
Lab 6: Computer Vision ∗

EECS/ME/BIOE C106A/206A Fall 2021

Goals

By the end of this lab you should be able to:

• Explain the concept behind pointclouds and what they represent

• Implement some basic techniques in image segmentation and explain your results

• Explain the concept of pinhole cameras and describe how they work

• Combine information from different sensors to isolate an object of interest. (Build a point cloud segmentation
pipeline)

Relevant Tutorials and Documentation:

• OpenCV Python Tutorial

Contents

1 Introduction 2

2 Starter Code 2

3 Point-Clouds 2
3.1 An approach to point-cloud segmentation . 3

4 Image Segmentation 3
4.1 Color and Grayscale Images . 4
4.2 Thresholding . 4
4.3 Edge Detection . 5
4.4 Clustering . 6

5 Projective Geometry and The Camera Matrix 8
5.1 Homogenous coordinates . 8
5.2 The Pinhole Camera . 8
5.3 The Intrinsic Camera Matrix . 8
5.4 Projecting the Point-cloud . 10

6 Putting it all together 10
6.1 Time Synchronization . 11
6.2 Queue Processing . 11

∗Developed by Amay Saxena and Grant Wang, Fall 2019.

1

https://docs.opencv.org/master/d6/d00/tutorial_py_root.html

1 Introduction

This lab will introduce you to various techniques used in processing data from advanced sensors like the Intel
RealSense camera. In particular, you will learn about image segmentation, point cloud processing, and how we can
combine various data modalities to leverage the strengths and weaknesses of each data form.

You will write your own point-cloud segmentation pipeline. This means that by the end of this lab, you will be
able to isolate an object of interest in a point-cloud, by combining information you get from RGB image sensors.

2 Starter Code

Create a new workspace called lab6. Look back to lab 1 to find more information on how to make a new workspace.

Our starter code for this lab is on GitHub for you to clone so that you can easily access any updates we make to
the starter code. It can be found at https://github.com/ucb-ee106/lab6 starter.git. You can clone it by running

git clone https://github.com/ucb-ee106/lab6_starter.git

Move the files into the src folder inside your lab6 folder. We also highly recommend you make a private GitHub
repository for each of your labs just in case.

The starter code includes the following packages:

1. ros_numpy: A very useful ROS package that can be used to convert between ROS message datatypes and
numpy datatypes. Check out the documentation at http://wiki.ros.org/ros_numpy.

2. segmentation: This is the package that contains all the skeleton code. All files that you will need to edit are
in this package.

After creating your workspace and copying over the contents of lab6_starter into lab6/src, use catkin_make

to build your workspace. Then, go into segmentation/src and make all python files executable using

chmod +x *.py

3 Point-Clouds

A point-cloud is a kind of data type used to represent 3D scenes. A point-cloud is simply an unordered set of points.
Point-clouds are a very popular 3D data modality. It is the kind of data returned by LiDAR sensors, which are staple
as the primary kind of sensor used by self-driving cars.

Typically, these points are given by just their (x, y, z) coordinates in the camera’s reference frame, but they may
include additional dimensions for additional data that the sensor captures for each point, like color. Indeed, the
pointclouds published by the RealSense will include 7 dimensions for each point, (x, y, z, r, g, b, a), where (x, y, z) are
the coordinates of the point, (r, g, b) is the color of the point in RGB format, and a is the intensity registered by the
sensor.

Run roscore. Then navigate to the bagfiles directory, download this bag file. Note that it may take a while
to download. Once downloaded, move it into the bagfiles directory in your lab6 workspace, and run the provided
bagfile in an infinite loop with the following command:

rosbag play -l realsense.bag

This will play the bag-file on an infinite loop and continuously publish a stream of pointclouds and images that
were recorded earlier with a RealSense.

We can visualize the point-cloud being published in Rviz. Open up Rviz by running

rosrun rviz rviz

2

https://github.com/ucb-ee106/lab6_starter.git
http://wiki.ros.org/ros_numpy
https://drive.google.com/file/d/1h-DLFYY-WIDuKtqrG9ljAPNUhrgM8Eue/view?usp=sharing

Change the fixed frame to be camera_depth_optical_frame. Next, add a new Display of type PointCloud2. Set
the topic for this display to /camera/depth/color/points. You may have to wait a bit for Rviz to begin registering
pointcloud messages (as you can imagine, point-cloud messages tend to be pretty heavy).

You should begin to see the point-cloud displayed in RViz as a big cloud of points. A typical scan from the
RealSense will include ∼ 100, 000 points. Note that the refresh rate on point-cloud topics tends to be much lower
than that of Image topics (which can be visualized with minimal-to-no lag).

Now, also add two Image displays. Set the topic for one to /camera/color/image_raw. Set the topic for the
other one to /camera/depth/image_rect_raw. These two displays will display the RGB and the Depth images
respectively.

Our goal for this lab will be to take a pointcloud from the RealSense bagfile, and then isolate an object of interest
in the scene. We will then publish a new pointcloud to a new topic, that will only contain points that correspond to
the object of interest (a process called “segmentation”).

Unfortunately, due to the unordered nature of point-clouds, it is usually very difficult to extract useful inferences
from point-clouds alone, without first processing them into a different kind of data-structure (like a proximity graph,
mesh, or voxel grid). This is because a regular point-cloud has no real structural arrangement to go off of - each
point stands alone, and no order is guaranteed.

On the other hand, it is comparatively much easier to extract such features from an RGB image. The inherent
structure of a pixel grid means that we have geometric cues to go off of when trying to locate an object of interest
(pixels corresponding to the same object are also close together in the pixel grid). This is also reflected in the state
of the art of machine learning methods for object detection. Deep learning methods on images are leagues ahead of
the state of the art in object detection directly on point-clouds, owing in large part to the unstructured nature of
the point-cloud.

3.1 An approach to point-cloud segmentation

Let’s say we want to filter out all points from a pointcloud that do not correspond to some object of interest. We’ll
use a green MegaBloks block. We already claimed that it will be difficult to locate the block in the pointcloud
directly. But as it turns out, we will be able to detect it easily the RGB image. So, how can we use this to our
advantage to detect the block in the pointcloud?

Well, we can take advantage of the fact that both the RGB image and the pointcloud are scanning the same
scene. So our strategy will be this: First, we will locate the block in the RGB image. Then, we will figure out how
points in the point-cloud correspond to pixels in the image. After all, each point is just a 3D coordinate for some
point in the scene that we took the RGB image of, so we should be able to map each point to some pixel in the
image. Next, we simply keep those points which map to a pixel that was detected as belonging to the green block.

So then, the first step will be to detect the block in the RGB image. Our aim will be to assign to each pixel in
the image either a 1 or a 0. A pixel gets a 1 if it belongs to the block, and a 0 otherwise. Such a grid is called a
“segmentation” or “segmentation map” of the original image, and the process of producing assigning such a class
label to each pixel in an image is called “image segmentation”.

Next, we will map each point in the point-cloud to some pixel of the image. Then we will keep any point that
lands on a pixel with a 1 in the segmentation map, and discard any point that lands on a 0. Finally, we simply create
a new point-cloud that comprises of only the points that we kept, and publish it to some new topic for visualization.

4 Image Segmentation

Image segmentation will allow us to “segment” or partition out our specific object of interest in the image, which
in this case will be our MegaBloks block. Our first step will be to create some functions that we can use for
image segmentation and then apply it to our block to detect it. There are a number of different ways that image
segmentation can be performed, but the ones that we will particularly look at are segmentation via thresholding,
edge-detection, and clustering. These are all methods widely used in computer vision and robotics. Note though,
since this is not a computer vision course, we will only touch on these methods at a surface-level and the results will
be far from perfect. They will, however, be enough to accomplish our task and get you introduced into the rich field
of computer vision.

3

4.1 Color and Grayscale Images

Before we start implementing our segmentation, we need to get you acquainted with some of the common models
used to represent images. The two particular models we will focus on are RGB and grayscale. Let’s begin by talking
about RGB images. The idea behind RGB images is that with the 3 base colors red, blue, and green (hence RGB),
we can mix them to create pretty much any color that most humans can distinctly recognize. Thus, we can represent
an image as a 3 color channel system where each pixel contains 3-channels of red, green, and blue intensity values
combined, and we can adjust these three values to change the particular color at a pixel. This representation allows
us to more formally define a color image as a 3-dimensional matrix, where each dimension is of size height x width
of the original image and each element constitutes a pixel that can take on any intensity value between 0-255 (each
color channel is 8 bits). What color do you think we get when we combine equal intensities of red, green, and blue?

Figure 1: Matrix RGB representation of Color Image.

Sometimes, though, we may be only interested in a more compact representation - each pixel is just the particular
amount of light. This is where grayscale images come in to play. Think of a grayscale image as a simpler version of
an RGB image. Each pixel of a grayscale image represents just intensity (amount of light) and is composed entirely
of shades of gray (mixtures of black and white). Black is of weakest intensity and white is of strongest. Using the
grayscale model, any image is now in the form of a single channel 2-D matrix, where each element corresponds to a
pixel and takes on an intensity value between 0 (pure black) and 255 (pure white). See Figure 2 for a visualization.

Figure 2: Matrix grayscale image.

A good amount of image processing and computer vision deals with extrapolating information from and manip-
ulating the values in these image matrices. We will be exploring the properties of and manipulating grayscale and
RGB images in image segmentation.

4.2 Thresholding

The simplest method of image segmentation is through the thresholding method. We will particularly explore
grayscale thresholding, although this method can be generalized to color-based thresholding as well. The thresholding
method makes use of the fact that if we have an object of interest and a background of a different grayscale intensity,
we can “threshold” or clip the image pixel values by setting values above the threshold to be white and those below
the threshold to be black (or you can do the other way around as well). More specifically in this lab, we will keep
things simpler by working with objects on our table (which has a mostly uniform background) and we will define a

4

threshold range that represents the intensity of the table and attempt to subtract it out. We will set a pixel to be
low if in this range (is part of the background), else high (is foreground e.g. our object).

The result of this threholded image is a binary image (not grayscale) with 1’s (white) representing our foreground
or object of interest, and 0’s (black) representing everything else.

Figure 3: Thresholding an image.

Let’s implement our thresholding strategy in code. Open up image_segmentation.py and implement the function
threshold_segment_naive.

We’ve included a couple sample images (lego.jpg, legos.jpg, and staples.jpg) for you to test your implemen-
tation. Go down to the main function and uncomment the line test_thresh_naive. Pass in the image of interest
into read_img. Run the following commands to install certain python libraries:

pip2 install scikit-image --user

pip2 install scikit-learn --user

Then run the script:

python image_segmentation.py

You will need to tune the lower_thresh and upper_thresh values depending on the image.

4.3 Edge Detection

Thresholding is a good choice when we know that the background of the image and the objects of interest in the
image have quite different grayscale intensities, allowing us to threshold easily and partition the two. However, such
scenarios are not always the case, and if the background and object have quite similar grayscale properties, all bets
are off. Luckily though, objects have a boundary that separate them from the background: the edges. If we can
detect the edges of different objects, then we have knowledge of where the objects are in the scene.

An edge can be defined as any region in the image where there is a sharp change in intensity. A way of expressing
this change in intensity is using derivatives or gradients (the multi-variable equivalent of the derivative). Imagine if
we were to flatten out our grayscale image matrix into a 1-D signal of pixel intensities and a part of the image looked
something like this when the pixel values are plotted:

Figure 4: The point highlighted by the red circle represents a sharp change in intensity.

5

A sharp change in the first derivative reflects a sharp change in intensity of the image, or where there is an edge.
So if we can compute the first derivatives of the pixels of our image in both the horizontal and vertical directions,
we can combine them to get the gradient. And pixels where the gradient is high are where edges occur.

A way to compute the gradients at each pixel is by using Sobel Filters, which are widely used in edge detection.
To use Sobel filters to detect edges, we perform what is known as a convolution between our filters represented by
the matrices in Equation 2 and the image of interest I to output Gx and Gy, which represent the horizontal and
vertical first derivatives of our image. We define Kx and Ky to be:

Kx =

−1 0 +1
−2 0 +2
−1 0 +1

 Ky =

−1 −2 −1
0 0 0

+1 +2 +1

 (1)

We define Gx and Gy to be:

Gx = Kx ∗ I Gy = Ky ∗ I (2)

The result is a new image matrix Gx which represents the first derivative in the horizontal direction at each pixel
of the original image I and Gy the vertical direction. The details of convolution are beyond the scope of this course,
and all you have to know is that the 3x3 Sobel filter slides across each 3x3 region of interest in the image, a dot
product is being computed between this filter (matrix) and the region of interest, and the outputted value represents
the derivative at that pixel. For a good visualization of how convolution in imaging works, we refer you to this, and
if you want to learn more about the math this is a start or take EE 120/123. (the link shows convolution of images
for RGB images, since we’re only working with grayscale, we only care about performing convolutions on a single
dimension). One nuance is that before we perform convolution, we need to pad our original image with 0’s on all
sides, why do you think that’s the case?

Finally, we approximate the gradient G at each pixel by combing Gx and Gy using the following equation:

G =
√
G2

x + G2
y (3)

G will give us all the detected edges (locations where the gradient is high) of the original image. Let’s now
implement this in code. We will take advantage of some existing functions in open-cv (a popular computer vision
package) and SciPy. One subtle thing we will do in our implementation is to blur the image first using Gaussian
bluring (see starter code for more details). This is done commonly to remove unwanted noise in the image. Fill in
the function edge_detect_naive in image_segmentation.py. To test your implementation, uncomment the line
test_edge_naive in main and try it on some sample images provided.

Figure 5: Edge detection using the Canny Edge Detector.

What we’ve just implemented is actually the first two steps of the famous Canny Edge Detector. To test how your
edge detector does in comparison, uncomment out test_edge_canny and compare your images. What differences
do you see?

4.4 Clustering

We’ve now looked at two methods of image segmentation that take an analytic approach. The last method of image
segmentation we will explore takes a more empirical approach by treating an RGB image pixels as a set of data
points with features that we are interested in using for classification. Note that we will be using RGB images instead
in this part, rather than grayscale in the previous two methods. The features in this case are the Red, Green, and
Blue intensity values at each pixel. Clustering is the task of partitioning the set of data points into different groups,
or “clusters”, such that data points in the same cluster are assigned the same label because they have more similar

6

http://cs231n.github.io/convolutional-networks/#MathJax-Element-40-Frame
https://en.wikipedia.org/wiki/Convolution
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html

feature values to other data points in its cluster than those outside of the cluster. (i.e. pixel values with similar RGB
intensities will be clustered with one another).

Figure 6: Clustering the pixels of our image via Red, Green, and Blue intensities as our features.

In the context of Image Segmentation, we can generate clusters for pixels of the image that share similar RGB
intensities – they are part of the same thing in the image. Each cluster is a segmentation of the image that could
represent the background, an object, etc. Figure 6 gives a high-level idea of how we are performing segmentation
via clustering. Each data point, or pixel is plotted. Pay attention to the axes, which represent the features: RGB
intensity values of each data point. Notice how pixels part of the same object in the image share the same cluster.

The algorithm we will use to generate these clusters is the K-Means algorithm, an unsupervised classification
algorithm. We will not be going into the details of K-means. The steps of the algorithm, however, are actually pretty
simple and we suggest you read through this step by step guide to get a feel of how the algorithm works. We will
leverage the built in KMeans class in the Scikit-learn package, a popular machine learning python library. All you
have to know is that we will feed as input into the K-means class the pixels of our image as the data points, and
K-means will output a clustered image that has the same label for the set of pixels in the same cluster but different
from other clusters (this is our segmented image).

Open up image_segmentation.py again and fill in the cluster_segment function. Comprehensive line by line
notes have been provided in this part to get you started. Note, we first downsample the image before passing it into
the K-Means algorithm to speed up clustering (why do you think that’s the case?), and then when we want to return
our segmented image we upsample the clustered image back to our original size. This has already been implemented
for you, just make sure you’re passing in the right variables to your function calls.

To test your implementation, go down to the main function and uncomment the line test_cluster. Play around
with the parameter n_clusters. What should you set this value to be depending on the image?

Checkpoint 1

Submit a checkoff request at tinyurl.com/106alab for a staff member to come and check off your work. At this point
you should be able to:

• Demonstrate that your thresholding, edge-detection, and clustering implementations can segment all the images
provided: lego.jpeg, legos.jpg, and staples.jpg, .

• Explain how your implementations worked for each method of image segmentation.

• Explain the performance differences and shortcomings of different segmentation methods on different images.

7

https://healthcare.ai/step-step-k-means-clustering/
https://tinyurl.com/106alab

5 Projective Geometry and The Camera Matrix

Now that we have a segmentation map for the image where we can isolate which pixels belong to the green block, our
next objective is to compute a correspondence between points in the point-cloud and pixels in the image. Essentially,
we would like to figure out how a point in 3D space gets transformed by the camera lens and projected onto the image
plane. Or more formally, we would like to compute the transform between 3D coordinates in the camera reference
frame (X,Y, Z) to image plane coordinates (u, v).

5.1 Homogenous coordinates

It is sometimes convenient to define points in terms of homogenous coordinates, wherein we append a 1 to the
coordinate representation of points. This often allows us to get away with having only linear transformations (of the
type f(x) = Ax) in a situation where we would otherwise need an affine transformation (of the type f(x) = Ax+ b).

A point (X,Y) in R2 can be represented in homogenous coordinates by adding one additional dimension. The
homogenous representation of this point would be (XT, Y T, T) where T is an additional dummy variable. For any
value of T , this will be a valid homogenous representation of the point (X,Y). In this way, we associate a point
(X,Y) in R2 with a line in R3.

A point (X ′, Y ′, T) given in homogenous coordinates can be converted to the point (X,Y) that it represents by
simply dividing through by the dummy coordinate:[

X
Y

]
=

[
X ′/T
Y ′/T

]
Feel free to think of this coordinate system as just a construction designed to make some of the math more

convenient. We will comment on why this correspondence between points on a plane and lines in 3D arises in the
problem at hand in a later section.

5.2 The Pinhole Camera

We will model our camera as a Pinhole Camera. The pinhole camera model defines the geometric relationship
between a 3D point and its 2D corresponding projection onto the image plane. When using a pinhole camera model,
this geometric mapping from 3D to 2D is called a perspective projection.

Let’s denote the center of the perspective projection (the point in which all the rays intersect) as the optical
center or camera center and the line perpendicular to the image plane passing through the optical center as the
optical axis (see Figure 7). Additionally, the intersection point of the image plane with the optical axis is called the
principal point. The pinhole camera that models a perspective projection of 3D points onto the image plane can be
described as follows.

5.3 The Intrinsic Camera Matrix

We will model our camera as a standard pinhole model camera. Consider Figure 7.
Here, we take the coordinates of the point p in the camera reference frame to be (X,Y, Z), and the image plane

coordinates of the projected point p′ to be (u, v). Our final objective is find a pair of natural numbers (U, V) that
are the index of the pixel onto which the point p is projected.

The standard way to define the axes of the camera reference frame is to have the z-axis point in the direction that
the camera is looking in, and have the x and y axes aligned with the image plane. We can show that the equation
relating the image plane coordinates to 3D space coordinates is given by:u′

v′

w

 =

fx s x0

0 fy y0
0 0 1

XY
Z

 (4)

Where (u′, v′, w) is a homogenous coordinate representation for the image plane coordinates (u, v) of the point.
To recover (u, v) we simply need to divide through by the dummy coordinate:[

u
v

]
=

1

w

[
u′

v′

]
(5)

In the above two equation, we have the following:

8

Figure 7: Geometry behind a Pinhole Camera

• (X,Y, Z) is the 3D space coordinates of the point p in the camera’s reference frame.

• (x0, y0) are the coordinates of the center of the image frame in a coordinate frame affixed to the top left of the
image. (x0, y0) is given in pixels.

• fx and fy are focal lengths of the lens, in pixels. Since our camera produces a rectangular image (which wouldn’t
happen with a pure pinhole camera), we model it as having two focal lengths, one corresponding to the height
of the image, and one corresponding to its width.

• s is axis skew. This parameter will be nonzero if the given lens produces a shear distortion in the image; in
other words, it encodes situations where the pixels are rectangles or parallelograms rather than squares. None
of these are true for our camera, so for us s will be zero.

The 3x3 matrix in Equation (3) is called the Intrinsic Camera Matrix. Camera Calibration is the process of
estimating this matrix, along with a host of other parameters.

Finally, we can get the indices of the pixel onto which the point is projected as the floor of the image plane
coordinates: [

U
V

]
=

[
buc
bvc

]
(6)

The RealSense has already been calibrated for you, and its calibration data is continuously published to the topic
camera/color/camera_info. The typical message type used by such topics is the sensor_msgs/CameraInfo

message type.

9

Task 1: Look up documentation on the sensor_msgs/CameraInfo message type, and then implement the
function get_camera_matrix in the file main.py. This function should accept a ROS Message of the above type,
and should return the 3x3 camera intrinsic matrix as a numpy array. You will need to figure out what field in
this message type gives you this matrix (Hint 1: Typically, this matrix is represented by the letter K) (Hint 2:
numpy.reshape may be useful here).

5.4 Projecting the Point-cloud

Now, we are ready to project our pointcloud onto the frame of the RGB image. For a given point p̂ in some world
reference frame, we can compute the indices (U, V) such that p̂ gets projected onto the pixel image_array[V][U]
using the following steps:

1. Represent p̂ in the reference frame of the depth camera. If the transform taking p̂’s reference frame to that of
the RBG camera is (R, t), then find p = Rp̂ + t. We will need to do this, since the pointcloud is generated in
the reference frame of the depth camera, which has a slight offset from the RGB camera.

2. Find q′ - the homogenous representation of the image plane coordinates of p - using eq (4):

q′ = Kp

3. Convert the homogenous representation q′ = (u′, v′, w) into an ordinary point p′ = (u, v) on the plane using eq
(5).

4. Finally, convert the coordinates (u, v) into pixel indices (U, V) by taking the floor, as in eq (6).

Task 2: Fill in the function project_points in file pointcloud_segmentation.py. This function takes as
input a pointcloud of (x, y, z) points given as a 3xN numpy array, the camera intrinsic matrix, the (R, t) transform
that converts points in the pointcloud to the reference frame of the RGB camera, and the dimensions of the image
produced by the RGB camera. This function should return a new numpy array of integers, of size 2xN, where the
ith pair is the pixel coordinates (U, V) of the ith point in the pointcloud. You should also return a numpy array that
acts as a mask indicating which points get successfully projected onto the image plane. See the function docstring
for an explanation on this.

Fill in the blanks in the code to implement steps 1-4 above.
Once you have an implementation, cd into the segmentation/src directory and run the sanity test with

rosrun segmentation test_projection.py

You will see a reference image, and the result of projecting a corresponding reference pointcloud using your
projection code. Make sure that the two frames match appropriately.

6 Putting it all together

Now you have working implementations of both image segmentation and point-cloud projection. Next, we will start
up a node that subscribes to topics for the RGB image, point-cloud, and camera info from the RealSense sensor, and
will then publish a segmented point-cloud to a new topic. This node has been written for you, and you can look at
its implementation in the file main.py. This node performs the following tasks, in order:

1. Get a tuple (It, Pt,Kt). It is the most recent RGB image at time t, Pt is the most recent point-cloud at time
t, and Kt is the most recent camera intrinsic matrix at time t. We can get this by subscribing to three topics,
one for each of those datapoints.

2. Use your image segmentation code to create a segmented image I ′t from It. This segmented image should have
a 1 for any pixels that belong to your object of interest, and 0 elsewhere.

3. Use your pointcloud projection code to project every point of Pt onto pixels of the segmented image I ′t.

4. Create a new pointcloud P ′
t by keeping any points from Pt that landed on a nonzero pixel, and discarding any

point that landed on a zero pixel. P ′
t should now only contain points belonging to the object of interest.

5. Publish P ′
t to a new topic segmented_points.

The following are a few salient features of this node.

10

6.1 Time Synchronization

Notice that in step 1 above, we need to acquire three data points (It, Pt,Kt) from three different datastreams (topics).
However, we also want to ensure that (It, Pt,Kt) come from approximately the same time. For instance, it may be
the case that the topic publishing pointclouds has much greater lag than the other topics, or that one of the three
topics is stalled for some reason. In this case, if we just naively use the last received message from each of the topics,
then we will be projecting an old pointcloud onto a new image, which will give us an incorrect result. So we want
some way to ensure that the pointcloud and image we use were collected close to each other.

The built-in ROS package message_filters has functionality that will give us exactly what we want. Instead
of defining three naive subscribers, each with its own callback, we can instead define a single message filter that
listens to three topics, and only lets through triplets of messages that satisfy the “approximate time” condition. The
ApproximateTimeSynchronizer implements this functionality, and it allows us to define one single callback that
takes three message arguments. The time synchronizer filter will make sure that only triplets of data with close
timestamps get sent to this callback.

6.2 Queue Processing

One way to implement steps 1-5 is to perform all computations inside the subscriber callback, and then publish from
within the callback itself. While this is certainly possible, it is not advisable. Instead, the callback simply pushes
the triple (It, Pt,Kt) onto a queue, from where a separate routine pops, processes, and publishes.

Task 3: For this next part, you will use the provided bag-file to publish images and point-clouds.

In image_segmentation.py, fill in the function segment_image with an image segmentation algorithm of your
choice. By default, it uses your thresholding implementation (you will need to put in the right thresholds). You can
also experiment with using the clustering implementation as well.

Open up RViz. Ensure that the fixed frame to camera_depth_optical_frame. In the right hand side win-
dow, check the box labelled Invert z-axis. You should have created an Image display and set its topic to
camera/color/image_raw. Now create a Pointcloud2 display, and set its topic to segmented_points (you may
not able to do this until after you have started up main.py).

Now start the main node with the following command.

rosrun segmentation main.py

You should see a point-cloud appear in RViz with only your MegaBloks block visible in it. How accurate this is
will be a function of your image segmentation implementation, so feel free to play around with the hyperparameters
till you get something to that looks good. Also note that if you are using clustering, there may be noticeable lag in
this pointcloud. This is to be expected, and happens because your image segmentation implementation is slow. You
may be able to speed it up by, for instance, downsampling the image by a greater factor before segmentation and
then upsampling the result.

Checkpoint 2

Submit a checkoff request at tinyurl.com/106alab for a staff member to come and check off your work. At this point
you should be able to:

• Show that your code correctly projects the sanity test reference pointcloud.

• Explain what each entry in the camera intrinsic matrix represents.

• Show your segmented pointcloud in RViz.

• Explain the functioning of main.py.

11

https://tinyurl.com/106alab

	Introduction
	Starter Code
	Point-Clouds
	An approach to point-cloud segmentation

	Image Segmentation
	Color and Grayscale Images
	Thresholding
	Edge Detection
	Clustering

	Projective Geometry and The Camera Matrix
	Homogenous coordinates
	The Pinhole Camera
	The Intrinsic Camera Matrix
	Projecting the Point-cloud

	Putting it all together
	Time Synchronization
	Queue Processing

