
Practice Midterm 1

EECS/BioE C106A/206A
Introduction to Robotics

Due: October 1, 2020

Problem Max. Score
Short Answers 20
Order of Operations 10
ROS Turtlesim Wrapper 15
Reference Frames 10
Forward Kinematics 8
Inverse Kinematics 12
When all else fails 15
Total 90
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Problem 1. Short Answers (20 points)

(a) (5 points) Show that if A ∈ so(n) is a skew-symmetric matrix then R = eA ∈ SO(n).

(b) (5 points) Let g = (R, p) ∈ SE(3) be such that R = RZ(π) and p = (0, 2, 0). Find a
set of exponential coordinates for g.

(c) (5 points) Show that RX(θ1)RX(θ2) = RX(θ1 + θ2).

Hint: You may use the fact that for any square matrices A,B, if AB = BA then
eAeB = eA+B.

(d) (5 points) Your friend from MIT asserts that for a ∈ R3, the matrix B = (I−â)−1(I+â)
is in SO(3); ie. B is a rotational matrix. True or False.

Hint 1: Don’t try to brute-force this.
Hint 2: Remember the properties of skew-symmetric matrices
Hint 3: Does (I − â)(I + â) = (I + â)(I − â)?

Solution:

(a) We need to show that RTR = I and that detR = 1. We know that AT = −A. So
RT = eA

T
= e−A. Therefore, RTR = e−AeA = I. Morevoer, we know that if RTR = I

then detR = ±1. Since det e0 = det I = 1 and 0 is a skew symmetric matrix, by the
continuity of the determinant, detA must be 1 for all skew symmetric matrices A.

(b) Since R is just RZ(π), we immediately have ω = (0, 0, 1)T and θ = π. Now, note that
there is no translation in the Z direction at all. Therefore, the associated screw must
be a pure rotation, since otherwise there would be some translation in the ω direction.
So all we need to do is find a q that works. We see that q must be such that if we
rotate by π radians about the point q we move the origin to the location (0, 2, 0).
This is achieved if we pick q = (0, 1, 0)T i.e. we need to pick q so that it is halfway
between the intial and final location of the origin. The exponential coordinates are
then (ξ = (v, ω), θ) where ω = (0, 0, 1), v = −ω × q, and θ = π.

(c) RX(θ) is just a rotation by θ about the vector x = (1, 0, 0)T . So RX(θ) = ex̂θ. Then
we have

RX(θ1)RX(θ2) = ex̂θ1ex̂θ2

= ex̂θ1+x̂θ2

= ex̂(θ1+θ2)

= RX(θ1 + θ2)

as needed.
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(d) True. Firstly, Let’s prove (I+â)(I−â) commutes. This is clear by direct computation.

(I + â)(I − â) = I − â2

(I − â)(I + â) = I − â2

Then

[(I − â)−1(I + â)][(I − â)−1(I + â)]T = (I − â)−1(I + â)(I + â)T ((I − â)−1)T

= (I − â)−1(I + â)(I − â)(I + â)−1

= (I − â)−1(I − â)(I + â)(I + â)−1

= I

In order to prove it’s a rotational matrix, the rest we should do is prove the determinant
is 1, where

det(B) = det((I − â)−1) det(I + â) =
det(I + â)

det(I − â)
=

det(I + â)

det(I + â)
= 1

where we use the property that det(K) = det(KT ) for a given square matrix K

Remark: This problem is a mainly about (link) Cayley’s representation. The Cayley’s
transformation for rotations is often invertible, which means that it can be useful for
doing control on rotations.
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Problem 2. Order of Operations (10 points)

(a) (3 points) Select all operations that are always commutative:

� Multiple rotation matrices, about orthogonal axes

� Multiple rotation matrices, about parallel axes

� Multiple homogenous transforms, where all R = I

� Multiple homogenous transforms, where all R = RX(π
4
)

� Multiple exponential mappings, with parallel revolute joints.

� Multiple exponential mappings, with parallel prismatic joints.

(b) (3 points) Select all options that are always associative:

� Multiple rotation matrices, about orthogonal axes

� Multiple rotation matrices, about parallel axes

� Multiple homogenous transforms, where all R = I

� Multiple homogenous transforms, where all R = RX(π
4
)

� Multiple exponential mappings, with parallel revolute joints.

� Multiple exponential mappings, with parallel prismatic joints.

(c) (4 points) Answer the following questions.

(i) You are given the rotation matrices: RAB, RCB. Write an expression for RCA.

(ii) You are given the rotation matrices: RAB, RCA. Write an expression for RBC .

(iii) You are given the rotation matrices: RAB, RBC . Write an expression for RAA.

(iv) You are given the rotation matrices: R−1AB, RT
BC . Write an expression for RAC .

Solution:

(a) The options that are commutative are: 2, 3, 6.

(b) All options are associative.

(c) (i) RCA = RCBR
T
AB

(ii) RBC = RT
ABR

T
CA

(iii) RAA = RABR
T
AB = I

(iv) RAC =
(
R−1AB

)T (
RT
BC

)T
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Problem 3. Turtle Wrapper Node (15 points)

In Lab 1, we asked you to write a publisher node that would send a geometry msgs/Twist

over the /turtle1/cmd vel topic in order to control your simulated turtle. You may recall
only having to set two values of the twist: the linear x velocity, and the angular z velocity.
This made sense at the time because our robot was entirely simulated in a 2D environment,
reflecting the fact that it was a unicycle modeled robot; at any time, we may model the
turtle’s velocity relative to its own reference frame as

~V =

[
v
ω

]
.

where v is the linear x velocity and ω is the angular velocity. For a unicycle modeled robot,
we always assume that the linear y velocity is 0. By controlling the turtle through directly
manipulating a 6D Twist, you were breaking the abstraction between the perceived model of
the robot and the commands the simulator needed to receive in order to control the turtle!
To remedy this, you are now tasked with writing a ”wrapper” node: you will construct a
node that will listen for linear velocity and angular velocity commands published over a
topic of your choice, and will publish that information to /<turtle name>/cmd vel, where
<turtle name> denotes the name of the turtle you want to control. Assume that your
wrapper node has access to the desired turtle name through a command line argument.
Assume this node will be written as a .py file placed in the appropriate location of a package
named midterm 1.

(a) (3 points) What is the name of your node, what topic(s) do you want it to subscribe
to, and what topic(s) do you want it to publish to? Remember that you want to be
able to run multiple instances of your node if someone wants to use your wrapper node
for multiple turtles.

(b) (2 points) You will be designing a new message type for the topic you choose to sub-
scribe to. Define your .msg file. Make sure to indicate the name of the file somewhere.

(c) (5 points) Assume someone wants to control the turtle named ”jturtle”. A node named
user control is running that will send data of the appropriate message type to the
topic your wrapper node subscribes to. Assuming that your wrapper node, turtlesim,
and a rostopic echo node listening to the output of user control for debugging
purposes are all running. Draw the an approximate RQT graph that fits this scenario.

(d) (5 points) Time to code up your node! Fill in the appropriate blanks:

#!/ bin /env python

import rospy
import sys
from geometry msgs .msg import Twist
from import

c l a s s TurtleWrapper :
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de f i n i t ( s e l f , tur t l e name ) :
rospy . Subsc r ibe r ( , , receive command )
s e l f . pub = rospy . Pub l i she r ( , , qu eue s i z e =10)

de f receive command ( s e l f , cmd vel 2D ) :
cmd vel = Twist ( )
cmd vel . l i n e a r . x =
cmd vel . angular . z =
s e l f . pub . pub l i sh ( cmd vel )

i f name == ’ ma in ’ :
rospy . i n i t n od e ( , anonymous=True )
turt l e name = sys . argv [ 1 ]
wrapper = TurtleWrapper ( turt l e name )
rospy . sp in ( )

Solution:

Answers will vary depending on how things are named. This is one correct solution.

(a) • I will name my node TurtleWrapper.

• It will subscribe to /<turtle name>/cmd vel 2D.

• It will publish to /<turtle name>/cmd vel.

(b) My message file is TurtleVelocity.msg. Here is the message

f l o a t 3 2 v
f l o a t 3 2 w

(c) Here is how the RQT graph could look

(d) Here is how my code looks

#!/ bin /env python

import rospy
import sys
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from geometry msgs .msg import Twist
from midterm 1 .msg import Tur t l eVe lo c i ty

c l a s s TurtleWrapper :

de f i n i t ( s e l f , tur t l e name ) :
rospy . Subsc r ibe r ( ’ /{}/ cmd vel 2D ’ . format ( turt l e name ) ,
Turt l eVe loc i ty , receive command )
s e l f . pub = rospy . Pub l i she r ( ’ /{}/ cmd vel ’ . format ( turt l e name ) ,
Twist , qu eue s i z e =10)

de f receive command ( s e l f , cmd vel 2D ) :
cmd vel = Twist ( )
cmd vel . l i n e a r . x = cmd vel 2D . v
cmd vel . angular . z = cmd vel 2D .w
s e l f . pub . pub l i sh ( cmd vel )

i f name == ’ ma in ’ :
rospy . i n i t n od e ( ’ TurtleWrapper ’ , anonymous=True )
turt l e name = sys . argv [ 1 ]
wrapper = TurtleWrapper ( turt l e name )
rospy . sp in ( )
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Problem 4. Reference Frames (10 points)

Figure 1 shows four reference frames in the workspace of a robot: the fixed frame {a}, the
end-effector frame {b}, the camera frame {c}, and the workpiece frame {d}.

Figure 1: Four reference frames defined in a robot’s workspace.

(a) (6 points) Find the SE(3) poses gad and gcd in terms of the dimensions given in the
figure.

(b) (4 points) Find gab given that

gbc =


1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1


Solution:

(a)

gad =


1 0 0 −1
0 1 0 1
0 0 1 0
0 0 0 1

 , gcd =


0 1 0 0
1 0 0 0
0 0 −1 2
0 0 0 1


(b) We can compute gab = gadgdcgcb = gadg

−1
cd g

−1
bc .
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Problem 5. Forward Kinematics (8 points)

Solve for the forward kinematics map of the 4DOF manipulator shown in the appendix in
its initial configuration. The robot has three revolute and one prismatic joint. Do this by
finding:

(a) (2 points) The initial configuration gWT (0) ∈ SE(3) of the robot.

(b) (4 points) The twists ξ1, ξ2, ξ3, ξ4 corresponding to each joint of the robot.

(c) (2 points) An expression for the forward kinematics map gWT (θ) in terms of the vec-
tor of joint angles θ = (θ1, θ2, θ3, θ4). You may leave your answer in terms of the
exponentials and products of known matrices.

Solution:

(a) By direct inspection, we an write

gWT (0) =


1 0 0 0
0 1 0 l1 + l2
0 0 1 l0
0 0 0 1


(b) For each joint, we have

q1 = [0, 0, 0]T , ω1 = [0, 0, 1]T , v1 = [0, 0, 0]T , ξ1 = [0, 0, 0, 0, 0, 1]T

q2 = [0, 0, l0]
T , ω2 = [−1, 0, 0]T , v2 = [0,−l0, 0]T , ξ2 = [0,−l0, 0,−1, 0, 0]T

q3 = [0, 0, l0]
T , ω3 = [0, 1, 0]T , v3 = [−l0, 0, 0]T , ξ3 = [−l0, 0, 0, 0, 1, 0]T

v4 = [0, 1, 0]T , ξ4 = [0, 1, 0, 0, 0, 0]T

(c)

gWT (θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4gWT (0)
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Problem 6. Inverse Kinematics (12 points)

Consider the 4DOF manipulator shown in the appendix. Assume that 0 ≤ θ4 ≤ dmax.

(a) (3 points) Describe the reachable workspace of the manipulator, that is the subset of
R3 that the origin of the tool frame can reach. Ignore any self-collisions.

(b) (7 points) Use the Paden Kahan sub-problems to solve the inverse kinematics of this
manipulator. You do not need to do the details of the inverse kinematics, but indicate
how you would break down the inverse kinematics to get the angles.

(c) (2 points) Indicate the number of possible inverse kinematics solutions.

Solution:

(a) The reachable workspace is a spherical annulus with inner radius l1 + l2 and outer
radius l1 + l2 + dmax, centered at qs.

(b) Let the desired configuration be gd ∈ SE(3). The IK problem can be formulated as

eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4 = gdg
−1
WT (0) := g

where we define g to be the known matrix gdg
−1
WT (0) for convenience.

Step 1: Solve for θ4. Use the point qs. This point is on the axes of ξ1, ξ2 and ξ3, so
we can use it to factor those out. We will additionally consider the point qt at the tip
of the end effector. We get

eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4qt − qs = gqt − qs
||eξ̂1θ1eξ̂2θ2eξ̂3θ3

(
eξ̂4θ4qt − qs

)
|| = ||gqt − qs||

||eξ̂4θ4qt − qs|| = ||gqt − qs||

Since θ4 controls this distance directly, we can set θ4 = ||gqt − qs|| − (l1 + l2).

Step 2: Solve for θ1 and θ2. Now that θ4 is known, so is the matrix g4 = eξ̂4θ4 . So we
can take it to the right hand side to get

eξ̂1θ1eξ̂2θ2eξ̂3θ3 = gg−14 := g′

where we have defined g′ to be the known matrix gg−14 . Now pick some point that is
on the axis of ξ3 but not on the axes of either ξ1 or ξ2. For instance, qt works. Multiply
both sides by this point to get

eξ̂1θ1eξ̂2θ2eξ̂3θ3qt = g′qt

eξ̂1θ1eξ̂2θ2qt = g′qt

10



This is exactly the setup for PK subproblem 2 with the intersecting axes ξ1 and ξ2 and
point qt being taken to point g′qt. So we can use PK subproblem 2 to find θ1 and θ2.
There two possible solutions in this step.

Step 3: Solve for θ3. Now the matrices g1 = eξ̂1θ1 and g2 = eξ̂2θ2 are also known. So
we can rearrange to get

eξ̂3θ3 = g−12 g−11 g′ := g′′

now we can take any point p not on the axis of ξ3. Then we get

eξ̂3θ3p = g′′p

which is the setup for PK subproblem 1 with axis ξ3 and point p being taken to point
g′′p. So we can use PK1 to solve for θ3. There is one possible solution in this step.

(c) 1× 2× 1 = 2.
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Problem 7. When all else fails (15 points)

Let u ∈ R3 be a unit vector, and let R = I + 2û2.

(a) (3 points) Show that RTR = I.

Hint: Recall equation (2.13) from the textbook: û3 = −û.

(b) (3 points) Show that detR = 1, and hence conclude that R is a rotation matrix.

Hint: The function u 7→ det(I + 2û2) is continuous, thanks to the continuity of the
determinant. However, from part (a) it follows that det(I + 2û2) ∈ {+1,−1}. Is it
possible for a continuous function to take on exactly two discrete values? Can you
conclude from this that det(I + 2û2) is actually a constant, for any u?

(c) (5 points) Find the exponential coordinates for R i.e. find a unit vector ω and a scalar
θ ∈ [0, 2π) such that R = eω̂θ.

Hint: What does R look like when we switch to a new reference frame where u is the x
axis?

Hint: Recall that the determinant of a transformation is invariant under a change of
basis.

(d) (2 points) Verify that when Rodrigues’ formula is applied to your answer in the previous
part, you get the original matrix R.

(e) (2 point) What would go wrong if you tried to use Proposition 2.9 from the textbook
to compute the exponential coordinates of a rotation matrix of this form?

Solution:

(a)

RTR = (I + 2û2)T (I + 2û2) (1)

= (I + 2û2)2 (2)

= I + 4û2 + 4û4 (3)

= I + 4û2 − 4û2 (4)

= I (5)

(b) To show that detR = 1, we can use a very similar technique as we did when showing
that the exponential of a skew symmetric matrix is a rotation matrix. In particular,
we know that det(R) is ±1, but we also know that det(I + 2û2) is continuous in u. So,
it cannot jump from 1 to −1 or vice versa as we let u vary. This means that it is either
always 1 or always −1. In particular, at u = 0, det(R) = det(I) = 1 and so detR = 1
for all u, and hence R is a rotation matrix.
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(c) Lets pick any right handed orthonormal coordinate frame with x-axis u. In this frame,
u = (1, 0, 0)T . Then, in this new frame R = I + 2û2 has the simple form

R′ =

1 0 0
0 −1 0
0 0 −1


By looking at the form of R′ in this new reference frame we can identify that this is
exactly the rotation matrix corresponding to a rotation of π radians about the x-axis.
Since the x-axis in this frame is just u in the original frame, R is a rotation about u
by π radians, and so the exponential coordinates are (u, π).

(d) Rodrigues formula states that for unit ω,

R(ω, θ) = I + ω̂ sin(θ) + (1− cos(θ))ω̂2 (6)

substituting ω = u and θ = π gives us

R(u, π) = I + 2û2 (7)

(e) Proposition 2.9 requires a division by sin(θ) which is zero for θ = π. So that construc-
tion breaks down when R is in this form.
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Appendix

Figure 2: 4DOF Arm. Joints 1,2,3 are revolute. Joint 4 is prismatic

Figure 3: Manipulator lengths in zero configuration

Figure 4: Coordinate Axes at zero configuration
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