a somewhat nebulous description. As Professor Alessandro Astolfi likes to quip: ”At what
dimension does the problem become cursed?”

Principle of Optimality in Optimal Control:

Below, we apply dynamic programming to solve a class of optimal control problem that
is more general than the LQR problem. In particular, given a continuous time system:

ẋ = f(x, u, t),

with x ∈ Rn, u ∈ U ⊂ Rni , t ≥ 0, and some well-behaved function f : Rn × U × [0,∞) → Rn,
we wish to minimize the global cost functional:

J(x0, u) =

∫ t1

0

L
(
τ, x(τ), u(τ)

)
dτ +K(x(t1)),

where L : R × Rn × U and K : R × Rn → R are called the running cost (or Lagrangian) and
terminal cost, respectively.

Dynamic programming suggests that we should consider the cost-to-go at each t ∈ [t0, t1]:

J(t, x(t), u[t,t1]) =

∫ t1

t

L
(
τ, x(τ), u(τ)

)
dτ +K(x(t1)).

Our objective is to find the global minimum of this quantity:

V (t, x(t)) ≡ inf
u[t0,t1]

J(t, x(t), u[t,t1])

= inf
u[t0,t1]

{∫ t1

t

L
(
τ, x(τ), u(τ)

)
dτ +K(x(t1))

}
Below, we apply the principle of dynamic programming to V (t, x(t)).

Proposition 6.11 (Principle of Optimality in Optimal Control). For every x ∈ Rn, and
every t,∆t such that 0 ≤ t < t+ ∆t < t1, the value function V (t, x(t)) defined above satisfies:

V (t, x(t)) = inf
u[t,t+∆t]

{∫ t+∆t

t

L
(
τ, x(τ), u(τ)

)
dτ + V (t+ ∆t, x(t+ ∆t))

}
(6.14)

where x(·) on the right-hand side denotes the state trajectory, starting at x(t) = x, that
corresponds to the control u[t,t+∆t].
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Proof. Let V (t, x(t)) be the expression defined on the right-hand side, i.e.:

V (t, x(t)) = inf
u[t,t+∆t]

{∫ t+∆t

t

L
(
τ, x(τ), u(τ)

)
dτ + V (t+ ∆t, x(t+ ∆t))

}
Below, we aim to show that, for any ε > 0:

V (t, x(t)) < V (t, x(t)) + ε,

V (t, x(t)) < V (t, x) + ε,

which establishes V (t, x(t)) = V (t, x(t)).
Let ε > 0. By definition of V (t, x(t)), there exists some control uε,[t,t1], with corresponding

trajectory xε,[t,t1], such that:∫ t1

t

L
(
τ, xε(τ), uε(τ)

)
dτ +K(x(t1)) < V (t, x(t)) + ε

Then, by definition of V (t, x(t)) and V (t+ ∆t, xε(t+ ∆t), we have:

V (t, x(t)) ≤
∫ t1

t

L
(
τ, xε(τ), uε(τ)

)
dτ + V (t+ ∆t, xε(t+ ∆t))

≤
∫ t+∆t

t

L
(
τ, xε(τ), uε(τ)

)
dτ +

∫ t1

t+∆t

L
(
τ, xε(τ), uε(τ)

)
dτ

+ V (t+ ∆t, xε(t+ ∆t))

≤
∫ t1

t

L
(
τ, xε(τ), uε(τ)

)
dτ +K(x(t1))

< V (t, x(t)) + ε

Similarly, there must exist controls uε1,[t,t+∆t] and uε2,[t+∆t,t1] such that:∫ t+∆t

t

L
(
τ, x(τ), uε1(τ)

)
+ V (t+ ∆t, x(t+ ∆t)) < V (t, x(t)) +

1

2
ε,∫ t1

t+∆t

L
(
τ, x(τ), uε2(τ)

)
+K(x(t1)) < V (t+ ∆t, x(t+ ∆t)) +

1

2
ε.

Let uε,[t,t1] be defined such that uε,[t,t1](τ) = uε1,[t,t+∆t](τ) when τ ∈ [t, t+ ∆t), and uε,[t,t1](τ) =
uε2,[t+∆t,t1](τ) when τ ∈ [t+ ∆t, t1). Thus:

V (t, x) ≤
∫ t1

t

L
(
τ, x(τ), uε(τ)

)
dτ +K(x(t1))

≤
∫ t+∆t

t

L
(
τ, x(τ), uε1(τ)

)
dτ +

∫ t1

t+∆t

L
(
τ, x(τ), uε2(τ)

)
dτ +K(x(t1))

<

∫ t+∆t

t

L
(
τ, x(τ), uε(τ)

)
dτ + V (t+ ∆t, x(t+ ∆t)) +

1

2
ε

< V (t, x) + ε
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In summary, we have V (t, x) < V (t, x) + ε and V (t, x) < V (t, x) + ε, so V (t, x) = V (t, x), as
claimed. The proof is done.

�

Remark. In the previous section, we have essentially described the principle of optimality in the
context of controlling a n-state, ni-input, finite-horizon discrete-time system. In the definition
directly above, the context became the optimal control of continuous systems. However,
Bellman originally defined the principle of optimality as follows, to cover a much broader
scope of problems— ”An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision.” [3]

Hamilton-Jacobi-Bellman Equation:

The Hamilton-Jacobi-Bellman (HJB) Equation can be thought of as the differential
analogue of the principle of optimality. That is, whereas the principle of optimality encapsulates
the spirit of dynamic programming in a difference equation, the HJB Equation describes the
essence of dynamic programming using a differential equation. It is derived by taking ∆t→ 0
in the principle of optimality.

Theorem 6.12 (Hamilton-Jacobi-Bellman Equation (HJB)). For each x ∈ Rn and t ∈
[t0, t1), the Hamilton-Jacobi-Bellman (HJB) Equation:

− ∂V

∂t
(t, x(t)) = inf

u∈U

{
L(t, x(t), u(t)) +

〈
∂V

∂x
(t, x(t)), f(t, x, u)

〉}
(6.15)

holds. It is the differential analogue of the principle of optimality.

Proof. The principle of optimality, (6.14), states that:

V (t, x(t)) = inf
u[t,t+∆t]

{∫ t+∆t

t

L
(
τ, x(τ), u(τ)

)
dτ + V (t+ ∆t, x(t+ ∆t))

}
.

When ∆t→ 0, the two terms on the right-hand side of the above expression become:∫ t+∆t

t

L
(
τ, x(τ), u(τ)

)
dτ = L

(
t, x(t), u(t)

)
∆t+ o(∆t)

and:

V (t+ ∆t, x(t+ ∆t))

=V (t, x(t)) +
∂V

∂t
(t, x(t))∆t+

〈
∂V

∂x
(t, x(t)) · f(t, x, u)

〉
∆t+ o(∆t)

where V (t+ ∆t, x(t+ ∆t)) has been expanded using the Chain Rule:

dV

dt
=
∂V

∂t
+
∂V

∂x
· dx
dt

=
∂V

∂t
+
∂V

∂x
· f(t, x, u)



258 CHAPTER 6. ADDITIONAL TOPICS

After substituting back into the principle of optimality, (6.14), canceling out the term V (t, x(t))
on both sides, and dividing by ∆t, we have:

V (t, x(t)) = inf
u[t,t+∆t]

{
L
(
t, x(t), u(t)

)
∆t+ V (t, x(t)) +

∂V

∂t
(t, x(t))∆t+

〈
∂V

∂x
(t, x(t)) · f(t, x, u)

〉
∆t

}
⇒ − ∂V

∂t
(t, x(t)) = inf

u[t,t+∆t]

{
L
(
t, x(t), u(t)

)
+

〈
∂V

∂x
(t, x(t)) · f(t, x, u)

〉}
,

which is the HJB equation. Notice that V (x(t), t) and ∂V
∂t

(x(t), t) can be moved outside of the
infimum, since they are independent of the control u[t,t+∆t].

�

Remark. The HJB equation is often solved numerically, since analytic solutions may be difficult
or impossible to find.
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Appendix to Lecture 12

Below, we present two alternative proofs for the Cayley-Hamilton Theorem. These proofs reveal
how the theorem naturally arises from the algebraic and geometric structure of linear operators.

A.1 Cayley-Hamilton Theorem: Alternative Proof 1

For the first alternative proof, we begin by examining Schur’s Theorem, which states that, for
every finite-dimensional vector space V over an Euclidean space, and linear operator L : V → V ,
there exists an orthonormal basis B of V for which the matrix representation of L with respect
to B is upper triangular. Below, we present the matrix version.

Theorem A.1 (Schur’s Theorem ([5], Theorem 6.14, pg. 370)). For any n ∈ N and A ∈
Rn×n, there exists an orthonormal basis B for Rn such that [A]B is upper triangular.

Proof. The proof follows by induction on n. When n = 1, the matrix A is in fact a scalar, so we
are done. Suppose the theorem holds for any square matrix in Rk×k, where k ∈ {1, · · · , n− 1}.
Then the desired result would follow if we can show that there exists an orthonormal basis
B = {v1, · · · , vn} for Rn such that:

[A]B =

[
B w1:n−1

0 wn

]
,

for some B ∈ R(n−1)×(n−1), w1:n−1 ≡
[
w1 · · · wn−1

]T ∈ Rn−1, and vn ∈ R. This is because

we could then apply the induction hypothesis to B ∈ R(n−1)×(n−1), to generate a suitable
orthonormal basis for span({v1, · · · , vn−1}) = {vn}⊥), for which the corresponding matrix
representation of B is upper triangular, thus completing the proof. (We use the notation
{vn}⊥ ≡ {w|〈w, vn〉 = 0}; notice that this is a vector space). This is equivalent to postulating
the existence of a vector vn ∈ Rn such that {vn}⊥ is A-invariant. (If so, then it makes sense to
define the restriction of A on {vn}⊥. This is, in fact, the matrix B).

We claim that a suitable choice of ”vn,” as defined above is any eigenvector of A?

corresponding to any eigenvalue λ ∈ σ(A?). In other words, we claim that for such a choice

259
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of vn, the (n − 1)-dimensional subspace {vn}⊥ is A-invariant. This is because, for any x ∈
span({w})⊥, we have:

〈Ax,w〉 = 〈x,A?w〉 = λ〈x,w〉 = 0.

The proof is done.

�

Remark. The statement of the theorem given in [5], Theorem 6.14, pg. 370, concerns an
arbitrary linear operator L on an arbitrary finite-dimensional vector space V , with no assumptions
on the field F over which V is defined. In that case, it is unclear whether the characteristic
polynomial of L has n roots (where n ∈ N is the dimension of V), since the Fundamental
Theorem of Algebra only applies to real and complex fields. This is addressed by imposing the
additional condition that the characteristic polynomial of L splits, i.e. it yields n roots.

Theorem A.2 (Cayley-Hamilton Theorem). Let A ∈ Rn×n, and suppose its characteristic
polynomial has the form:

χA(s) ≡ det(sI − A) = sn + d1s
n−1 + · · ·+ dn−1s+ dn

Then:

χA(A) = An + d1A
n−1 + · · ·+ dn−1A+ dnI = O

Proof. As demonstrated above, Schur’s Theorem shows that each square matrix A can be
related to at least one upper triangular matrix via a similarity transformation (specifically, via
an orthogonal transformation). Since similarity transformations do not change the characteristic
equation, we merely have to prove the Cayley-Hamilton Theorem for the case where A ∈ Rn×n

is upper triangular.

Now, let aij denote the (i, j)-th element of A. Since A is upper triangular, aij = 0
whenever i > j, and:

χA(s) =
n∏
k=1

(s− akk)

We wish to show that χA(A) = O. This is equivalent to showing that, we have χA(A)v = 0 for
each v ∈ Rn, which is in turn follows by showing that:

χA(A)ei =
i∏

k=1

(A− akkI)ei = 0, (A.1)

for each i = 1, · · · , n, where ei denotes the i-th standard vector in Rn.

Below, we verify (A.1) via induction on i. When i = 1, since A is upper-triangular,
we have (A − a11I)e1 = 0, (A.1) holds. Now, suppose for some i > 1, (A.1) holds for each
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j = 1, · · · , i− 1. Again, since A is upper-triangular, we have:

ei =
i∑

j=1

ajiej,

(A− aiiI)ei =
i−1∑
j=1

ajiej,

⇒
i∏

k=1

(A− akkI)ei =
i−1∏
k=1

(A− akkI)

(
i−1∑
j=1

ajiej

)
=

i−1∑
j=1

aji

(
i−1∏
k=1

(A− akkI)ej

)
= 0,

since, by applying (A.1) to each j = 1, · · · , i− 1, we have
∏j

k=1(A− akkI)ej = 0. Thus, (A.1)
holds for i, and by induction, we are done. �
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A.2 Cayley-Hamilton Theorem: Alternative Proof 2

Our second alternative proof to the Cayley-Hamilton Theorem demonstrates that, for a fixed
A ∈ Rn×n, each v ∈ Rn can be associated with a particular polynomial factor of χA(I) that
annihilates it. Specifically, this polynomial is the characteristic polynomial of A restricted on
the cyclic subspace generated by v, a concept defined below.

Theorem A.3. Let A : Rn → Rn be a linear operator, and let v ∈ Rn be arbitrarily given.
Then CA(v), the A-cyclic subspace generated by v:

CA(v) ≡ span({Akv |k = 0, 1, 2, · · · })

is the smallest A-invariant subspace of V that contains v.

Note. The span of an infinite set of vectors is defined here as the finite linear combination of
its elements, to prevent situations in which the resulting subspace is not closed under infinite
linear combinations.

Proof. We have four claims to verify:

• CA(v) is a subspace of Rn.

• CA(v) contains v.

• CA(v) is A-invariant.

• CA(v) is the smallest subspace of Rn that satisfies the above two properties, i.e. any other
subspace of Rn that satisfies the above properties contains CA(v).

The first two claims follow from the definition of CA(v) as the span of a collection of
vectors that includes v.

To verify the third claim, let u ∈ CA(v) be arbitrarily given. Then there exists m ∈ N,
and scalars a0, a1, · · · , an−1 such that:

u = a0v + a1Av + · · ·+ amA
mv

⇒ Au = a0Av + a1A
2v + · · ·+ am+1A

m+1v ∈ CA(v),

so CA(v) is A-invariant.
To verify the fourth claim, let W be an arbitrary A-invariant subspace, and let v ∈ W

be arbitrarily given. We will prove by induction that CA(v) ⊂ W . By definition, A0v = v ∈ W
. Now, suppose Ak−1v ∈ W for some k ∈ N. Since W is a A-invariant subspace, Akv =
A(Ak−1v) ∈ W . By induction, Akv ∈ W for each k = 0, 1, 2, · · · , so CA(v) ⊂ W . �

Theorem A.4. Let V be a vector space. Using the same terminology as used in the above
theorem, we have:

1. dimCA(v) is also finite-dimensional, and dimCA(v) ≤ dim V.
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2. Define k ≡ dimCA(v) ≤ n. Then B = {v, Av, · · · , Ak−1v} is an ordered basis for CA(v).
Let scalars b0, b1, · · · , bk−1 be given such that:

Akv = b0v + b1Av + · · ·+ bk−1A
k−1v

Then:

[A|CA(v)]B =


0 0 · · · 0 b0

1 0 · · · 0 b1

0 1 · · · 0 b2

...
...

. . .
...

...
0 0 · · · 1 bk−1

 (A.2)

In particular,

χA|CA(v)
(λ) = λk − bk−1λ

k−1 − · · · − b1λ− b0

Proof.

1. Since CA(v) is a subspace of V , it is finite-dimensional, with dimension no greater than
dimV .

2. Let m be the greatest positive integer such that S ≡ {Ak−1, · · · , Av, v} is a linearly
independent subset (since k < ∞, such an m must exist). Define W = span(S); then
S is an ordered basis for W . By definition of m, {Amv} ∪ S is linearly dependent, so
Amv ∈ W . Then, for each w ∈ W , there exist scalars a0, a1, · · · , am−1 ∈ F such that:

w = a0v + a1Av + · · ·+ am−1A
m−1v

Lw = a0Av + a1A
2v + · · ·+ am−2A

m−1v + am−1A
mv

Since v ∈ W , this implies that W is an A-invariant subspace of V that contains v. But
CA(v) is the smallest A-invariant subspace of V that contains v, so W ∈ CA(v). On the
other hand, W ⊂ CA(v) by definition, so W = CA(v). This implies that S is an ordered
basis for CA(v), so k = m, i.e. S = B. Also:

A(Ak−1v) = Akv = bk−1A
k−1v + · · ·+ b1Av + b0v

and A(Ajv) = Aj+1v for each j = 0, 1, 2, · · · , k − 2. So (A.2) holds.

It is straightforward to verify that:

χA|CA(v)
(λ) = λk − bk−1λ

k−1 − · · · − b1λ− b0

via induction on (A.2) (a procedure also seen in the derivation of the controllable canonical
form).

�
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The following lemma, a direct consequence of the Second Representation Theorem
(Theorem 4.10), bridges the gap between the theory of cyclic subspaces and the Cayley-
Hamilton Theorem.

Lemma A.5. Let A : Rn → Rn be a linear operator. If V1 and V2 are A-invariant subspaces
of Rn, and Rn = V1 ⊕ V2, then:

χA(λ) = χA|V1
(λ) · χA|V2

(λ)

Proof. Since V1 and V2 are A-invariant, and Rn = V1⊕V2 the Second Representation Theorem
(Theorem 4.10) tells us that there exist ordered bases B1,B2, and B, of V1,V2, and Rn,
respectively, with B = B1 ∪ B2 (in that order), such that:

[A]B =

[
A1 O
O A2

]
,

where A1 = A|V1 and A2 = A|V2 are the restrictions of A on V1 and V2, respectively. The
lemma follows by observing that:

χA(λ) = det(λI − [A]B)

= det(λI − [A]V1) · det(λI − [A]V2)

= χA|V1
(λ) · χA|V2

(λ)

�

Theorem A.6 (Cayley-Hamilton Theorem). Let A ∈ Rn×n, and suppose its characteristic
polynomial has the form:

χA(s) ≡ det(sI − A) = sn + d1s
n−1 + · · ·+ dn−1s+ dn

Then:
χA(A) = An + d1A

n−1 + · · ·+ dn−1A+ dnI = O

Proof. If n = 0, then A = 0, and the result is evident. Suppose n ≥ 1, and fix any nonzero
v ∈ Rn. Let Ã = A|CA(v) and k = dimCA(v) ≤ n. Let scalars b0, b1, · · · , bk−1 be given such that

Akv = bk−1A
k−1v + · · ·+ b0v, and [Ã]B is as expressed in (5.1). We thus have:

χÃ(λ) = λk − bk−1λ
k−1 − · · · − b1λ− b0

⇒ χÃ(A)v = Akv − bk−1A
k−1v − · · · − b0v

Since v is an arbitrary nonzero vector, and χÃ(A)0 = 0, then χÃ(A)v = 0 for each v ∈ Rn. By
the corollary above, χÃ(λ) is a factor of χA(λ), χÃ(λ) = g(λ)χA(λ) for some polynomial g(λ).
We thus have:

χA(A)v = g(A)χÃ(A)v = 0,

so χA(A) = O. �



Appendix B

Appendix to Lecture 15

Note (Notation). In the mathematical statements below, Br will be used to denote an open
ball of radius r centered at the origin of the vector space under consideration (usually Rn).

B.1 Rate of Decay

Proposition B.1 (Rate of Decay, [9], Proposition 5.3, pg. 184). Suppose x = 0 is an
equilibrium point of the system:

ẋ = f(x, t), x(t0) = x0.

where f is locally Lipschitz with respect to x in some ball Bh, with Lipschitz constant k, and
piecewise continuous with respect to t. Then:

|x0|e−k(t−t0) ≤ |x(t)| ≤ |x0|ek(t−t0)

Proof. Observe that: ∣∣∣∣ ddt |x|2
∣∣∣∣ = 2|x|

∣∣∣∣d|x|dt
∣∣∣∣ ,∣∣∣∣ ddt |x|2

∣∣∣∣ =

∣∣∣∣ ddtxTx
∣∣∣∣ = 2

∣∣∣∣xT dxdt
∣∣∣∣ ≤ 2|x|

∣∣∣∣dxdt
∣∣∣∣ ,

⇒
∣∣∣∣d|x|dt

∣∣∣∣ ≤ ∣∣∣∣dxdt
∣∣∣∣

Since f(x, t) is Lipschitz continuous, and f(x, 0) = 0, it follows that:

−k|x| ≤ d

dt
|x| ≤ k|x|

The desired result follows by applying the Bellman-Gronwell lemma to each of the above
inequlities, provided the trajectory stays in the ball Bh in which the Lipschitz condition
holds. �
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Remark. The above proposition tells us that a trajectory starting inside Bh will stay inside
Bh for a finite amount of time. If f(x, t) is, in fact, globally Lipschitz, it will always stay
inside Bh. The proposition also tells us that the rate of convergence of trajectories is at most
exponentially.
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B.2 Basic Lyapunov Theorems:

Theorem B.2 (Basic Stability Theorems of Lyapunov, [9], pgs. 189-192)). The following
table associates different notions of internal stability with different conditions on v(x, t) and
v̇(x, t). Without loss of generality, the equilibrium point has been placed the origin.

Table B.1: Basic Lyapunov Theorems

Conditions on Conditions on Conclusions
v(x, t) −v̇(x, t)

1 l.p.d.f. ≥ 0 locally stable
2 l.p.d.f., decrescent ≥ 0 locally unif. stable
3 l.p.d.f., decrescent l.p.d.f. unif. asymp. stable
4 p.d.f., decrescent p.d.f. globally unif. asymp. stable

Proof.

1. Since v(x, t) is locally positive definite and v̇(x, t) ≤ 0 locally, there exists some s, r > 0
and α(·) ∈ K such that:

v(x, t) ≥ α(|x|), ∀x ∈ Bs, (B.1)

v̇(x, t) ≤ 0, ∀x ∈ Br, ∀ t ≥ 0. (B.2)

Fix ε > 0, and let ε ≡ min{ε, r, s}. Since v(0, t0) = 0, and v is continuous (by virtue of it
being locally positive definite), there exists some δ > 0 such that:

β(t0, δ) ≡ sup
|x|<δ

v(x, t0) < α(ε1) (B.3)

Combining (B.1) with (B.3), we have:

α(|x(t0)|) ≤ v(x(t0), t0) < α(ε1). (B.4)

Since α(·) ∈ K, it follows that |x(t0)| < ε1.

We now prove that |x(t0)| ≤ δ implies |x(t)| < ε1, ∀ t ≥ t0, which establishes
the desired result. Suppose by contradiction that there exists some t1 > t0 such that
|x(t) ≥ ε1. (Without loss of generality, we may assume that t1 is the earliest time
satisfying this requirement). Then, from (B.1) and (B.4), we have:

v(x(t0), t0) ≤ α(ε1) ≤ α(|x(t1)|) ≤ v(x(t1), t1), (B.5)

contradiction the fact that v̇(x, t) ≤ 0 for all |x| < ε1. Thus:

|x(t)| < ε1,∀ t ≥ t0,

establishing the desired claim.



268 APPENDIX B. APPENDIX TO LECTURE 15

2. Since v is decrescent, the function:

β(δ) ≡ sup
|x|<δ

sup
t≥t0

v(x, t)

is non-decreasing; moreover, there exists some β′ ∈ K such that, for each d > 0:

β(δ) ≤ β′(d), ∀δ ∈ (0, d)

Now, choose δ such that β(δ) < α(ε1) (Such a choice can always be made, since β
is continuous and v(0, t0) = 0). Applying (B.1), we obtain:

α(|x|) ≤ v(x, t) ≤ β(δ) < α(ε1), ∀|x| < δ, ∀ t ≥ t0.

Since α(·) ∈ K, we have |x| < ε1, as desired.

3. Since −v̇(x, t) is locally positive definite, it satisfies the conditions in the above proof, so
0 is a uniformly stable equilibrium point. We wish to show the existence of some δ1 > 0
and non-decreasing function T : R+ → R+, such that for each ε > 0, whenever |x0| < δ1

and t > T (ε):

|φ(t1 + t, x0, t1)| < ε.

(Recall that φ(t, x0, t0) denotes the trajectory of the system ẋ = f(x, t), x(t0) = t0,
starting from x0 at time t0.)

By hypothesis, v(x, t) is locally positive definite and decrescent, and −v̇(x, t) is
locally positive definite, so there exist functions α(·), β(·), γ(·) such that, whenever t ≥ t0
and |x| < r:

α(|x|) ≤ v(x, t) ≤ β(|x|), (B.6)

v̇(x, t) ≤ −γ(|x|). (B.7)

(B.8)

Now, fix ε > 0, and define δ1, δ2, T such that:

β(δ1) < α(r), (B.9)

β(δ2) < min{α(ε), β(δ1)}, (B.10)

T =
α(r)

γ(δ2)
(B.11)

(For a pictoral explanation, see [9], Figure 5.3, pg. 191.)

We now claim that there exists some t2 ∈ [t1, t1 + T ] such that |φ(t2, x0, t1)| < δ2.
By contradiction, if:

|φ(t, x0, t1)| ≥ δ2, ∀ t ∈ [t1, t1 + T ], (B.12)
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we would have:

0 ≤ α(δ2) ≤ v(s(t1 + T, x0, t1), t1 + T )

= v(x0, t1) +

∫ t1+T

t1

v̇
(
φ(τ, x0, t1)

)
dτ

≤ β(δ1)− Tγ(δ2)

≤ β(δ1)− Tα(r)

< 0,

a contradiction. The first line follows from (B.6) and (B.12), the second from the definition
of v̇(x, t) as the time derivative of v(x, t), the third from (B.7) and (B.12), the fourth from
(B.11), and the fifth from (B.9).

Now, take t2 as given in the above claim, and observe that:

α(|φ(t, x0, t1|) ≤ v(φ(t, x0, t1), t) ≤ v(φ(t2, x0, t1), t2)

≤ β(|φ(t2, x0, t1)|) ≤ β(δ2)

≤ α(ε),

The first line follows from (B.6), the second from the fact that t ≥ t1 +T ≥ t2), the third
from (B.6), the fourth from the definition of t2 as satisfying |φ(t2, x0, t1)| < δ2, and the
fifth from (B.10).

Since α(·) ∈ K, it follows that |φ(t, x0, t1)| < ε for each t ≥ t1 + T . Because t1 ≥ 0
was arbitrarily chosen, we are done.

4. Here, we restrict v(x, t) and −v̇(x, t) to be positive definite (not just locally positive
definite). As a result, we can reapply the above proof, with r, δ → ∞, and arrive at the
desired conclusion.

�
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B.3 Exponential Stability Theorem:

Theorem B.3 (Exponential Stability Theorem (Theorem 5.17, pg. 195)). Suppose f(x, t) :
R+ × Rn → Rn has continuous first partial derivatives in x, and is piecewise continuous in t.
Then the following two statements are equivalent:

1. x = 0 is a locally exponentially stable equilibrium point of ẋ = f(x, t):, i.e. there exists
some h,m, α > 0 such that for each x ∈ Bh:

|Φ(t, t0)| ≤ me−α(t−t0)

2. There exists a function v(x, t) and some h, α1, α2, α3, α4 > 0 such that:

α1|x|2 ≤ v(x, t) ≤ α2|x|2 (B.13)

dv

dt
(x, t)

∣∣∣ ẋ=f(x,t)

x(t0)=x0

≤ −α3|x|2 (B.14)∣∣∣∣∂v∂x(x, t)

∣∣∣∣ ≤ α4|x| (B.15)

Proof.

”(1) ⇒ (2)” : Below, we verify each of the above three inequalities, i.e. (B.13), (B.14),
and (B.15), in turn. We start by defining a suitable value function v(x, t) that exploits the
exponentially decaying nature of the state:

v(x, t) ≡
∫ t+T

t

|φ(τ, x, t)|2 dτ,

where T > (2/α) lnm. (Recall that φ(t, x0, t0) denotes the trajectory of the system ẋ =
f(x, t), x(t0) = t0, starting from x0 at time t0).

1. (B.13):

First, observe that since f(x, t) has continuous first partial derivatives with respect
to x, the function f(x, t) must be Lipschitz continuous with respect to x. Let k denote
the Lipschitz constant. Since the system is exponentially stable with rate α, Theorem
B.1 implies there exists some h > 0 such that:

|x|ek(τ−t) ≤ |φ(τ, x, t)| ≤ m|x|e−α(τ−t)

Substituting into the definition of v(x, t) and integrating, we obtain:

1− e−2/T

2k
|x|2 ≤ v(x, t) ≤ (1− e−2/T )m2

2α
|x|2

which establishes (B.13), with:

α1 ≡
1− e−2/T

2k
, α2 ≡

(1− e−2/T )m2

2α
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2. (B.14):

Differentiating v(x, t) with respect to t, we have:

dv

dt
(x, t) = |φ(t+ T, x, t)|2 − |φ(t, x, t)|2 +

∫ t+T

t

d

dt

(
|φ(τ, x(t, t)|2

)
dτ

≤ m2e−2αT |x|2 − |x|2 + 0

≤ −(1−m2e−2αT )|x|2

which, by definition of T , satisfies (B.15), with:

α4 ≡ 1−m2e−2αT

3. (B.15):

Differentiating v(x, t) with respect to each component of the state xi, we have:

∂v

∂xi
(x, t) = 2

∫ t+T

t

n∑
j=1

φj(τ, x, t)
∂φj
∂xi

(τ, x, t)dτ. (B.16)

Observe that, since φ(τ, x) is smooth and ”well-behaved” in general:

d

dτ

(
∂φi
∂xj

(τ, x, t)

)
=

∂

∂xj

(
∂φi
∂τ

(τ, x, t)

)
=

n∑
k=1

∂

∂xk

(
∂φi
∂τ

(τ, x, t)

)
· ∂φk
∂xj

(τ, x, t)

=
n∑
k=1

∂fi
∂xk

(τ, x, t) · ∂φk
∂xj

(τ, x, t),

along the trajectory satisfying ẋ = f(x, t), x(t0) = x0. If we define:

Qij(τ, x, t) ≡
∂φi
∂xj

(τ, x, t), Aij(x, t) ≡
∂fi
∂xj

(x, t)

we find that the above equations can be rewritten in the compact form:

d

dτ
Q(τ, x, t) = A(φ(τ, x, t), t) ·Q(τ, x, t)

In other words, Q(τ, x, t) is the state transition matrix associated withA(φ(τ, x, t), t).
Since we assume that the partials of f with respect to x, it follows that there exists some
k > 0 such that:

|A(·, ·)| ≤ k,

⇒ |Q(τ, x, t)| ≤ ek(τ−t).
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Using this and (B.16), we have:∣∣∣∣∂v∂x(x, t)

∣∣∣∣ ≤ 2

∫ t+T

t

m|x|e(k−α)(τ−t) dτ

which satisfies (B.15) with:

α4 ≡
2m(e(k−α)T − 1

k − α

”(2)⇒ (1)” : This direction is straightforward. From (B.13), (B.14), (B.15), we have:

v̇(x, t) ≤ −α3

α2

v(x, t),

⇒v(x(t), t) ≤ v(x(t0), t0) · e−
α3
α2

(t−t0)

⇒α1|x(t)|2 ≤ v(x(t), t) ≤ v(x(t0), t0) · e−
α3
α2

(t−t0) ≤ α2|x(t0)|2e−
α3
α2

(t−t0)

⇒|x(t) ≤
√
α2

α1

|x(t0)| · e−
α3
α2

(t−t0)

�
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B.4 Lyapunov Equation: Uniqueness of Solution

Our alternative proof of Lemma 4.48 will involve properties of the Krnoecker product of
matrices, as derived and explained in detail in Professor Chee-Fai Yung’s Lecture Notes on
Mathematical Control Theory [12]. We begin with its definition below.

Definition B.4 (Kronecker Product). Given A = [aij]m×n ∈ Cm×n and B = [bij]p×q ∈ Cp×q,
the Kronecker product of A and B is defined as:

A⊗B ≡


a11B a11B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
an1B an2B · · · annB


mp×nq

Example. If A ∈ R2×2 and B ∈ R2×3 are given as:

A =

[
1 2
3 4

]
, B =

[
2 4 6
0 −1 2,

]
then the Kronecker product of A and B is defined as:

A⊗B =


2 4 6 4 8 12
0 −1 2 0 −2 4
6 12 18 8 16 24
0 −3 6 0 −4 7

 ∈ R4×6

Note. Usually, we denote the i-th row, j-th column element of a matrix A ∈ Rm×n by ”Aij.”
For tensor products, we will use a slightly modified version of this standard notation. Given
A ∈ Cm×n and B ∈ Cp×q, define:

(A⊗B)ii′,jj′ ≡ (A⊗B)p(i−1)+i′,q(j−1)+j′ ,

where:

i = 1, · · · ,m,
j = 1, · · · , n,
i′ = 1, · · · , p,
j′ = 1, · · · , q,

and the right-hand side of the above expression uses standard notation. In other words, (A⊗
B)ii′,jj′ denotes the (i′, j′) in the (i, j) matrix block. This modified notation will be useful in
subsequent proofs, where it is convenient to perform matrix multiplications one block matrix
at a time. Sometimes, we will mix the two notations:

(A⊗B)ii′,k ≡ (A⊗B)i(p−1)+i′,k,

(A⊗B)k,jj′ ≡ (A⊗B)k,j(q−1)+j′

Again, the right-hand side uses standard notation.
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Some basic properties of Kronecker products are presented below.

Proposition B.5 (Properties of the Kronecker Product). For any complex scalars a and
complex matrices A,B,C,D:

1. (aA)⊗B = A⊗ (aB) = a(A⊗B).

2. (A⊗B)T = AT ⊗BT .

3. (A⊗B)? = A? ⊗B?.

4. (A⊗B)⊗ C = A⊗ (B ⊗ C).

5. A⊗ (B + C) = A⊗B + A⊗ C.

6. (B + C)⊗ A = B ⊗ A+ C ⊗ A.

7. A⊗B = O if and only if A = O or B = O.

8. If A,B are both symmetric or both Hermitian, then so is A⊗B.

9. If A,B are both upper triangular or both lower triangular, so is A⊗B.

10. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

11. (A⊗B)−1 = A−1 ⊗B−1.

(Clearly, the tenth statement only holds when the dimensions of A,B,C,D are compatible, and
the eleventh statement only holds when A,B are invertible).

Proof. Part 1 to Part 9 follow from the definition of the Kronecker product, and in some cases,
brute expansion.

For Part 10, observe that:

∵
[
(A⊗B)(C ⊗D

]
ii′,jj′

=
∑
k”

(A⊗B)ii′,k”(C ⊗D)k,jj”

=
∑
k,k′

aikbi′k′ckjdk′j′ =

[∑
k

aikckj

]
· [bi′k′dk′j′ ]

= (AC)ij ⊗ (BD)i′j′ =
[
(AC)⊗ (BD)

]
ii′,jj′

,

⇒ (A⊗B)(C ⊗D) = (AC)⊗ (BD)

For Part 11, we apply Part 10:

(A⊗B)(A−1 ⊗B−1) = (AA−1)⊗ (BB−1) = I ⊗ I = I

�
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Next, we extend the definition of a complex polynomial of two variables to the matrix
case, using the definition of the Kronecker product.

Definition B.6 (Polynomial of Two Square Matrices). Given a polynomial of x, y ∈ C:

p(x, y) =
n∑

i,j=0

pijx
i · yj

and two square matrices A,B of arbitrary (possibly different) dimensions, define:

p(A,B) =
n∑

i,j=0

pijA
i ⊗Bj

The following theorem describes the relationship between σ(p(A,B)) and σ(A), σ(B).

Theorem B.7. Let p(x, y) be a polynomial of x, y ∈ C, and let A,B be square matrices of
arbitrary (possibly different) dimensions. Then:

σ(p(A,B)) = {p(λi, µj)|λi ∈ σ(A), µj ∈ σ(B)}.

Proof. Let A,B be square matrices of arbitrary (possibly different) dimensions. Since p(A,B)
is essentially a linear combination of Kronecker products of different powers A and B, we begin
by proving the result for Ai⊗Bj, for arbitrary i, j. To that end, let P,Q be invertible matrices
such that:

JA ≡ P−1AP,

JB ≡ Q−1BQ

are the Jordan forms of A,B, respectively. Then, by Part 10 and Part 11 of the above
proposition, we have:

JkA ⊗ J lB = (P−1AP )k ⊗ (Q−1BQ)l = (PAkP−1)⊗ (Q−1BlQ)

= (P−1 ⊗Q−1)(Ak ⊗Bl)(P ⊗Q) = (P ⊗Q)−1(Ak ⊗Bl)(P ⊗Q)

Thus, J iA ⊗ J jB and Ai ⊗ Bj are similar, and thus share the same eigenvalues. By Part 9 of
the above proposition, since JA and JB are both upper triangular (by definition of the Jordan
form), so is J iA ⊗ J

j
B; its eigenvalues can thus be read off its diagonal, as follows:

σ(Ai ⊗Bj) = σ(J iA ⊗ J
j
B) = {λki µlj|λi ∈ σ(A), µj ∈ σ(B)}

Now, let p(x, y) =
∑

k,l pklA
kBl be given. Then:

p(JA, JB) =
∑
k,l

pklJ
k
A ⊗ J lB

= (P ⊗Q)−1

(∑
k,l

pklA
k ⊗Bl

)
(P ⊗Q)

= (P ⊗Q)−1p(A,B)(P ⊗Q)−1
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Thus, p(JA, JB) and p(A,B) are similar, so:

σ(p(A,B)) = σ(p(JA, JB)) = {p(λi, µj)|λi ∈ σ(A), µj ∈ σ(B)}

�

Corollary B.8. Let A ∈ Cn×n and B ∈ Cm×m, with:

σ(A) = {λi|i = 1, · · · , n},
σ(B) = {µj|j = 1, · · · ,m}.

Then, we have:

1. σ(A⊗B) = {λiµj|λi ∈ σ(A), µj ∈ σ(B)},

2. σ(A⊗ Im + In ⊗B) = {λi + µj|λi ∈ σ(A), µj ∈ σ(B)}.

Proof. Both results follow from the above theorem, by taking

1. p1(x, y) = xy, i.e. p1(A,B) = A⊗B, and

2. p2(x, y) = x+ y = x1y0 + x0y1, i.e. p2(A,B) = A⊗ Im + In ⊗B.

�

Remark. Given A ∈ Cn×n and B ∈ Cm×m, the expression σ(A ⊗ Im + In ⊗ B) is sometimes
called the Kronecker sum of A and B.

Definition B.9 (Stacking Operator). Let A ∈ Cm×n be arbitrarily given, and let ai denote
the i-th column of A, i.e.:

A =
[
a1 a2 · · · an

]
Define the stacking operator vec: Cm×n → Cmn by:

vec(A) =


a1

a2

...
an

 .
In other words, the stacking operator takes any matrix input and ”stacks” up its columns to
create a long output vector.

Remark. Observe that vec is linear, i.e. for any A,B ∈ Cm×n and a, b ∈, we have:

vec(aA+ bB) = avec(A) + bvec(B)

It is also bijective, since it simply ”stacks up” the columns of a matrix into a long column
vector without changing any of its elements.
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The following theorem presents an interesting relationship between the Kronecker product
and the vec operator.

Theorem B.10. Let A ∈ Cm×n, B ∈ Cp×q, and X ∈ Cn×p be arbitrarily given. Then:

vec(AXB) = (BT ⊗ A)vec(X)

Proof. The proof follows via brute-force expansion. For each i = 1, · · · ,m, j = 1, · · · , q:(
vec(AXB)

)
m(j−1)+i

= (AXB)ij =
n∑
k=1

q∑
k′=1

AikXkk′Bk′j

=

q∑
k′=1

n∑
k=1

BT
jk′AikXkk′

=

q∑
k′=1

n∑
k=1

(BT ⊗ A)ji,k′k
(
vec(X)

)
n(k′−1)+k

=

np∑
l=1

(BT ⊗ A)ji,l
(
vec(X)

)
l

=
(
(BT ⊗ A)vec(X)

)
m(j−1)+i

,

where we have used the modified notation defined earlier. The desired result follows. �

Remark. The above theorem allows us to reformulate linear matrix equations. Consider:

N∑
i=1

AiXBi = C,

where Ai ∈ Cm×n, Bi ∈ Cp×q for each i = 1, · · · , N , and X ∈ Cn×p. Applying the vec operator
to the above equation and swapping the left- and right-hand sides, we have:

vec(C) =
N∑
i=1

vec(AiXBi) =

[
N∑
i=1

(BT
i ⊗ Ai)

]
vec(X)

which resembles the familiar form of the matrix equation ”Ax = b.” We will use a similar
technique below.

Definition B.11 (Sylvester Equation). The Sylvester Equation is of the form:

AX −XB = −C, (B.17)

where A,B,C ∈ Cn×n are known, while X ∈ Cn×n is unknown.

Remark. The Sylvester Equation, which works out to be a system of linear equations, is used
in output regulation. It includes the Lyapunov Equation as a special case; indeed, we recover
the Lyapunov Equation from the Sylvester Equation by replacing A,B,C with A?,−A?, Q,
respectively, then swap A for A?:

A?X +XA+Q.
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The next theorem uses properties of the Kronecker product and stacking operator
(specifically, Theorem B.10 and Corollary B.8), to establish a necessary and sufficient condition
under which the Sylvester Equation has a unique solution.

Theorem B.12. The Sylvester Equation has a unique solution if and only if A,B share no
common eigenvalue, i.e.:

σ(A) ∩ σ(B) = φ.

Proof. Applying the vec operator on both sides of the Sylvester Equation, and applying Theorem
B.10, we have the following equivalent (because vec is bijective) equation:

(In ⊗ A−BT ⊗ In)vec(X) = −vec(C).

Thus, the Sylvester Equation has a unique solution if and only if (In⊗A−BT⊗In) is invertible,
i.e. if 0 is not one of its eigenvalues (given by Corollary B.8:

σ((In ⊗ A−BT ⊗ In) = {µj − λi|λi ∈ σ(A), µj ∈ σ(B)}.

Thus, the following statements are equivalent:

The Sylvester Equation has a unique solution

⇐⇒σ((In ⊗ A−BT ⊗ In) does not contain 0

⇐⇒µj 6= λi, ∀λi ∈ σ(A), µj ∈ σ(B)

⇐⇒ A,B have distinct eigenvalues.

This establishes the theorem. �

Lemma B.13. Consider the system ẋ = Ax, where A ∈ Rn×n and σ(A) ∈ C−. Then the
unique solution to Lyapunov’s Equation, A?P + PA = −Q, is given by:

P =

∫ ∞
0

eA
T tQeAt dt (B.18)

In particular, the above integral is well-defined.

Proof. We can verify that (4.4) solves the Lyapunov Equation by substituting it into the
Lyapunov Equation:

A?X +XA =

∫ ∞
0

(
A?eA

?tQeAt + eA
?tQeAtA

)
=

∫ ∞
0

d

dt

(
eA

?tQeAt
)
dt = eA

?tQeAt
∣∣∣∞
0

= −Q,

where the exponential stability of A implies that σ(A) ∈ C−, so:

lim
t→∞

eAt = lim
t→∞

eA
?t = O.
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It remains to show that (4.4) uniquely solves the Lyapunov Equation. As remarked
above, the Lypaunov Equation is a special case of the Sylvester Equation, as can be seen by
taking B = −A?. Since A is exponentially stable:{

σ(A) ∈ C−,
σ(B) = σ(−A?) = {−λ?|λ ∈ σ(A)} ∈ C+,

⇒σ(A) ∩ σ(B) = φ.

By Theorem B.12, the solution (4.4) is unique.
�
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B.5 Indirect Lyapunov’s Method

Theorem B.14 (Indirect Lyapunov’s Method (Theorems 5.41, 5.42, pgs. 215-217)).
Suppose the non-linear system ẋ = f(x, t), x(t0) = x0 has the linear approximation:

ẋ = f(x, t) = A(t)x+ f1(x, t), with (B.19)

lim
|x|→0

sup
t≥0

|f1(x, t)|
|x|

= 0.

Then the following statements hold:

1. If ∂f(x,·)
∂x

∣∣
x=0

is bounded in time, and 0 is a uniformly asymptotically stable equilibrium
point of the linearized system:

ẑ(t) =
∂f1(x, t)

∂x

∣∣∣∣∣
x=0

z(t), (B.20)

then 0 is also a locally uniformly asymptotically stable equilibrium point of the original
non-linear system ẋ = f(x, t), x(t0) = x0.

2. If ∂f(x,·)
∂x

∣∣
x=0

is constant in time, and has at least one eigenvalue in C+, then 0 is an
unstable equilibrium point of the original nonlinear system ẋ = f(x, t), x(t0) = x0.

Proof.

1. Since A(·) ≡ ∂f(x,·)
∂x

∣∣
x=0

is bounded, and 0 is a uniformly asymptotically stable equilibrium
point of (B.20), the Time-Varying Lyapunov Lemma (Lemma ??) states that:

P (t) =

∫ ∞
t

Φ?(τ, t)Φ(τ, t)dτ

is bounded above and below, i.e. ∃α, β > 0 such that:

α|x|2 ≤ x?P (t)x ≤ β|x|2.

In other words, v(x, t) ≡ x?P (t)x is locally positive definite and decrescent. Observe that
P (t) is simply as defined in Time-Varying Lyapunov Lemma (Lemma 4.47), except with
Q = I.

Meanwhile, by Time-Varying Lemma also implies that P (t) is uniformly bounded
in time, i.e. supt≥0 ‖P (t)‖ <∞. Then (B.19) implies there exists r > 0 such that:

|f1(x, t)| ≤ 1

3 supt≥0 ‖P (t)‖
|x|, ∀x ∈ Br, ∀ t ≥ 0,
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Now, we put together the above two facts, and consider the Lie derivative of v(x, t)
along f(x, t). or each x ∈ Br:

v̇(x, t) =
[
Ax+ f1(x, t)

]?
P (t)x+ x?Ṗ (t)x+ x?P (t)

[
Ax+ f1(x, t)

]
= x?

[
Ṗ (t) + P (t)A+ A?(t)P (t)

]
x+ 2x?P (t)f1(x, t)

= −x?Ix+ 2x?P (t)f1(x, t)

≤ −|x|2 + 2|x| · ‖P (t)‖ · |f1(x, t)|

≤ −|x|2 +
2

3
· |x|2

≤ −1

3
|x|2,

Thus, −v̇(x, t) is locally positive definite, so 0 is a locally uniformly asymptotically stable
equilibrium point of ẋ = f(x, t), x(t0) = x0.

2. From the theorem statement, we know that:

A0 ≡
∂f(x, ·)
∂x

∣∣∣∣∣
x=0

is independent of time. Now, consider the Lyapunov equation:

A?0P + PA0 = I.

If σ(A0) ∩ C0 = φ, then the Taussky Lemma implies that the Lyapunov equation has a
unique solution; moreover, since A0 has at least one eigenvalue in C+, the unique solution
P ahs at least one positive eigenvalue. Then v(x, t) = x?Px has positive values arbitrarily
close to the origin, and is decrescent (since v(x, t) ≤ ‖P‖ · |x|2).

Now, from (B.19), we know there exists some r > 0 such that:

|f1(x, t)| ≤ 1

3‖P‖
|x|, ∀x ∈ Br, ∀ t ≥ 0,

Thus, from the proof of the first part of this theorem:

v̇(x, t) = x?
[
PA+ A?0P

]
x+ 2x?Pf1(x, t)

= x?Ix+ 2x?Pf1(x, t)

≥ |x|2 − 2|x| · ‖P‖ · |f1(x, t)|

≥ 1

3
|x|2.

Thus, v̇(x, t) is decrescent. By the Basic Instability Theorem (Theorem 4.51), the given
system is unstable.

If A0 has at least one eigenvalue in C−, and at least another on C0, the desired
result follows by continuity.

�
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