
Lab 3: Forward Kinematics and Coordinate Transformations∗

EECS/ME/BIOE C106A/206A Fall 2021

Goals

By the end of this lab you should be able to:

• Compute the forward kinematics map for a robotic manipulator

• Compare your own forward kinematics implementation to the functionality provided by ROS

• Use the powerful functionality of tf2 in your own ROS node

• Make Baxter/Sawyer move to simple joint position goals

• View the sensor and state data published by Baxter using RViz

Relevant Tutorials and Documentation:

• Baxter SDK

• Sawyer SDK

• Baxter Joint Position Control Examples

• Sawyer Joint Position Control Examples

• tf2 Tutorials
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Introduction

Coordinate transformations are one of the fundamental mathematical tools of robotics. One of the most common
applications of coordinate transformations is the forward kinematics problem. Given a robotic manipulator, forward
kinematics answers the following question: Given a specified angle for each joint in the manipulator, can we compute
the orientation of a selected link of the manipulator relative to a fixed world coordinate frame or a frame attached
to another point on the robot?

This lab will explore this question in two parts, which need not be done in order. In Part 1, you’ll use the code you
wrote as part of the prelab to write the forward kinematics map for one of Baxter’s arms, then you’ll compare your
results against some of ROS’s built-in tools. You’ll also learn a bit more about tf2, a useful package for computing
transforms. In Part 2, you’ll explore Baxter/Sawyer’s basic joint position control functions, and take a quick look at
how ROS helps you manage the coordinate transformations associated with all of Baxter/Sawyer’s moving parts.

1 Forward kinematics

As discussed in lecture, the forward kinematics problem involves finding the configuration of a specified link in a
robotic manipulator relative to some other reference frame, given the angles of each of the joints in the manipulator.
In this exercise, you’ll write your own code to compute the forward kinematics map for one of the Baxter robot’s
arms.

1.1 Set up your workspace

Create a workspace called lab3 in your ~/ros_workspaces directory. Refer to Lab 1 if you need to review how to
do this.

In the src folder inside your lab3 workspace, create a package called forward_kinematics which depends on
rospy and sensor_msgs. Instructions on how to do this are also in Lab 1.

Remember to run catkin_make to initialize and build your workspace and run and source devel/setup.bash

so your new workspace is on the $ROS_PACKAGE_PATH.
Our starter code for this lab is on GitHub for you to clone so that you can easily access any updates we make to

the starter code. It can be found at https://github.com/ucb-ee106/lab3 starter.git. You can clone it by running

git clone https://github.com/ucb-ee106/lab3_starter.git

Move the files into the src folder inside your forward_kinematics package. We also highly recommend you make
a private GitHub repository for each of your labs just in case.

1.2 Prelab

Make sure you have done the Lab 3 Prelab (implementing the functions in the kin_func_skeleton.py file) which
was part of Homework 2. For the rest of this lab, you may use your filled-in kin_func_skeleton.py file provided
that both partners can explain the code.

1.3 Writing the forward kinematics map

Writing the forward kinematics map for a serial chain manipulator involves the following steps:

1. Choose where on the robot to attach the fixed base frame and the moving tool frame.

2. Define θ = [θ1, . . . , θn] to be the vector of joint angles for an n-degree-of-freedom manipulator, and define
gst(θ) to be the homogeneous transformation from the base frame to the tool frame that results from setting
the degrees of freedom to the joint angles in θ.

3. Define a reference “zero” configuration gst(0) for the manipulator at which all entries of θ are 0, and write out
the coordinate transformation from the base to the tool frame when the manipulator is in this zero configuration.

4. Find the axis of rotation ωi for each joint as well as a single point qi on each axis of rotation (all with respect
to the base frame).
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5. Write the twist ξi for each joint in the manipulator.

6. Write the product of exponentials map for the complete manipulator.

7. Multiply the map by the original base-to-tool coordinate transformation to get the new transformation between
the base and tool frames gst(θ), which is now a function of the joint angles.

Task 1: Using the code from prelab and referring to the textbook if necessary, complete the implementation for the
baxter_forward_kinematics_from_angles function in the baxter_forward_kinematics.py file that computes the
coordinate transformation between the base and tool frames for the Baxter arm pictured below (steps 3-7 above). The
function should take an array of 7 joint angles as its only argument and return the 4x4 homogeneous transformation
matrix gst(θ). Refer to Figure 1 for the parameters of the Baxter arm. The only other parameter you should need
is the rotation matrix

R =

 0.0076 −0.7040 0.7102
0.0001 0.7102 0.7040
−1.0000 −0.0053 0.0055


where

gst(0) =

[
R q
0 1

]
for the appropriate value of q.

Note: Copying the information into Python from the diagram below can take a while, so we have done it for you
in baxter_forward_kinematics.py.
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Figure 1: Baxter arm parameters.

1.4 Compare with built-in ROS functionality

Once you think you have finished your forward kinematics function, you’ll compare your implementation with with
some built-in functions offered by ROS.

To do this, we’ll use a new tool called rosbag, which allows you to record and play back all the messages published
on a set of topics, in order to test pieces of your software. The baxter.bag file from the starter code is a recorded
set of data from Baxter while its left arm was moved around. Start roscore first, then play the file by running

rosbag play baxter.bag

3



from the directory that contains the baxter.bag file. Notice how you can pause playback with the space bar and
view the published messages with the usual tools like rostopic list and rostopic echo.

Try rostopic echo-ing the robot/joint_states topic, which gives the current joint angles of all joints in
Baxter’s left and right arms, as well as those of the head and torso. Using knowledge from rostopic echo, you can
figure out what joint angles correspond to Baxter’s left arm. (Hint: names starting with ‘left ’ correspond to the left
arm.)

Next, try running the command

rosrun tf tf_echo base left_hand

while the bag file is playing. Any ideas about the data that’s displayed?
Task 2: Write a node forward_kinematics_node.py that subscribes to the robot/joint_states topic and plugs

the appropriate joint angles from each message into your forward kinematics map from the last task. Do this by
implementing the baxter_forward_kinematics_from_joint_state function in baxter_forward_kinematics.py

and have your subscriber node call that function whenever it receives a new message. Display the resulting transfor-
mation matrix in another terminal alongside the tf data discussed above. Do you notice any similarities? What do
you think the “RPY” portion of the tf message is?

1.5 Writing a tf Listener

tf is more than just a command line utility. It’s a powerful set of libraries that you can use to find transforms
between different frames on your robot. You’ll be writing a listener node using tf2, which is the newer, supported
version of tf. The tf2 package is ROS independent, so you need to import tf2_ros, which contain ROS bindings
of the various tf2 functionalities. You can import it in your code with the following line:

import tf2_ros

A Buffer is the core of tf2 and stores a buffer of previous transforms. To create an instance of a Buffer use the
following line:

tfBuffer = tf2_ros.Buffer()

A TransformListener subscribes to the tf topic and maintains the tf graph inside the Buffer. To create an
instance of TransformListener use the following:

tfListener = tf2_ros.TransformListener(tfBuffer)

The function tfBuffer.lookup_transform(...) looks up the transform of the target frame in the source frame.
The output is of type geometry_msgs/TransformStamped (documentation for this type can be found here).

trans = tfBuffer.lookup_transform(target_frame, source_frame, rospy.Time())

Here are some tf exceptions you might want to catch:

tf2_ros.LookupException

tf2_ros.ConnectivityException

tf2_ros.ExtrapolationException

To catch an exception in Python you can create a try/except block (you might know this format as a try/catch
block in most other programming languages). You should consider making a try/except block when using functions
such as lookup_transform since exceptions can occur often and will crash your program when encountered. With
a try/except block, your node will be able to handle exceptions and will not shut down if one occurs. You can write
one with the following format:

4

http://docs.ros.org/melodic/api/geometry_msgs/html/msg/TransformStamped.html


try:

<code to execute>

except (<exception>, <exception>, . . .):

<code to execute if an exception occurs>

Task 3: Write a tf listener node tf_echo.py that duplicates the functionality of the tf_echo command line
utility. Like the tf_echo command, your node should also take in a target frame and a source frame as command line
arguments (the Python library sys might be helpful to look at). Please also note that you shouldn’t need to create
a subscriber for your node (why do you think this is?). Display your node’s output in another window alongside the
tf data discussed above and ensure that the outputs are the same. Note: you do not have to format your output
the same way, but the position and orientation should be the same.

Checkpoint 1

Submit a checkoff request at tinyurl.com/106alab for a staff member to come and check off your work. At this point
you should be able to:

• Explain how you constructed your forward kinematics function

• Explain the functionality of your forward kinematics node and demonstrate how it works

• Demonstrate that your forward kinematics node and tf produce the same output

• Demonstrate that your tf echo node and tf produce the same output

5

https://tinyurl.com/106alab


2 Make Baxter/Sawyer move

In this section, you’ll explore some of Baxter/Sawyer’s basic position control functionality. Close all running ROS
nodes and terminals from the previous part, including the one running roscore, before you begin. Additionally,
ensure that you have been trained by the course instructors in the proper safety procedures (including
use of the E-Stop button) and etiquette for running Baxter/Sawyer.

To automatically set up the Baxter and Sawyer packages in each new terminal, make sure that your ~/.bashrc

file includes the line

source /scratch/shared/baxter_ws/devel/setup.bash

If you edited the ~/.bashrc file, make sure to source it in any existing terminal windows that you plan on using.
To set up your environment for interacting with Baxter, make a shortcut (symbolic link) in the root of your catkin

workspace (lab3) to the Baxter environment script /scratch/shared/baxter_ws/baxter.sh using the command

ln -s /scratch/shared/baxter_ws/baxter.sh [path-to-workspace]

From the root of the catkin workspace (lab3), use the following line to connect to one of the Baxter robots:

./baxter.sh [name-of-robot].local

where [name-of-robot] is either ayrton, asimov, or archytas.
To set up your environment for interacting with Sawyer, make a shortcut (symbolic link) in the root of your catkin

workspace (lab3) to the Sawyer environment script /scratch/shared/baxter_ws/intera.sh using the command

ln -s /scratch/shared/baxter_ws/intera.sh [path-to-workspace]

From the root of the catkin workspace (lab3), use the following line to connect to one of the Sawyer robots:

./intera.sh [name-of-robot].local

where [name-of-robot] is either ada or alan.
Baxter and Sawyer have different interface packages (baxter_interface and intera_interface respectively),

but they are virtually identical. Don’t forget to check that you have the correct package imported! The main
difference is the obvious one: Sawyer only has one arm! This means that whenever you try to move an arm on
Sawyer, it must be the right one. On Baxter, you may use either arm.

Open the baxter_examples package inside the baxter_ws workspace and examine the scripts/joint_position_
keyboard.py file, which allows you to move the Baxter’s limbs using the keyboard. If you are connected to a Baxter,
run the program and test its commands. If you are connected to a Sawyer, run the corresponding example in the
intera_sdk/intera_examples package. Note that you don’t need to start roscore — it’s already running on the
Baxter/Sawyer robot itself.

Instead of publishing directly to a topic to control Baxter/Sawyer’s arms (as with turtlesim), the respective
SDKs provide a library of functions that take care of the publishing and subscribing for you.

Task 4: Create and open a new package called joint_ctrl in your lab3 workspace. What dependencies
will be needed? (Hint: Include baxter_examples/intera_examples as a dependency.) Make a copy of the
joint_position_keyboard.py file (from the appropriate package, depending on which type of robot you are us-
ing) inside the joint_ctrl package, giving it a new name. Edit your copy so that instead of capturing key-
presses, it prompts the user for a list of seven joint angles, then moves to the specified position. (Hint: You
might have to call limb.set_joint_positions() repeatedly at some interval, say, 10ms, while the robot is in
the process of moving to the new position.) The set_joint_positions() function takes a single argument,
which should be a Python dictionary object mapping the names of each joint to the desired joint angles (e.g.,
{‘left_s0’: 0.0, ‘left_s1’: 0.53, ..., ‘left_w2’:1.20}). Dictionaries are used as follows:

# Create an empty dictionary

test_dict = {}

# Add values to the dictionary
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test_dict[‘key1’] = ‘value1’

test_dict[‘a_number’] = 1.024

# Read values from the dictionary

print(test_dict[‘key1’])

print(test_dict[‘a_number’])

# Output:

# value1

# 1.024

# You can also create a dictionary with a literal expression

test_dict2 = {‘key1’: ‘value1’, ‘a_number’: 1.024}

Test your code with several different combinations of joint angles and observe the results. Once you get your
code to work, run the command

rosrun tf tf_echo base left_hand

or

rosrun tf tf_echo base right_hand

as appropriate and observe the output as you move the robot around. Any ideas what the data represents?
Finally, run

export ROS_MASTER_URI=http://[name-of-robot].local:11311

rosrun rviz rviz

for the appropriate value of [name-of-robot], as before. The first line above tells RViz to connect to the remote
master running on the robot.

Once RViz loads, ensure that Displays > Global Options > Fixed Frame is set to world. Next, click the Add
button and add a RobotModel object to the window so you can see the robot move. Any thoughts as to where RViz
gets the data on the robot’s position?

Next, add two copies of the Axes object to the display. In the Displays pane of the left side of the screen, set
the Reference Frame of one Axes object to /base and the other to /right_hand. You should see both sets of axes
displayed on Baxter. What do you think the axes represent?

Finally, remove both Axes objects and add a single TF object to the display. What happens?

Checkpoint 2

Submit a checkoff request at tinyurl.com/106alab for a staff member to come and check off your work. At this point
you should be able to:

• Demonstrate the code you wrote to set Baxter/Sawyer’s joint positions

• Use RViz to display the different state and sensor data topics published by Baxter/Sawyer

• Explain what the Axes and TF displays in RViz represent
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